

- 6. *Савицкий А.П.* Жидкофазное спекание систем с взаимодействующими компонентами. Новосибирск: Наука. Сибирское отделение, 1991.
- 7. Сумм Б.Д., Горюнов Ю.В. Физико-химические основы смачивания и растекания. М: Химия, 1976.
- 8. Яценко С.П. Галлий. Взаимодействие с металлами. М.: Наука, 1974.
- 9. Иванова Р.В. Химия и технология галлия. М.: Металлургия, 1973.

УДК 544.6.018.4

ВЛИЯНИЕ ДОПИРОВАНИЯ ЦИНКОМ НА ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА LaAlO₃

А.В. Егорова^{1,2*}, К.Г. Белова^{1,2}, И.Е. Анимица¹

¹Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия ²Институт высокотемпературной электрохимии УрО РАН, Екатеринбург, Россия *e-mail: anastasia.obrubova@urfu.ru

Одной из задач современного неорганического материаловедения является создание новых функциональных материалов для дальнейшего их применения в электрохимических устройствах. Важнейшие требования для таких материалов — это высокая ионная проводимость и химическая стойкость в широком интервале pO_2 , pH_2O , pCO_2 . В этом отношении хорошо изучены вещества со структурой перовскита.

Так как химическую нестойкость перовскитов по отношению к кислотным газам связывают с присутствием щелочноземельного компонента, перовскиты состава $A^{3+}B^{3+}O_3$ являются перспективными объектами для исследований. Несмотря на то, что наибольшие значения кислород-ионной проводимости достигнуты в системах на основе галлатов, разработка новых соединений на основе алюмината LaAlO $_3$ представляется не менее важной. Алюминат лантана обладает рядом преимуществ: это недорогое сырье с более высокой термодинамической устойчивостью относительно всех перовскитов $A^{3+}B^{3+}O_3$ из-за прочности связи Al-O; а также более широкая $T-pO_2$ — область ионной проводимости.

Оптимизация транспортных характеристик в перовскитах, как правило, осуществляется за счет акцепторного замещения катионов в A- и/или B- подрешетках. В качестве допанта в настоящей работе используется цинк. Введение цинка в B-подрешетку LaAlO $_3$ будет приводить к образованию вакансий кислорода, так как заряд акцепторной примеси Zn' $_{Al}$ будет компенсироваться появлением соответствующего числа вакансий кислорода V" $_{o}$. Кроме того, введение цинка улучшит спекаемость образцов и позволит получить более плотную керамику;

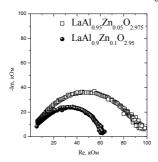
также присутствие цинка, в противоположность щелочноземельным элементам, не приводит к карбонизации керамики, соответственно, позволит увеличить химическую устойчивость.

Поэтому целью данной работы является аттестация физико-химических свойств твердых растворов $LaAl_{1-x}Zn_xO_{3-1/2x}$.

Синтез образцов LaAl_{1-x}Zn_xO_{3-1/2x} (x=0.0-1.0), проводился по стандартной керамической технологии. Предварительно прокаленные исходные оксиды были смешаны в стехиометрических количествах. Температурный режим синтеза – от 700°С до 1200°С. После каждой стадии термообработки образцы тщательно перетирались в шаровой мельнице в среде этилового спирта в течение 2 ч. Для аттестации структуры использовали метод порошковой рентгеновской дифракции. Рентгенограммы были получены при комнатной температуре на дифрактометре Bruker D8 Advance в СиКα – излучении (напряжение 40 кВ, ток 40 мА), съемку проводили в интервале углов $2\theta = 10^{\circ} - 80^{\circ}$ с шагом $0.05^{\circ}\theta$. Для уточнения кристаллической структуры фаз использовали метод полнопрофильного анализа Ритвельда с применением компьютерной программы FULLPROF и графического инструментария к ней – WinPLOTR. Установлено, что область гомогенности в системе LaAl_{1-x}Zn_xO_{3-1/2x} небольшая и ограничивается составом в 10 мол.%. Структурные характеристики твердых растворов приведены в таблице.

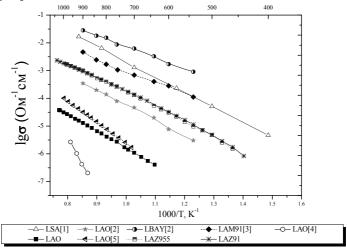
Таблица. Структурные параметры твердых растворов LaAl_{1-x}Zn_xO_{3-1/2x}.

$LaAl_{1-x}Zn_xO_{3-1/2x}$	Сингония	Пр. гр.	a, Å
LaAlO ₃			3.791
LaAl _{0.95} Zn _{0.05} O _{2.975}	кубическая	Pm3m	3.785(2)
LaAl _{0.9} Zn _{0.1} O _{2.95}			3.779(9)


Твердые растворы на основе алюмината лантана имеют кубическую структуру подобную исходной матрице.

Методом гидростатического взвешивания была определена относительная плотность исследуемых образцов. Установлено, что цинксодержащие алюминаты лантана обладают относительной плотностью в 95-99%

Для исследований электрических свойств образцы были компактированы в виде таблеток. Электропроводность образцов была изучена методом электрохимического импеданса в частотном диапазоне от 500 Γ ц до 1 $M\Gamma$ ц с использованием измерителя параметров импеданса Elins Impedancemeter Z-1000P. Измерение электропроводности проводили в интервале температур 200–1000°C при варьировании параметров в условиях равновесия с T, pO_2 , pH_2O .



Спектры импеданса однофазных образцов, приведенные на рисунке 1, состоят из одной полуокружности, исходящей из начала координат, которую можно отнести к объемным свойствам образца, о чём подтверждают небольшие значения объемной емкости $C_{\text{of}} \sim 10^{-11} \ \Phi.$

Рисунок 1. Годографы импеданса LaAl_{1-x}Zn_xO_{3-1/2x} (x=0.05, 0.1), полученные в сухой атмосфере.

Годографы импеданса были обработаны с использованием компьютерных программ ZView2 и EQUIVCRT. По результатам обработки были построены температурные зависимости электропроводности исследуемых образцов. На рисунке 2 приведены политермы проводимости твердых растворов в сравнении с алюминатом лантана, полученным в рамках настоящей работы, и LaAlO₃, исследованных в литературных источниках [1-5].

Рисунок 2. Сравнение температурных зависимостей общей электропроводности $LaAl_{0.95}Zn_{0.05}O_{2.975}$, $LaAl_{0.9}Zn_{0.1}O_{2.95}$ и $LaAlO_3$ в сухой атмосфере.

Максимум проводимости наблюдается у образца $LaAl_{0.9}Zn_{0.1}O_{2.95}$. Электрические свойства также были исследованы при варьировании парциального давления паров воды в системе. Обнаружено, что значимого протонного переноса в полученных соединениях не реализуется.

Для разделения общей проводимости на парциальные вклады (ионный и электронный), исследовали электропроводность образца $LaAl_{0.9}Zn_{0.1}O_{2.95}$ при варьировании парциального давления кислорода в интервале температур 500-900°С. Фаза проявляет кислород-ионный тип проводимости с некоторой долей электронного вклада (р-типа), который незначительно увеличивается с увеличением температуры, за счет появления дырочных дефектов в структуре.

Проводили оценку химической устойчивости твердых растворов по отношению к CO_2 и парам $\mathrm{H}_2\mathrm{O}$. После длительных измерений во атмосфере с поввышенным парциальным давлением паров воды, образец с x=0.1 был аттестован методом РФА. Установлено, что гидролизного разложения образца не происходит. По РФА предварительно обработанных в потоке газа CO_2 (в соотношении с воздухом (1:1) в течение 18ч.) образцов оценивали химическую устойчивость соединений к воздействию углекислого газа.

Таким образом, в настоящей работе были получены новые фазы $LaAl_{1-x}Zn_xO_{3-1/2x}$, область гомогенности ограничена составом с x=0.1. Введение цинка увеличивает общее значение проводимости. Твердые растворы $LaAl_{1-x}Zn_xO_{3-1/2x}$ характеризуются высокой относительной плотностью. Кроме того, допирование повышает устойчивость керамики к углекислому газу. Таким образом, допирование цинком может быть альтернативой для акцепторного допирования.

Список литературы

- 1. Fu Q.X. et al. // Solid State Ionics. 2006. V. 177. P. 1059–1069.
- 2. Fung K.-Z., Chen T.-Y.// Solid State Ionics. 2011. V. 188. P. 64–68.
- 3. Chen T.-Y., Fung K.-Z. // J. of Power Sources. 2004. V.132. P. 1–10.
- 4. Silva C.A., Miranda P.E.V. // J. of Hydrogen energy. 2015. V. 40.
- P. 10002-10015.
- 5. Fabiana M. et al. // J. Eur. Ceram. Soc. 2019. V. 39. P. 5298.