Физическая химия и электрохимия расплавленных электролитов

UDK 544.6.018, 544.632

SYNTHESIS OF LANTHANIDE AND ACTINIDE TRICHLORIDES IN HIGH TEMPERATURE MOLTEN SALT

S.-E. Bae^{1,2}*, H. Jeong¹ and T.-H. Park^{1,2}

¹Korea Atomic Energy Research Institute, Daejeon, Korea ²University of Science and Technology, Daejeon, Korea *e-mail: sebae@kaeri.re.kr

In a pyrochemical process, uranium dioxide, actinide dioxide, and lanthanide oxide have been converted to their trichloride forms for their dissolutions and electrodepositions. It is well-known that the lanthanide oxides such as Nd₂O₃, Gd₂O₃, etc. are not fully reduced to their metallic form during an electro-reduction process so that the lanthanide elements may not be dissolved during an electro-refining process. The lanthanide trichloride reagents are sold by a commercial reagent company whereas the actinide trichloride cannot be commercially purchased. However, in order to study chemical and electrochemical behaviors of the actinides in high temperature molten salt, it is essential to have the actinide trichlorides. In this work, in order to fully dissolve the lanthanide oxide into molten salt as well as to synthesize the actinide trichlorides in high temperature molten salt, we studied their direct dissolution and synthesis in the high temperature molten salt.

In order to test the conversion of the lanthanide oxide to the lanthanide trichloride in LiCl-KCl melt, we chose Nd_2O_3 and Gd_2O_3 as the representatives of lanthanide oxides. Fig. 1 shows a picture of Nd_2O_3 dissolved LiCl-KCl melt. We added Nd_2O_3 powder in transparent LiCl-KCl melt and shook the cell. The Nd_2O_3 was not dissolved and still existed as a form of colloids. The white blue of the picture is typical color of the Nd_2O_3 colloids in the melt. In order to dissolve Nd_2O_3 and get rid of the oxygen from the oxide, here we introduced ammonium chloride (NH_4Cl) in the melt. We expected that NH_4Cl may supply HCl in the melt. The HCl is very acidic molecule so that it can absorb the oxygen anion of the lanthanide oxides. Because the NH_4Cl is very volatile, we also expected that residuals of NH_4Cl after the reactions can be easily removed as a gas. The mechanism of the reaction can be described as shown below.

$$Nd_2O_3(s) + 6NH_4Cl(l) \rightarrow 2NdCl_3(l) + 3H_2O(g) + 6NH_3(g)$$
 (1)

The products of the reaction are all gas phases except for the $NdCl_3$, which means that the by-product of the reaction can be easily removed from the melt.

Fig. 1b and 1c show the pictures of LiCl-KCl melt containing Nd_2O_3 after NH_4Cl was added. As soon as the addition of the NH_4Cl , there was a vigorous formation of gas bubbles and then the bubbles gradually disappeared in

5 minutes. After the reaction was completed, the melt turned into transparent and clean sky blue color (Fig.1c).

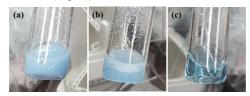


Figure 1. Pictures of Nd_2O_3 dissolved LiCl-KCl melt at 450 $^\circ$ C. (a) Before and (b, c) after the addition of NH_4Cl .

Fig. 2 shows a cyclic voltammogram obtained from a W wire immersed in LiCl-KCl melt containing Nd₂O₃ after addition of NH₄Cl. It is obvious that cathodic and anodic currents around -2.0 V occurred. The current can be attributed to the electrodeposition and dissolution of Nd in LiCl-KCl melt. This result indicates that the NdCl₃ were directly formed from Nd₂O₃ with addition of NH₄Cl in the LiCl-KCl melt.

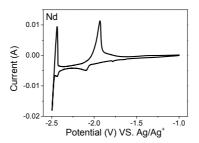


Figure 2. A cyclic voltammogram obtained from a W wire immersed in LiCl-KCl melt containing Nd₂O₃ after addition of NH₄Cl.

Actinide oxides have also been converted to their trichloride forms in the high temperature molten salt. The results will be given in the Conference.

References

1. *T. Park et al.* // J. of Rad. Analyt. and Nuc. Chem. 2018. V. 316. P. 1253-1259.

2. Y. Liu et al. // J. Nucl. Mater. 2020. V532. P. 152049.

3. S. Bae et al. // Electrochem. & Solid-State Lett. 2010. V.13. P. F25-F27.