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Abstract: The report evolves a method, which uses the formalization and results of positional
antagonistic differential games theory, developed by N. N. Krasovskii and his scientific school, for
constructing solutions of a class of non-antagonistic differential games. The method transforms
non-antagonistic game into so-called non-standard optimal control problem. Numerical solutions
for Stackelberg games are constructed by an algorithm developed by S. Osipov. Numerical Nash
solution construction algorithm based upon auxiliary bimatrix games sequence is presented.
Used computational geometry algorithms include convex hull construction, union and inter-
section of polygons and a Minkowski sum for polygons. Results of numerical experiment for a
material point motion in plane are presented. The point is moved by force formed by two players.
Every player has his personal target point. Among the obtained results, there is a Nash solution
such that along the corresponding trajectory the position of the game is non-antagonistic, at

first, and then becomes globally antagonistic starting from some moment of time.
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1. INTRODUCTION

There are various approaches for computation of so-
lutions in differential games, see, e.g., Basar and Ols-
der (1982); Krasovskii and Subbotin (1988); Krasovskii
and Krasovskii (1995); Krasovskii (1985); Kleimenov
(1993).Many of them suggest numeric methods for solution
computation. Such algorithms proposed for antagonistic
games are, for example, discussed in papers Isakova et al.
(1984); Vahrushev et al. (1987), as well as in other studies
of the same and other authors. Comparing to this, there
are distinctly less studies concerning non-antagonistic
games and they usually deal with linear quadratic games.
The present paper describes an algorithm for Nash equilib-
rium solutions and Stackelberg solutions in linear differen-
tial game with geometrical constraints for players’ controls
and terminal cost functionals of players. Algorithm and
the program for Nash solutions was mainly implemented
by D. Kuvshinov.

The paper is organized as follows. Section 2 contains
problem statement. Section 3 describes common method
for Nash and Stackelberg solutions construction based on
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reduction of original problem to non-standard problems
of (optimal) control. Section 4 presents description of two
algorithms. The first one builds a Nash solution with the
help of auxiliary bimatrix game. The second one solves
Stackelberg problem approximating admissible trajecto-
ries via repetitive intersections of stable bridges and local
attainability sets. Brief description of the program im-
plementation is given in Section 5. Results of numerical
experiment for a material point motion in plane are pre-
sented in Section 6. The point is moved by force formed
by two players. Every player has his personal target point.
Among the obtained results, there is a Nash solution such
that along the corresponding trajectory the position of
the game is non-antagonistic, at first, and then becomes
globally antagonistic starting from some moment of time.
Finally, Section 7 proposes possible study perspectives.

2. PROBLEM STATEMENT

Let the dynamics of a two-person non-antagonistic posi-
tional differential game be described by the equation

x(t) = A(t)x(t) + B(t)u(t) + C(t)v(t),

X(to) = Xo, t e [to,el, (1)



where x € R™ is a phase vector. Matrices A(t), B(t) and
C(t) are continuous and have dimensions n x n, n X k and
n x I, respectively. Controls u € P C R¥ and v € Q C R!
are handled by Player 1 and Player 2, respectively. Sets P
and @ are assumed to be convex polyhedrons. The final
time 6 is fixed.

Suppose that Player 1 goal is maximization of the cost
functional oq(x(#)), while Player 2 maximizes the cost
functional o9(x(6)), where functions o7 : R® — R and
oo : R™ — R are continuous and concave.

It is also assumed that both the players know value x(¢) at
the current moment of time ¢ € [tg, #). Then formalization
of players’ strategies in the game could be based on
the formalization and results of positional antagonistic
differential games theory (Krasovskii (1985); Krasovskii
and Subbotin (1988)). According to this formalization
(see also Kleimenov (1993)), strategies are described as
belonging to the class of pure positional strategies and
are equated to pairs of functions. Strategy of Player 1 U
is equated to a pair {u(t, x,€), 51(€)}, where u(:,-,-) is an
arbitrary function of position (¢, x) and a positive precision
parameter € and having values in the set P. The function
B1: (0,00) — (0,00) is a continuous monotone one and
satisfies the condition (1(¢) — 0 if ¢ — 0. The function
B1(+) has the following sense. For a fixed € the value (3 ()
is the upper bound for the step of a subdivision of the
interval [tg, 6], which Player 1 uses for forming step-by-
step motions. Strategy V = {v(¢,x,¢), B2(¢)} of Player 2 is
defined analogously. A motion x[t; o, X0, U, V], generated
by a pair of strategies (U, V), is introduced. The set of
motions X (¢, %o, U, V) is non-empty (Krasovskii (1985)).

2.1 Nash solutions

A pair of strategies (UYN, V) is called a Nash equilibrium
solution (N-solution) of the game, if for any motion x*[] €
X (tg,x0, UN,VN) any 7 € [to, 0] and any strategies U and
V the following inequalities are held

max oy (x[0; 7, x*[7], U, VN])

The operations of min and max in (2) are taken in the sets
of corresponding motions.

Trajectories of the system (1) generated by N-solution are
called N-trajectories.

2.2 Stackelberg solutions

Denote by S1 the game under the following assumptions.
Player 1 chooses his strategy U before the game and
informs Player 2 about this choice. Player 2 knowing
the announced strategy U chooses a rational strategy V,
providing maximization of cost functional oo. Player 1
is a leader here and Player 2 is a follower. Such a game
is called a hierarchical one. The problem is to find a
Player 1 strategy U®°!, which paired with the rational
Player 2 strategy V! provides the maximum of the cost
functional ;. Then a pair of strategies (U1, V51) is called
Stackelberg solution (S1-solution) in hierarchical game
with first player as a leader.

Denote by S2 a game, where Player 2 acts as a leader
and Player 1 is a follower. This game is analogous to S1
game. We define Stackelberg solution (S2-solution) a pair
(U52,V52) in hierarchical game with second player as a
leader.

A trajectory, generated by Si-solution is called Si-
trajectory. The task of the report is algorithm and program
development for N- and Si-solutions construction.

3. NON-STANDARD PROBLEMS OF CONTROL

At first consider antagonistic positional differential games
I'y and I's. The dynamics of both games is described by
the equation (1). In the game T';, Player ¢ maximizes his
cost functional o;(x(6)), and Player 3 — i counter-acts to
this goal. It is known from Krasovskii (1985); Krasovskii
and Subbotin (1988), that both games I'; and I'y have
universal saddle points

{u(i)(t,x, e),v(i)(t,x, 6}, i=1,2 (3)
and continuous value functions
71 (tv X)7 Y2 (tv X)' (4)

It was shown in Kleimenov (1993), that the problem of
finding N- and Si-solutions could be reduced to finding
solution in following non-standard problems of control.

Problem 1. It needs to find a pair of measurable controls
u(t) and v(t), top <t < 6, guaranteeing the fulfillment of
conditions

Yite, X(t2)) < (7, % (),
where t, € [to,0) and t* € (¢4, 0].

i=1,2, (5)

Problem 2.7 (i=1,2). It needs to find a pair of measurable
functions u(t),v(t), to < t < 6, providing the maximum
of cost functional o;(x(6)), holding following condition

V3—i(t,x(t)) < 73-i(0,%(0)) = 03-:(x(0)) ()
for t € [to,e).

Here functions 77 and 7, are defined in (4).

Let piecewise continuous functions u*(¢) and v*(t), to <
t < 0 generate a trajectory x*(t), to < t < 6 of the
system (1). Consider strategies of Player 1 and Player 2
U°+{u°(t,x,¢€),07(e)} and VO +{v°(t,x,€), 59(€)}, where

w(t) it x - x"(0)l] < eplt),
u®(t,x,0) if [x —x* ()] > ep(t),

u®(t,x,€) = { (7)

o v (t if ||x —x*(t)]] < ep(t),
w0 Ol <eln. (o
vt xe) dif [x =x7 ()] = ep(t),
for all t € [tp,0]. The functions §;(-) and the positive
increasing function ¢(-) are chosen so that the inequality
|x(t, to, 20, U, €, A1, VO, €, Do) — x"(1)|| < ep(t)  (9)
holds for € > 0, §(A;) < Bi(e), t € [to,0].
Usually in literature strategies u® (¢, x, €), vV (¢, x, €) are

called punishment strategies . The following theorem is
true.



Theorem 1. Let controls u*(-) and v*(-) be a solution of
Problem 1 (or Problem 2.i). Then the pair of strategies
(U°,V°) (7)-(9) is an N-solution (or an Si-solution).

Generally it is very difficult to find the whole set of
solutions for the non-standard problem described above.
Therefore the report presents an algorithm for construct-
ing only some N-solution. The algorithm is essentially
constructing N-trajectories.

Remark 2. In Kleimenov (1997) a classification of posi-
tions (¢,x) in non-antagonistic positional differential game
is proposed. Three types of positions: non-antagonistic,
locally antagonistic, globally antagonistic were introduced.
Dynamics of position type change along N-trajectories is
of special interest.

4. ALGORITHMS

Suggested algorithms for finding solutions are based upon
computational geometry algorithms. Unfortunately, at
present time this procedures are only two-dimensional, so
it is additionally assumed, that cost functionals of players
o; depend on two selected components solely. Because of
the fact all the problems considered could be reduced to
problems in plane.

4.1 Algorithm for N-solution

The proposed algorithm is based on the procedure (see
Kleimenov (1997)), which uses the principle of non-
decrease of player payoffs, maximal shift in the direction
best for one and another player and Nash equilibrium
in auxiliary bimatrix games made up for each step in a
subdivision of the time interval.

The procedure implies that Player ¢ is interested in in-
creasing the function v;(¢,x) along the trajectory, that is
a solution, as in (5).

Suppose a position (¢,x) is given. We fix € > 0 and
put 7(t,e) = min{t + ¢,60}. Denote by w!(r(t,€)) and
w?(7(t, €)) the maximum points for functions v, (¢,x) and
v2(t,x), correspondingly, in the 7(t,€)-neighborhood of
some position x.

Consider vectors
Sl(Tv X, E) = wl(T(tv 6)) - X,
52(7'7 X, €) = 11}2(7(157 €) —x

We define vectors ujg(t,x,€), vigp(t, X, €), ugg(t,x,€) and
vao(t, x, €) from conditions

Wl B s'T[B(t)u+ C(t)v] = s' " [B(t)uig + C(t)vio),
R sZTB(t)u + C(t)v] = s?T[B(t)ugy + C(t)vao),

Y1t x(t)) < (7 (¢, €), x[7(t, €);t,%(t), uz0, v2o)),
2 (t7 X(t)) <72 (T(t7 6), X[T(tu 6); t, X(t)7 ujo, VlOD' (10)

Two last inequalities come from the condition of non-
decrease of functions v;(+,-) along a motion, and maxi-
mums are searched only for vectors that hold these in-
equalities.

Now we construct an auxiliary bimatrix 2 x 2 game (A, B),
in which the first player has two strategies: “to choose uy(”
and “to choose uyy”. Similarly, the second player has two
strategies: “to choose viy” and “to choose voy”. The payoff
matrices of the players are defined as follows:

b11 b2
ba1 bao

a1l a2

; B =
a21 a22

)

a;j = 11 (7(t,€),x + (A(t)x + B(t)uo + C(t)vjo)),
bij = y2(7(t, €),x + §(A(t)x + B(t)uyo + C(t)vjo)),
1,7 =1,2, 0 =1(te) —t.

Bimatrix game (A, B) has at least one Nash equilibrium in
pure strategies. It is possible to take a Nash equilibrium as
a controls for both players for an interval (¢, 7(¢,€)]. Such
an algorithm of players’ controls construction generates a
trajectory, which is an N-trajectory. When (A, B) has two
equilibria (11 and 22), then one is chosen after the other
was, and vice versa.

An algorithm, which takes a solution of (A, B) and tries
to fit both players’ controls to maximize shift along the
direction of this solution, while holding inequalities in (10),
is called BM-procedure here. To provide Nash equilibrium
in the game, controls generated by BM-procedure (giving
BM-trajectory) must be paired with punishment strate-
gies. In this case, each player watches for trajectory and
applies the punishment strategy, when other one evades
following BM-trajectory. BM-procedure usually gives bet-
ter results for both players than original (A, B) game
based algorithm, but players have to agree to follow BM-
trajectory before the game will start.

4.2 Algorithm for S1-solution

The general idea for the algorithm is to search
max,, 01(Xq[0]), where x,[f] are node points of a grid
constructed for a set of admissible trajectories final states
D;. This x,[f] serves an endpoint for S1-trajectory, which
is then built back in time (controls u(t), v(¢) may be found
simultaneously). The D, set approximation is constructed
by a procedure, that builds sequences of attainability sets
(step-by-step in time), repeatedly throwing out the posi-
tions that do not satisfy (6). The procedure is described in
brief below. More details (some designations differ) about
it could be found in Kleimenov and Osipov (2003).

A special construction from the theory of antagonistic
positional differential games called stable bridge in pursuit-
evasion game. The aim of the follower in this game is to
drive the phase vector to Lebesgue’s set for the level func-
tion (for a chosen constant ¢) of his cost functional. (In or-
der to find positions satisfying the inequality 2 (¢, x) < ¢.)
Note, that any position at the bridge holds the inequality,
but positions outside the bridge do not.

I7V/f7t designates an approximation of a bridge (in the
pursuit-evasion game) section in the time moment ¢ =
const. The following discrete scheme is used for build-
ing admissible trajectories pipe G§ section approximation
éitk (here k runs through some time interval subdivision,

k = 0 corresponds to tg moment and k = N corresponds
to 6):



S 0 = |Gl @ S(BU)P & CL)Q)| \WEy,.,,, (11)

o = {X0}, Ok = tgy1 — tg. Operation A @
B ={a+b]|ae€ Ab e B} denotes Minkowski sum
of two sets A and B.

Using this scheme, we iterate through ¢ to make up D; of
sequence of Df = G{ , N W7, in the following procedure:

(1) We have some initial step value dc > 0 constrained
by 5Cmin < 66;
) let D1 = @, ¢ = ™ = max 02(x);
xER™

(2
(3) build a pipe G$ and a set D¢ as in (11);
(4) supplement Dy := Dy U{(x,¢) | x € D§ };
(5) if d¢ > dcmin then we choose next ¢ value:
e if xo € WY, then a) return to the previous value
¢:=c+ dc, b) decrease step dc;
e take next value ¢ := ¢ — d¢;
e go to item 2;
(6) quit.

D set for S2 game may be built in the same way.

One example of S-trajectories numerical computation re-
sults was presented in Kleimenov et al. (2006). Program,
used for value function calculation, is based on results
Isakova et al. (1984); Vahrushev et al. (1987).

5. PROGRAM IMPLEMENTATION

A completely new approach to program implementation
was successfully applied at first to N-solution computation
and after that — to S-solutions. Computational geometry
algorithms library, developed by S. Osipov in Fortran
somewhere in 80’s, became outdated, so it was temporar-
ily substituted with a C++ wrapper library, which builds
upon polygon tesselation facilities from OpenGL Utility Li-
brary (GLU). GLU functions and structures for polygonal
primitives are intensively used by algorithms, mentioned
herein. Examples of the next section were obtained with
GLU being used for polygons processing.Advantages of
GLU include straightforward API in C, which is simple
to use in almost any programming environment. Many
implementations exist (usually bundled with operational
system), both proprietary and open source.

Despite positive results achieved by the implementation,
another library (which is an open source project) was
tested, as a possible future base for our algorithms. It was
Computational Geometry Algorithms Library (CGAL),
which goal “is to provide easy access to efficient and reli-
able geometric algorithms in the form of a C++ library” (see
http://www.cgal.org/). While GLU is a convenient exter-
nal component, CGAL provides a complex framework to
expand upon and is not bounded by hardware-supported
double precision arithmetics.

In the case of S-solutions, OpenMP was adopted (discrete
scheme (11) is run for different ¢ values in parallel). Tests
on a machine with Intel Core 2 Duo processor demon-
strated twofold run-time improvement for two-threaded
computations against one-threaded.

6. AN EXAMPLE

The following vector equation

E=u+v,
§7u7v E R27

describes the motion of a material point of unit mass on
the plane (£1,&2) under the action of a force F = u + v.
Player 1 (Player 2), who governs the control u (v), tends
to lead the material point as close as possible to the given
target point a¥ (a(?) at the moment of time #. Then
players’ cost functionals are

£(to) = &o

vl < v,

&(to) = o,

[l < p,

(12)

w>v

ai(£(0)) = —I£(8) — o],
£=(6,8), a® =@, i=12,

where 6 is final time.

(13)

By setting y1 = &1, ¥2 = &1, y3 = &2, ¥4 = &2 and making
the following change of variables 7 = y; + (0 — t)ys,
T2 = Y2 + (0 — t)ys, T3 = Y3, T4 = ys we get a system,
which first and second equations are

iﬁl = (9 — t)(u1 + ’U1)7 (14)
$2 = (0 — t)(UQ + ’U2).
Further, (13) can be written
Ul(X(Q)) = 7||X(0) - a(z)”’ X = (551,.%2), =12 (15)

Since the cost functional (15) depends on variables 21 and
x9 only and the right-hand side of (14) does not depend
on other variables, one can conclude, that it is sufficient
to consider only reduced system (14) with cost functionals
(15).

Then initial conditions for (14) are given by formulae

zi(to) = woi = Eoi + (0 — to)éoi, i=1,2.

It can easily be shown, that value functions in antagonistic
differential games I'1 and 'y are given by formulae

n(tx) = —lx—a®)| - ),

O .09

and universal optimal strategies (3) are given by

Yo(t, %) = min{—||x — a®@|| +

G
i i X—a
u( )(taX’ 6) = (_1) /’Lmv
X —a
(i) i, x—a
vihx o =~

Let the following initial conditions and values of param-
eters be given: to = 0, & = (0.9,0.6), & = (-1,-1),
pw = 13, v = 07, § = 2.6. Then we have xy =
(—1.7,—2). Two variants of target points were considered:
(V1) a®V) = (5.5, —4), a® = (2.5,3)

(V2) aM = (7,-4), a'® = (4,4).

Time step for N-trajectory was 0.001.



Fig. 1. V1: Optimal trajectories: N- and S-solutions

Fig. 1 and Fig. 2 show computed trajectories for vari-
ant V1. Fig. 1 depicts S1-, S2-trajectories and N-
trajectory generated by BM-procedure in (£1,£2) plane.
Symbols S' and S? on figures denote endpoints of S1
and S2 solution trajectories, respectively, while N denotes
N-solution trajectory endpoint. On Fig. 1 symbol “x” is
used to show a position (&1(t*),&2(t*)) corresponding to
moment t* = 1.882. Starting from the moment, position
of the game, calculated along the N-trajectory, changes its
type from non-antagonistic to globally antagonistic. The
fact of position type change is well illustrated at Fig. 2,
where N-trajectory is shown in the plane (z1,z3). Since
the time t* the trajectory lies on line segment connecting
a® and a® target points.

Fig. 3 shows computed trajectories for variant V2.

Corresponding controls (every 25th pair of vectors (u,v)
of both players for Nash solution trajectories are shown
on Fig. 4 for variant V1 and on Fig. 5 for variant V2. On
Fig. 1, Fig. 3 and Fig. 2 also border of relevant D = (DN
D3)\R set is painted, R denotes a half-plane bounded by
a line connecting points a") and a(? and not containing
point &y. Set D contains all N-trajectories endpoints, but
in general case, there may be also points, which are not
endpoints of any N-trajectories. D; and S-trajectories were
built with time step 0.005.

7. CONCLUSION

As it is seen today, there are three ways of development
of the results presented. First, it seems to be possible to
transparently generalize N- and S-solution algorithms for

i

Xy

Fig. 3. V2: Optimal trajectories: N- and S-solutions

&



Fig. 5. V2: Player controls: N-solution

non-linear systems with dynamics
x(t) = F1(t,x(t),u(t)) + Fa(t,x(t), v(t)).

Second, software development may lead to a powerful and
flexible framework simplifying solution computations in
a class of differential games. The last program imple-
mentation uses techniques of generic programming, which
is common for modern C++ software like CGAL. This
supports flexibility of its structure and simplifies future
modernizations. For example, the early experience allows
to suggest, that facilities supplied by the library could give
the algorithms literally new dimension: polygons could be
changed to polyhedrons without deep change in generic
algorithms constructing the solutions.

Finally, an algorithm approximating all N-trajectories
endpoints set is planned. If this could be done, one may
choose there an endpoint, which is optimal in some sense,
and build N-solution, leading to that point, by back
propagation similar to that used for S-solutions.
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