
ar
X

iv
:0

71
0.

04
96

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  2
 O

ct
 2

00
7

Microscopic mechanisms of spin-dependent electric polarization in 3d oxides
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We address a systematic microscopic theory of spin-dependent electric polarization in 3d oxides
starting with a generic three-site two-hole cluster. A perturbation scheme realistic for 3d oxides
is applied which implies the quenching of orbital moments by low-symmetry crystal field, strong
intra-atomic correlations, the dp-transfer effects, and rather small spin-orbital coupling. An ef-
fective spin operator of the electric dipole moment is deduced incorporating both nonrelativistic
∝ (̂s1 · ŝ2) and relativistic ∝ [s1 × s2] terms. The nonrelativistic electronic polarization mechanism
related with the effects of the redistribution of the local on-site charge density due to pd covalency
and exchange coupling is believed to govern the multiferroic behaviour in 3d oxides. The relativis-
tic exchange-dipole moment is mainly stems from the nonrelativistic one due to the perturbation
effect of Dzyaloshinsky-Moriya coupling and is estimated to be a weak contributor to the electric
polarization observed in the most of 3d multiferroics.

I. INTRODUCTION

Strong coupling of magnetism and ferroelectricity was
recently uncovered in rare earth manganites with the gen-
eral formula RMnO3 and RMn2O5, where R= a rare
earth ion, or Y (see e.g., Refs.1 and review articles
Refs.2,3). In magnetically ordered state below TN these
ferroelectric magnets, or multiferroics, exhibit an excep-
tionally strong sensitivity to an applied magnetic field,
which induces reversals and sudden flops of the electric
polarization vector, and results in a strong enhancement
of dielectric constant. Vice versa also an applied electric
field affects the magnetic properties such as the helicity.
Since the Astrov’s discovery of magnetoelectric effect

in Cr2O3
4 there were proposed several microscopic mech-

anisms of magnetoelectric coupling,2 however, the mul-
tiferroicity have generated an impressive revival of the
activity in this field. Currently two essentially different
spin structures of net electric polarization in crystals are
considered: i) a bilinear nonrelativistic symmetric spin
coupling5,6,7,8

Ps =
∑

mn

Πs
mn(Sm · Sn) (1)

or ii) a bilinear relativistic antisymmetric spin
coupling9,10,11

Pa =
∑

mn

[Πa
mn × [Sm × Sn]] , (2)

respectively. The effective dipole moments Πs,a
mn depend

on the m,n orbital states and the mn bonding geometry.
If the first term stems somehow or other from a

spin isotropic Heisenberg exchange interaction (see, e.g.
Refs.5,12), the second term does from antisymmetric
Dzyaloshinsky-Moriya (DM) coupling. Namely the sec-
ond, or ”spin-current” term is at present frequently
considered to be one of the leading mechanisms of
multiferroicity.9,10,11,13,14,15,16 However, there are no-
table exceptions, in particular the manganites RMn2O5,

HoMnO3, where a ferroelectric polarization can appear
without any indication of magnetic chiral symmetry
breaking6,7, and delafossite CuFe1−xAlxO2, where the
helimagnetic ordering generates a spontaneous electric
polarization ‖ to the helical axis17, in sharp contrast with
the prediction of the spin current model.

The recent observations of multiferroic behaviour con-
comitant the incommensurate spin spiral ordering in
chain cuprates LiCuVO4 by Naito et al.18 and LiCu2O2

by Park et al.19 challenge the multiferroic community.
At first sight, these quantum s=1/2 1D helicoidal mag-
nets seem to be prototypical examples of 1D spiral-
magnetic ferroelectrics revealing the relativistic mech-
anism of ”ferroelectricity caused by spin-currents”.9 In-
deed, Naito et al.18 claim that the electric polarization
in LiCuVO4 can be understood by the relation predicted
by spin-current models.9,10 However, LiCu2O2 shows up
a behavior which is obviously counterintuitive within
the framework of spiral-magnetic ferroelectricity.19 More-
over, in contrast with Park et al.19, Naito et al.18 have
not found any evidence for a ferroelectric transition in
LiCu2O2.
The ferroelectric anomaly in LiVCuO4 reveals a mag-

nitude comparable or even larger than that of the multi-
ferroic Ni3V2O8 where the magnetic ordering drives the
electric polarization Pb ≈ 102µC/m2 (Ref.20) that rep-
resents a typical magnitude of polarization induced by
magnetic reordering in multiferroics. However, such an
anomalously strong magnetoelectric effect seems to be
an unexpexted feature for a system with eg-holes and
a nearly perfect highly symmetric chain structure with
the edge-shared CuO4 plaquettes which both are un-
favourable for a strong spin-electric coupling. Thus the
giant magnetoelectric effect in the title cuprate raises fun-
damental questions about its microscopic origin.
Microscopic quantum theory of ME effect has not yet

been fully developed, although several scenarios for par-
ticular materials have been proposed based on the effec-
tive spin Hamiltonian.7,9,11 In a recent paper Katsura et

al.9 presented a mechanism of the giant ME effect the-
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oretically derived ”in terms of a microscopic electronic
model for noncollinear magnets”. The authors derived
the expression for the electric dipole moment for the spin
pair as follows:

Pij = a [Rij × [Si × Sj ]] , (3)

where Rij denotes the vector connecting the two sites i
and j, Si,j are spin moments, a is an exchange-relativistic
parameter. It is worth noting that the mechanism
also implies the uniform polarization accompanying the
spin-density wave. However, the original ”spin-current”
model by Katsura et al.9 and its later versions14,15,16

seem to be questionable as the authors proceed with an
unrealistic scenario. Indeed, when addressing a generic
M1-O-M2 system they groundlessly assume an effective
Zeeman field to align noncollinearly the spins of 3d-
electrons and to provide a nonzero value of the two-site
spin current [S1 × S2]. To justify their approach, the
authors9,14,15,16 are forced to assume a colossal magni-
tude of this fictious field resulting in an enormous Zeeman
splitting of several eV. Second, Katsura et al.9 start with
an unrealistic for 3d-oxides strong spin-orbital coupling
limit for t2g electrons21 which formally implies λ ≫ U
and a full neglect of the low-symmetry crystal field and
orbital quenching effect.22 The authors9,14,15,16 do heav-
ily (up to two orders of magnitude!) overestimate the
numerical value of the overlap dipole matrix element
I(Rdp) =

∫
dyz(r)ypz(r+Rdp)dr which defines maximal

value of respective electric dipole moments. It seems, the
authors ignore the well developed techniques to proceed
with pd-covalency, exchange, and spin-orbital coupling in
3d oxides.
Alternative mechanism of giant magnetoelectricity

based on the antisymmetric DM type magnetoelastic cou-
pling was proposed recently by Sergienko and Dagotto.11

However, here we meet with a ”weak” contributor. In-
deed, the minimal value of γ parameter (γ = dD/dR)
needed to explain experimental phase transition in mul-
tiferroic manganites is two orders of magnitude larger
than the reasonable microscopic estimations.11

In our opinion, a misunderstanding exists regarding
the relative role of the off-center ionic displacements (lat-
tice effects) and electronic contributions to a resultant
electric polarization. Many authors consider the giant
multiferroicity requires the existence of sizeable atomic
displacements and structural distortions.24,25 One would
expect a transition to a structure with polar symmetry to
occur at the onset of ferroelectricity, but neutron diffrac-
tion studies thus far have failed to find direct evidence of
such changes.26 Earlier synchrotron x-ray studies found
some evidence of lattice modulation in the ferroelectric
phase of YMn2O5,

27 though the atomic displacements
seem to be extremely small. Other structural works
have not reported any signature of atomic displacements
∼ 0.001Å at the ferroelectric phase transition which can
explain the polarization observed in this family of com-
pounds. This questions the microscopic model by Harris
et al.24 supposing the dominant role of the displacement

derivatives of the exchange integrals, especially because
the Bloch’s rule − ∂ ln J

∂ lnR ≈ 10 (Ref.28) point to magni-
tudes of these derivatives as insufficient to explain the
∼ 0.001Å displacements. However, several phonons in
TbMn2O5 exhibit clesr correlations to the ferroelectric-
ity of these materials.29 The signatures of the loss of in-
version symmetry in the ferroelectric phase were found
by the appearance of a infrared active phonon that was
only Raman active in the paraelectric phase. A seem-
ing contradiction, we think a result of an oversimplified
approach to the lattice dynamics. Indeed, the effects of
nuclear displacements and electron polarization should
be described on equal footing, e.g., in frames of the well-
known shell model of Dick and Overhauser30 widely used
in lattice dynamics. In frames of the model the ionic con-
figuration with filled electron shells is considered to be
composed of an outer spherical shell of 2(2l+1) electrons
and a core consisting of the nucleus and the remaining
electrons. In an electric field the rigid shell retains its
spherical charge distribution but moves bodily with re-
spect to the core. The polarizability is made finite by
a harmonic restoring force of spring constant k which
acts between the core and shell. The shells of two ions
repel one another and tend to become displaced with
respect to the ion cores because of this repulsion. Shell
and core displacements may be of comparable magnitude.
The conventional shell model does not take into account
the spin and orbital degrees of freedom, hence it cannot
describe the multiferroic effects. In fact, the displace-
ments of both the atomic core and electron shell would
depend on the spin surroundings producing the sinergetic
effect of spin-dependent electric polarization. Obviously,
this effect manifest itself differently in neutron and x-ray
diffraction experiments. Sorting out two contributions is
a key issue in the field.
The authors of recent papers Refs.31,32 made use

of first principles calculations to examine the spin-
dependent electric polarization in the orthorhombic mul-
tiferroic HoMnO3

31 and in spin spiral chain cuprates
LiCuVO4 and LiCu2O2.

32 However, their results are
highly questionable since the basic starting points of the
current versions of such spin-polarized approaches as the
LSDA exclude any possibility to obtain a reliable quanti-
tative estimation of the spin-dependent electric polariza-
tion in multiferroics. Indeed, the basic drawback of the
spin-polarized approaches is that these start with a local
density functional in the form (see, e.g. Ref.33)

v(r) = v0[n(r)] + ∆v[n(r),m(r)](σ̂ · m(r)

|m(r)| ) ,

where n(r),m(r) are the electron and spin magnetic den-
sity, respectively, σ̂ is the Pauli matrix, that is these im-
ply presence of a large fictious local one-electron spin-
magnetic field ∝ (v↑ − v↓), where v↑,↓ are the on-site
LSDA spin-up and spin-down potentials. Magnitude of
the field is considered to be governed by the intra-atomic
Hund exchange, while its orientation does by the effec-
tive molecular, or inter-atomic exchange fields. Despite
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the supposedly spin nature of the field it produces an
unphysically giant spin-dependent rearrangement of the
charge density that cannot be reproduced within any con-
ventional technique operating with spin Hamiltonians.
Furthermore, a direct link with the orientation of the
field makes the effect of the spin configuration onto the
charge distribution to be unphysically large. Similar ef-
fects cannot be reproduced in frames of any conventional
Heisenberg model. In general, the LSDA method to han-
dle a spin degree of freedom is absolutely incompatible
with a conventional approach based on the spin Hamil-
tonian concept. There are some intractable problems
with a match making between the conventional formal-
ism of a spin Hamiltonian and LSDA approach to the ex-
change and exchange-relativistic effects. Visibly plausi-
ble numerical results for different exchange and exchange-
relativistic parameters reported in many LSDA investi-
gations (see, e.g., Refs.34,35) evidence only a potential
capacity of the LSDA based models for semiquantitative
estimations, rather than for reliable quantitative data. It
is worth noting that for all of these ”advantageous” in-
stances the matter concerns the handling of certain clas-
sical Néel-like spin configurations (ferro-, antiferro-, spi-
ral,...) and search for a compatibility with a mapping
made with a conventional quantum spin Hamiltonian.
It’s quite another matter when one addresses the search
of the charge density redistribution induced by a spin
configuration. In such a case the straightforward applica-
tion of the LSDA scheme can lead to an unphysical over-
estimation of the effects or even to qualitatively incorrect
results due to an unphysical effect of a breaking of spatial
symmetry induced by a spin configuration. As an exam-
ple, we refer to the papers by Picozzi et al.31 and Xiang
and Whangbo32 where the authors made use of the first-
principle LSDA calculations to study the microscopic ori-
gin of ferroelectricity induced by magnetic order in or-
thorhombic HoMnO3 and in quasi-1D cuprates LiCu2O2

and LiCuVO4, respectively. The calculated total nonrel-
ativistic polarization of the AFM-E phase in HoMnO3

exceeds the experimentally measured one by more than
three orders of magnitude. In terms of a conventional
scheme the AFM-E ordering turns out to be accompanied
by a colossal exchange striction of the order of several
percents that exceeds all the thinkable magnitudes (see
Table I in Ref.31). The relativistic LSDA calculations for
the optimized structures of quasi-1D cuprates32 yield the
results that disagree with experiment both quantitatively
and qualitatively. Again we see an unphysically strong
overestimation of the spin-induced electric polarization.
Interestingly, that the making use of experimental cen-
trosymmetric structures leads to a strong suppression
by order of magnitude of the calculated polarizations,
clearly confirming the unphysically strong LSDA over-
estimation of spin-induced structural and charge density
distortions. Summarizing, we should emphasize two weak
points of so-called first-principle calculations which ap-
pear as usual to be well forgotten in the literature. First,
these approaches imply the spin configuration induces

immediately the appropriate kinematic breaking of spa-
tial symmetry that makes the symmetry-breaking effect
of a spin configuration unphysically large. Conventional
schemes imply just opposite, however, a physically rea-
sonable picture when the charge and orbital anisotropies
induce a spin anisotropy. Second, these neglect quan-
tum fluctuations, that restricts drastically their appli-
cability to a correct description of the high-order per-
turbation effects. Overall, the LSDA approach seems
to be more or less justified for a semiquantitative de-
scription of exchange coupling effects for materials with
a classical Néel-like collinear magnetic order. However,
it can lead to erroneous results for systems and effects
where the symmetry breaking and quantum fluctuations
are of a principal importance such as: i) noncollinear
spin configurations, in particular, quantum s=1/2 mag-
nets, ii) relativistic effects, such as the symmetric spin
anisotropy, antisymmetric DM coupling, and, iii) spin-
dependent electric polarization. Indeed, a correct treat-
ment of these high-order perturbation effects needs in a
correct account both of local symmetry and of quantum
fluctuations(see, e.g., Ref.36).

It is worth noting that the spin-current scenario by
Katsura et al.9 starts with the same LSDA-like as-
sumption of unphysically large symmetry-breaking spin-
magnetic field. Surprisingly, despite the problems with
the model validation and quantitative estimations the
spin-current mechanism is currently addressed to be
responsible for the emergence of ferroelectric polariza-
tion in new multiferroics such as orthorhombic RMnO3,
Ni3V2O8, MnWO4, CoCr2O4, CuFeO2 where the inver-
sion symmetry breaking is related to noncollinear spiral
magnetic structures.13 ”Ferroelectricity caused by spin-
currents” has established itself as the leading paradigm
for both theoretical and experimental investigations in
the field of strong multiferroic coupling. However, a
”rule” that chiral symmetry needs to be broken in or-
der to induce a ferroelectric moment at a magnetic phase
transition is questionable. Moreover, there are increas-
ing doubts whether weak exchange-relativistic coupling
can generate giant electric polarization observed in mul-
tiferroics. Thus we may assert that a true microscopic
mechanism of giant magnetoelectric effect is still miss-
ing.

Below we propose a systematic microscopic theory of
spin-dependent electric polarization which implies the
derivation of effective spin operators for nonrelativistic
and relativistic contributions to electric polarization of
the generic three-site two-hole cluster such as Cu1-O-
Cu2 and does not imply any fictious Zeeman fields to
align the spins. We make use of conventional well-known
approaches to account for the pd-covalent effects, intra-
atomic correlations, crystal field, and spin-orbital cou-
pling. Despite the description is focused on Cu1-O-Cu2
clusters typical for different cuprates, the generalization
of the results on the M1-O-M2 clusters in other 3d oxides
is trivial.

The paper is organized as follows. In Sec.II we con-
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sider the effects of pd covalency and spin-orbital coupling
in a three-site two-hole Cu1-O-Cu2 cluster. Nonrelativis-
tic and relativistic mechanisms of spin-dependent electric
polarization with local and nonlocal terms are discussed
in Secs.III and IV, respectively. In Sec.V we address
an alternative approach to nonrelativistic mechanism of
spin-dependent electric polarization induced by a parity-
breaking exchange interaction. In Sec.VI we show a lack
of the spin-dependent electric polarization effects for an
isolated CuO2 chain.

II. THREE-SITE TWO-HOLE M1-O-M2

CLUSTER

Before proceeding with electric polarization effects we
address the generic three-site M1-O-M2 cluster which
forms a basic element of crystalline and electron structure
for 3d oxides. A realistic perturbation scheme needed to
describe the active M 3d and O 2p electron states implies
the strong intra-atomic correlations, the comparable ef-
fect of crystal field, the quenching of orbital moments by
low-symmetry crystal field, account for the dp-transfer
up to the fourth order effects, and rather small spin-
orbital coupling. To this end we make use of a tech-
nique suggested in refs.36,37 to derive the expressions
for the copper and oxygen spin-orbital contributions to
Dzyaloshinsky-Moriya coupling in copper oxides. For il-
lustration, below we address a typical for cuprates the
three-center (Cu1-O-Cu2) two-hole system with tetrago-
nal Cu on-site symmetry and ground Cu 3dx2−y2 states
(see Fig. 1) which conventional bilinear spin Hamiltonian
is written in terms of copper spins as follows

Ĥs(12) = J12(ŝ1 · ŝ2) +D12 · [ŝ1 × ŝ2] + ŝ1
↔
K12 ŝ2 , (4)

where J12 > 0 is an exchange integral, D12 is the

Dzyaloshinsky vector,
↔
K12 is a symmetric second-rank

tensor of the anisotropy constants. In contrast with

J12,
↔
K12, the Dzyaloshinsky vector D12 is antisymmet-

ric with regard to the site permutation: D12 = −D21.

FIG. 1: Geometry of the three-center (Cu-O-Cu) two-hole
system with ground Cu 3dx2

−y2 states.

Hereafter we will denote J12 = J,
↔
K12 =

↔
K,D12 = D, re-

spectively. It should be noted that making use of effective
spin Hamiltonian (4) implies a removal of orbital degree
of freedom that calls for a caution with DM coupling as,
strictly speaking, it changes both a spin multiplicity, and
an orbital state.
For a composite two s = 1/2 spins system one should

consider three types of the vector order parameters:

Ŝ = ŝ1 + ŝ2; V̂ = ŝ1 − ŝ2; T̂ = 2[ŝ1 × ŝ2] (5)

with a kinematic constraint:

Ŝ2+V̂2 = 3Î; (Ŝ·V̂) = 0; (T̂·V̂) = 6i; [T̂×V̂] = Ŝ. (6)

Here Ŝ is a net spin of the pair, the V̂ operator describes
the effect of local antiferromagnetic order, or staggered
spin polarization, while T̂ operator may be associated
with a pair spin current. Both T̂ and V̂ operators change
the net spin multiplicity with matrix elements

〈00|T̂m|1n〉 = −〈1n|T̂m|00〉 = iδmn;

〈00|V̂m|1n〉 = 〈1n|V̂m|00〉 = δmn, (7)

where we made use of Cartesian basis for S = 1. The
eigenstates of the operators V̂n and T̂n with nonzero
eigenvalues ±1 form Néel doublets 1√

2
(|00〉 ± |1n〉) and

DM doublets 1√
2
(|00〉 ± i|1n〉), respectively. The Néel

doublets correspond to classical collinear antiferromag-
netic spin configurations, while the DM doublets corre-
spond to quantum spin configurations which sometimes
are associated with a rectangular 900 spin ordering in the
plane orthogonal to the Dzyaloshinsky vector.
It should be noted that the spin Hamiltonians can be

reduced to within a constant to a spin operator acting in
a net spin space

ĤS =
1

4
J(Ŝ2−V̂2)+

1

2
(D·T̂)+

1

4
Ŝ
↔
K

S

Ŝ− 1

4
V̂

↔
K

V

V̂ . (8)

Hereafter we assume a tetragonal symmetry at Cu sites
with local coordinate systems as shown in Fig.1. The
global xyz coordinate system is chosen so as Cu1-O-Cu2
plane coincides with xy-plane, x-axis is directed along
Cu1-Cu2 bond. In such a case the basic unit vectors
x,y, z can be written in local systems of Cu1 and Cu2
sites as follows:

x = (sin
θ

2
,− cos

θ

2
cos δ1,− cos

θ

2
sin δ1);

y = (cos
θ

2
, sin

θ

2
cos δ1, sin

θ

2
sin δ1); z = (0, sin δ1, cos δ1)

for Cu1, while for Cu2 site θ, δ1 should be replaced by
−θ, δ2, respectively.
We start with the construction of spin-singlet and spin-

triplet wave functions for our three-center two-hole sys-
tem taking account of the p-d hopping, on-site hole-hole
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repulsion, and crystal field effects for excited configura-
tions {n} (011, 110, 020, 200, 002) with different hole
occupation of Cu1, O, and Cu2 sites, respectively. The
p-d hopping for Cu-O bond implies a conventional Hamil-
tonian

Ĥpd =
∑

αβ

tpαdβ p̂
†
αd̂β + h.c. , (9)

where p̂†α creates a hole in the α state on the oxygen

site, while d̂β annihilates a hole in the β state on the
copper site; tpαdβ is a pd-transfer integral (tpxdx2

−y2
=

√
3
2 tpzdz2

= tpdσ > 0, tpydxy
= tpdπ > 0).

For basic 101 configuration with two dx2−y2 holes lo-
calized on its parent sites we arrive at a perturbed wave
function as follows

Ψ101;SM = ηS [Φ101;SM+
∑

Γ{n}6=101

c{n}(
2S+1Γ)Φ{n};ΓSM ],

(10)
where the summation runs both on different configura-
tions and different orbital Γ states;

ηS =


1 +

∑

{n}Γ
|c{n}(2S+1Γ)|2




−1/2

(11)

is a normalization factor. It is worth noting that
the probability amplitudes, or hybridization parameters,
c{011}, c{110} ∝ tpd, c{200}, c{020}, c{002} ∝ t2pd. For in-
stance,

cs,t(dpx) = −
√
3

2

tpdσ
Es,t(dpx)

sin
θ

2
; (12)

cs,t(dpy) = −
√
3

2

tpdσ
Es,t(dpy)

cos
θ

2
, (13)

where cs,t(dp) = c110(dp), cs,t(pd) = c011(dp) are proba-
bility amplitudes for different singlet (cs) and triplet (ct)
110 (Cu13dx2−y2O2px,y) and 011 (O2px,yCu23dx2−y2)
configurations in the ground state wave function, respec-
tively; cs,t(dpx)=−cs,t(pxd), cs,t(dpy) = cs,t(pyd), tdpσ
is a hole dp-transfer integral. The energies Es,t(dpx,y)
are those for singlet and triplet states of dpx,y configura-
tions, respectively: Es,t(dpx,y) = ǫx,y + Kdpx,y ± Idpx,y,
where Kdpx,y and Idpx,y are Coulomb and exchange dp-
integrals, respectively.It is worth noting that the energies
ǫx,y accomodate both the pd transfer energy ∆pd and
crystal field effects:ǫx,y = ∆pd+ δǫx,y. To account for or-
bital effects for Cu1,2 3d holes and the covalency induced
mixing of different orbital states for 101 configuration we
should introduce an effective exchange Hamiltonian

Ĥex =
1

2

∑

αβγδµµ′

J(αβγδ)d̂†1αµd̂
†
2βµ′ d̂2γµd̂1δµ′ +h.c. (14)

Here d̂†1αµ creates a hole in the αth 3d orbital on Cu1
site with spin projection µ. Exchange Hamiltonian (14)

involves both spinless and spin-dependent terms, how-
ever, it preserves the spin multiplicity of Cu1-O-Cu2 sys-
tem. Exchange parameters J(αβγδ) are of the order of
t4pd. The conventional exchange integral can be written
as follows:

J =
∑

{n},Γ

[
|c{n}(3Γ)|2 E3Γ({n})− |c{n}(1Γ)|2 E1Γ({n})

]
.

(15)
To account for relativistic effects in the three-site clus-

ter one should incorporate the spin-orbital coupling both
for 3d- and 2p-holes. Local spin-orbital coupling is taken
as follows:

Vso =
∑

i

ξnl(li · si) =

ξnl
2
[(̂l1 + l̂2) · Ŝ+ (̂l1 − l̂2) · V̂] = Λ̂S · Ŝ+ Λ̂V · V̂ (16)

with a single particle constant ξnl > 0 for electrons
and ξnl < 0 for holes. We make use of orbital
matrix elements: for Cu 3d holes 〈dx2−y2 |lx|dyz〉 =
〈dx2−y2 |ly|dxz〉 = i, 〈dx2−y2 |lz|dxy〉 = −2i, 〈i|lj |k〉 =
−iǫijk with Cu 3dyz=|1〉, 3dxz=|2〉 3dxy=|3〉, and for O
2p holes 〈pi|lj |pk〉 = iǫijk. Free cuprous Cu2+ ion is de-
scribed by a large spin-orbital coupling with |ξ3d| ∼= 0.1
eV (see, e.g., Ref.38), though its value may be signifi-
cantly reduced in oxides. Information regarding the ξ2p
value for the oxygen O2− ion in oxides is scant if any.
Usually one considers the spin-orbital coupling on the
oxygen to be much smaller than that on the copper,
and therefore may be neglected.39,40 However, even for
a free oxygen atom the electron spin orbital coupling
turns out to reach of appreciable magnitude: ξ2p ∼= 0.02
eV,41 while for the oxygen O2− ion in oxides one ex-
pects the visible enhancement of spin-orbital coupling
due to a larger compactness of 2p wave function.42 If to
account for ξnl ∝ 〈r−3〉nl and compare these quantities
for the copper and the oxygen (〈r−3〉3d ≈ 6− 8 a.u. and
〈r−3〉2p ≈ 4 a.u., respectively42) we arrive at a maximum
factor two difference in ξ3d and ξ2p (see, also Ref.43).
The Dzyaloshinsky-Moriya coupling

ĤDM = D12 · [ŝ1 × ŝ2] =
1

2
(D · T̂) (17)

can be addressed to be a result of a projection of the spin-
orbital operator V̂SO = V̂SO(Cu1)+ V̂SO(O)+ V̂SO(Cu2)
on the ground state singlet-triplet manifold.36 Remark-
ably that the net Dzyaloshinsky vector D12 has a par-
ticularly local structure to be a superposition of partial
contributions of different ions (i = 1, 0, 2) and ionic con-
figurations {n} = 101, 110, 011, 200, 020, 002

D =
∑

i,{n}
D

{n}
i . (18)

The partial contributions D
{n}
i are analyzed in details in

Ref.36.
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III. NONRELATIVISTIC MECHANISM OF

SPIN-DEPENDENT ELECTRIC

POLARIZATION:LOCAL AND NONLOCAL

TERMS

Projecting electric dipole moment P = |e|(r1 + r2) on
the spin singlet or triplet ground state of two-hole system
we arrive at an effective electric polarization of three-
center system 〈P〉S = 〈Ψ101;SM |P|Ψ101;SM 〉 to consist of
local and nonlocal terms:P = Plocal + Pnonlocal, which
accomodate the diagonal and nondiagonal on the ionic
configurations matrix elements, respectively. The local
contribution describes the redistribution of the local on-
site charge density and can be written as follows:

〈P〉localS = |e||ηS |2
[
(R1+R2+(R1+RO)

∑

Γ

|c110(SΓ)|2

+(RO +R2

∑

Γ

|c011(SΓ)|2 + 2RO

∑

Γ

|c020(SΓ)|2

+2R1

∑

Γ

|c200(SΓ)|2+2R2

∑

Γ

|c002(SΓ)|2
]
−P0 , (19)

where P0 = |e|(R1 +R2) is a bare purely ionic two-hole
dipole moment. This dipole moment incorporates both
the large (∝ t2pd) and small (∝ t4pd) contributions. Obvi-
ously, the net local electric polarization can be expressed
as a sum of local dipole moments:

〈P〉localS =
∑

i

〈Pi〉localS ,

though, from the other hand, it is easy to show that it
depends only on Rij vectors (R10,R20,R12). To this
end one should carefully proceed with the normalization
factor in (19). It is worth noting that the net local electric
polarization lies in the Cu1-O-Cu2 plane.
The nonlocal, or overlap contribution is related with

nondiagonal two-site matrix elements of P and in the
lowest order with respect to a pd transfer integral can be
written as follows:

〈P〉nonlocalS = 2|e|ηS

∑

i=x,y

[
cS(pid)〈2pi|r|3d(1)x2−y2〉+ cS(dpi)〈2pi|r|3d(2)x2−y2〉

]
,

(20)
or

〈Px〉s,t = −
√
3

2
|e|(cos2 δ2 − cos2 δ1) sin θ

〈2py|y|3dx2−y2〉tpdσ
[

cos θ
2

Es,t(dpx)
− sin θ

2

Es,t(dpy)

]
; (21)

〈Py〉s,t = −
√
3|e|tpdσ cos

θ

2

[
(cos2 δ1 + cos2 δ2)

〈2py|y|3dx2−y2〉 sin2 θ

2

( 1

Es,t(dpx)
+

1

Es,t(dpy)

)

+ 2〈2px|x|3dx2−y2〉
( cos2 θ

2

Es,t(dpy)
− sin2 θ

2

Es,t(dpy)

)]
, (22)

where all the matrix elements are taken in local coordi-
nates of Cu sites. For a symmetric d-orbitals arrange-
ment with δ1 = δ2 the x-component of electric polariza-
tion 〈Px〉s,t turns into zero regardless the bonding angle
θ, whereas the y-component 〈Py〉s,t turns into zero only
if θ = π, that is for collinear Cu-O-Cu bonding. It should
be noted that both the partial and net nonlocal contribu-
tions to electric polarization lie in the Cu1-O-Cu2 plane
and are believed to have the same symmetry properties.
Nominally, the nonlocal contribution to the electric

dipole moment is proportional to the pd transfer integral,
however, actually the two-site dipole matrix elements in-
directly are proportional to the pd overlap integral Spd

that in a sense equalizes the nonlocal and local terms.
Let address the problem of the two-site dipole matrix el-
ements in more details because their correct estimation
allows to make a reliable conclusion regarding the rela-
tion between local and nonlocal terms, and the resultant
effect itself. For instance, Katsura et al.9 did heavily (up
to two orders of magnitude!) overestimate the numerical
value of the integral I(Rdp) =

∫
dyz(r)ypz(r + Rdp)dr

which defines maximal value of respective electric dipole
moments. Indeed, the authors erroneously replaced the
actually two-site integral by a respective one-site integral
with the hydrogen-like 3d- and 2p-functions, localized on
the same site. Nevertheless, their estimate I ∼ 1Å was
directly or indirectly used in more later papers.14,15,16 In
fact this integral is estimated to be I ≈ RdpSdpπ, where
Rdp is a cation-anion separation, Sdpπ dpπ-overlap inte-
gral. Thus the actual electric polarization induced by the
spin current is one-two orders of magnitude smaller than
the authors estimations.
In Fig.2 we demonstrate the results of numerical calcu-

lations of several two-site dipole matrix elements against
3d metal - oxygen separation RMeO. For illustration
we choose both relatively large integrals 〈3dz2 |z|2pz〉
governed by the Me3d-O2p σ-bond and the relatively
small ones 〈3dxz|z|2px〉 and 〈3dxz|x|2pz〉 governed by
the Me3d-O2p π-bond. We make use of hydrogen-like
radial wave functions with the Clementi-Raimondi ef-
fective charges44,45 Zeff

O2p=4.45 and Zeff
Me3d=10.53. It is

clearly seen that given typical cation-anion separations
RMeO ≈ 4 a.u. we arrive at values less than 0.1 a.u.
even for the largest two-site integral. Reasonable esti-
mate for the π bond integral from the paper by Katsura
et al.9 should be |I(Rdp)| ≈ 0.01Å that is two orders of
magnitude less than that of the authors.
Relation between local and nonlocal contributions to

electric polarization is believed to determined by that of
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FIG. 2: Two-site dipole matrix elements against Me3d-O2p
separation. The arrow near 4 a.u. points to typical Me-O
separations.

covalent and overlap effects. The local contribution is
defined by pure covalent effects and prevails for large
covalency, that is for large tpd and small Epd, when
|tpd/Epd| > Spd. Neglecting the overlap effects we make
the reliable estimates of nonlocal terms quite question-
able.
Interestingly, the nonlocal, or overlap effects are usu-

ally missed in current calculations of electro-dipole tran-
sitions in 3d oxides, where one considers the electro-
magnetic field couples to the electrons via the standard
Peierls phase transformation of the transfer integral:

t̂ij → t̂ije
i(Φj−Φi), (23)

(Φj − Φi) = − q

h̄c

∫ ~Rj

~Ri

~A(~r)d~r, (24)

where ~A is the vector-potential, and integration runs over
line binding the i and j sites (see, e.g.Ref.46).
The effective electric polarization differs for the singlet

and triplet pairing due to a respective singlet-triplet dif-
ference in the hybridization amplitudes c{n}(SΓ). Hence
we may introduce an effective nonrelativistic exchange-

dipole spin operator

P̂s = Π(̂s1 · ŝ2) (25)

with an exchange-dipole moment

Π = 〈P〉t − 〈P〉s , (26)

which can be easily deduced from Exps. (19) and (20).
For instance, the local contribution of purely oxygen 020
configuration is

Πlocal
020 =

9|e|t4pdσ
8

(R01 +R02)

[ sin2 θ
8

(
1

ǫx
+

1

ǫy

)2(
1

E2
t (pxpy)

− 1

E2
s (pxpy)

)

−




(

sin2 θ
2

ǫxEs(p2x)

)2

+

(
cos2 θ

2

ǫyEs(p2y)

)2



]
, (27)

where Es(p
2
x,y) = 2ǫx,y + F0 + 4

25F2, Es(pxpy) = ǫx +

ǫy + F0 +
1
25F2, Et(pxpy) = ǫx + ǫy + F0 − 1

5F2 are the
energies of the oxygen two-hole singlet (s) and triplet (t)
configurations p2x, p

2
y and pxpy, respectively, F0 and F2

are Slater integrals. We see that this vector is directed
along y-axis regardless the δ1,2 angles and the resultant
value depends strongly on the Cu1-O-Cu2 bond geometry
and crystal field effects. The latter determines the single
hole energies both for O 2p- and Cu 3d-holes such as
ǫxy,xz and ǫx,y, which values are usually of the order of
1 eV and 1-3 eV,47 respectively. Given estimations for
different parameters typical for cuprates48 (tpdσ ≈ 1.5
eV, F0 = 5 eV, F2 = 6 eV) we can estimate a maximal
value of Πlocal

020 |y as 0.01|e|Å(∼ 103µC/m2). The local
contributions to exchange-dipole moment seem to exceed
the nonlocal ones which are estimated as follows:

Π ∼ |e| tpdσIpd
E2(pd)

〈2px|x|3dx2−y2〉 ∼ 0.001|e|Å . (28)

It is worth noting that for the collinear Cu1-O-Cu2 bond-
ing both contributions vanish. As a whole, the exchange-
dipole moment vanishes, if the M1-O-M2 cluster has a
center of symmetry.
Concluding the section it is worth to remind we ad-

dressed only the charge density redistribution effects for
Cu 3d and O 2p states, and neglect a direct electronic
polarization effects for the both metal and anion ions.
These effects can be incorporated to the theory, if other
orbitals, e.g. ns- for oxygen ion, will be included to the
initial orbital basis set. Alternative approach may be
applied to proceed with these effects, if we turn to a gen-
eralized shell model.49

IV. RELATIVISTIC MECHANISM OF

SPIN-DEPENDENT ELECTRIC POLARIZATION

At variance with a scenario by Katsura et al.9 we have
applied a conventional procedure to derive an effective
spin-operator for a relativistic contribution to the elec-
tric dipole moment in the three-site M1-O-M2 system
like a technique suggested in refs.36,37 to derive expres-
sions for the Cu and O spin-orbital contributions to the
Dzyaloshinsky-Moriya coupling in cuprates.
The spin-orbital coupling VSO for copper and oxy-

gen ions drives the singlet-triplet mixing which gives rise
to a relativistic contribution to electric polarization de-
duced from an effective spin operator, or an exchange-

relativistic-dipole moment

P̂ =
1

2

↔
ΠT̂ =

↔
Π[ŝ1 × ŝ2] , (29)

where Πij = −i〈Ψ00|Pi|Ψ1j〉 is an exchange-relativistic-

dipole tensor. It is easy to see that this quantity has a
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clear physical meaning to be in fact a dipole matrix ele-
ment for a singlet-triplet electro-dipole transition in our
three-site cluster.50,51,52 First of all we should take into
account the singlet-triplet mixing effects for the ground
state manifold which are governed by Dzyaloshinsky-
Moriya interactions

ΦS → ΨS = ΦS +
i

2J
(D ·ΦT );

ΦT → ΨT = ΦT +
i

2J
DΦS , (30)

where we make use of Cartesian vector to denote the spin

triplet function. Then the components of the
↔
Π tensor

can be found by projecting P̂ on the spin states

Πij = −i〈ΨS |Pi|ΨTj〉 = (〈ΦS |Pi|ΦS〉 − 〈ΦT |Pi|ΦT 〉)
Dj

J
,

(31)
In other words, we arrive at a simple form of exchange-
relativistic-dipole moment as

P̂ = − 1

J
Π (D · [ŝ1 × ŝ2]) . (32)

It is worth noting that this vector lies in Cu1-O-Cu2
plane and its direction does not depend on spin config-
uration. The singlet-triplet overlap density Ψ∗

SΨTj in
matrix element 〈ΨS |Pi|ΨTj〉 has maxima at the points
R1,2,3, where the spin-orbital coupling is localized. It
means that we may pick up the leading local term in
(32)

P̂local = − 1

J

∑

n

Πn (Dn · [ŝ1 × ŝ2]) , (33)

where Πn and Dn are local (Cu1,2, O) contributions to
the exchange-dipole moment Π and Dzyaloshinsky vec-
tor D, respectively. For a rough estimate we may use
a relation D/J ∼ ∆g/g, where g is the gyromagnetic
ratio and ∆g is its deviation from the value for a free
electron.53

Another contribution to Πij = −i〈ΨS|Pi|ΨTj〉 we ob-
tain, if make use of singlet and triplet hybrid functions
Ψ101;SM perturbed by spin-orbital coupling as follows:36

Ψ̃101;SM = Ψ101;SM−

∑

{n}S′M ′Γ′

〈Ψ{n};Γ′S′M ′ |Vso|Ψ101;SM 〉
E2S′+1Γ′({n})− E2S+1Γ0

(101)
Ψ{n};Γ′S′M ′ .

(34)
Notice that {n} for the hybrid function Ψ{n};Γ′S′M ′

points only to a bare, or generative ionic configuration.
For an illustration we address the 3dx2−y2 → 3d⋆ exci-

tations driven by VSO(Cu1) within ground state 101 con-
figuration. The proper contribution to the singlet-triplet
matrix element of P can be written as follows

Πij = −i〈Ψ̃101;00|Pi|Ψ̃101;1j〉 = iξ3d
∑

d⋆

〈dx2−y2 |l̂j |d⋆〉
ǫd⋆

(〈Ψ1⋆01;10|Pi|Ψ101;10〉 − 〈Ψ101;00|Pi|Ψ1⋆01;00〉) , (35)

where 1⋆01 labels 101 configuration with dx2−y2 hole on
Cu1 site replaced by d⋆ hole with the energy ǫd⋆ . Inter-
estingly the dipole matrix elements in brackets determine
the transition probabilities for electro-dipole transition
dx2−y2 → d⋆ on Cu1 site induced by the covalent and ex-
change effects in the three-site cluster. Their difference
can be related with a so called exchange-dipole transition
moment12

P̂(d → d⋆) = Π(d → d⋆)(̂s1 · ŝ2) , (36)

introduced firstly by Y. Tanabe, T. Moriya, and S.
Sugano5 to explain the magnon side bands in 3d mag-
netic insulators:

(〈Ψ1⋆01;10|P|Ψ101;10〉 − 〈Ψ101;00|P|Ψ1⋆01;00〉)

= Π(dx2−y2 → d⋆). (37)

Interestingly the local contribution to the exchange-
dipole transition moment vanishes due to the orthogo-
nality conditions, whereas the nonlocal effects give rise
both to the in-plane and out-of-plane components both
of this vector and of the net relativistic electric polariza-
tion. Indeed, the nonlocal contribution of dx2−y2 → d⋆

spin-orbital excitations on Cu1 site to the
↔
Π tensor can

be written as folows:

Πij = −i
ξ3d
2

∑

α,β

〈dx2−y2 |lj|dβ〉
ǫβ

[
tpαdβ

(
1

Et(dpα)− ǫβ
− 1

Es(dpα)− ǫβ

)
〈2pα|xi|3d(1)x2−y2〉+

tpαd
x2

−y2

(
1

Et(dpα)
− 1

Es(dpα)

)
〈2pα|xi|3d(1)β 〉

]
, (38)

thus we arrive at nonzero Πxz, Πyz components provided
d⋆ = dxy and Πzy component provided d⋆ = dxz , if to
account for the nonvanishing overlap dipole matrix ele-
ments 〈2pα|xα|3dx2−y2〉 and 〈2px|z|3dxz〉. A reasonable
estimate for the maximal value of Πij can be made, if

address the relation (28): |Πij | ∼ 0.1Π ∼ 10−4|e|Å.
It should be noted that for the contribution of bare

configurations other than that of ground state 101 we
may use a simplified expression36

Ψ̃101;SM = Φ101;SM +
∑

{n}Γ
c{n}(

2S+1Γ)
[
Φ{n};ΓSM

−
∑

S′M ′Γ′

〈Φ{n};Γ′S′M ′ |Vso|Φ{n};ΓSM 〉
E2S′+1Γ′({n})− E2S+1Γ0

(101)
Φ{n};Γ′S′M ′

]
.

(39)
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However, on closer examination we arrive at vanish-
ing contribution of these terms to exchange-relativistic-
dipole moment.
Thus the Dzyaloshinsky-Moriya type exchange-

relativistic-dipole moment (32) is believed to be a dom-
inant relativistic contribution to electric polarization in
Cu1-O-Cu2 cluster. It is worth noting that the exchange-
dipole moment operator (25) and exchange-relativistic-
dipole moment operator (32) are obvious counterparts of
the Heisenberg symmetric exchange and Dzyaloshinsky-
Moriya antisymmetric exchange, respectively. Hence, the
Moriya like relation |Πij | ∼ ∆g/g|Π| seems to be a rea-
sonable estimation for the resultant relativistic contri-
bution to electric polarization in M1-O-M2 clusters. At
present, it is a difficult and, probably, hopeless task to
propose a more reliable and so physically clear estima-
tion. Taking into account the typical value of ∆g/g ∼ 0.1
we can estimate the maximal value of |Πij | as 10−3|e|Å(∼
102µC/m2) that points to the exchange-relativistic mech-
anism to be a weak contributor to a giant multiferroicity
with ferroelectric polarization of the order of 103µC/m2

as in TbMnO3,
1 though it may be a noticeable contrib-

utor in e.g. Ni3V2O8.
20

V. PARITY BREAKING EXCHANGE

COUPLING AND EXCHANGE-INDUCED

ELECTRIC POLARIZATION

Along with many advantages of the three-site cluster
model it has a clear imperfection not uncovering a direct
role played by exchange coupling as a driving force to in-
duce a spin-dependent electric polarization. Below we’ll
address an alternative approach starting with a spin cen-
ter such as MeOn cluster in 3d oxides exchange-coupled
with a magnetic surroundings. Then the magnetoelectric
coupling can be related to the spin-dependent electric
fields generated by a spin surroundings in a magnetic
crystal. In this connection we should point out some
properties of exchange interaction that usually are missed
in conventional treatment of Heisenberg exchange cou-
pling. Following after paper by Tanabe et al.5 (see, also
Ref.12) we start with a simple introduction to exchange-
induced electric polarization effects.
Let address the one-particle (electron/hole) center in a

crystallographically centrosymmetric position of a mag-
netic crystal. Then all the particle states can be of defi-
nite spatial parity, even (g) or odd (u), respectively. Hav-
ing in mind the 3d centers we’ll assume the even-parity
ground state |g〉. For simplicity we restrict ourselves by
only one excited odd-parity state |u〉. The exchange cou-
pling with surrounding spins can be written as follows:

V̂ex =
∑

n

Î(Rn)(s · Sn), (40)

where Î(Rn) is an orbital operator with a matrix

Î(Rn) =

(
Igg(Rn) Igu(Rn)
Iug(Rn) Iuu(Rn)

)
. (41)

The crystallographic centrosymmetry condition requires
that

∑

n

Igu(Rn) =
∑

n

Iug(Rn) = 0. (42)

The parity-breaking off-diagonal part of exchange cou-
pling can lift the center of symmetry and mix |g〉 and |u〉
states

|g〉 → |g〉+ cgu|u〉 , (43)

where

cgu = ∆−1
ug

∑

n

Igu(Rn)(s · Sn) (44)

with ∆ug = ǫu − ǫg. In turn, it results in a nonzero
electric dipole polarization of the ground state

P = 2cgu〈g|er|u〉 =
∑

n

Πn(s · Sn) , (45)

where d = er is a dipole moment operator,

Πn = 2Igu(Rn)
〈g|er|u〉
∆ug

. (46)

It is easy to see that in frames of a mean-field approxima-
tion the nonzero dipole moment shows up only for spin-
noncentrosymmetric surrounding, that is if the condition
〈S(Rn)〉 = 〈S(−Rn)〉 is broken. For isotropic bilinear
exchange coupling this implies a spin frustration.
Kinetic contributions to conventional diagonal and un-

conventional off-diagonal exchange integrals can be ob-
tained, if one assume that surrounding spins are formed
by a single electron localized in the same |g〉 state:

Igg(n) =
t2gg(n)

∆gg
, (47)

Iug(n) =
1

2
tgg(n)tug(n)

(
1

∆gg
+

1

∆gg −∆ug

)
, (48)

where tgg is a transfer integral between ground |g〉 states
of the neighboring ions, while tug is a transfer integral
between ground |g〉 state of the neighboring ion and |u〉
state of the central ion, ∆gg is the energy of the charge
transfer between ground |g〉 states of the neighboring
ions.
It should be noted that at variance with DM type

mechanism the direction of the exchange-induced dipole
moment for i, j pair does not depend on the direction
of spins Si and Sj . In other words, the spin-correlation
factor (Si · Sj) modulates a pre-existing dipole moment
Π which direction and value depend on the Mei-O-Mej
bond geometry and orbitals involved in exchange cou-
pling.
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The net exchange induced polarization of the magnetic
crystal depends both on crystal symmetry and spin struc-
ture. The allowed direction of the average P in crystal
can be unambiguously determined by symmetry analysis,
for instance, P should be parallel to all the mirror planes
and glide planes.
The magnitude of off-diagonal exchange integrals can

sufficiently exceed that of conventional diagonal exchange
integral mainly due to a smaller value of the energy sepa-
ration ∆gg−∆ug as compared with ∆gg and larger value
of transfer integral tug as compared with tgg due to the
purely oxygen character of odd-parity |u〉 state. Given
reasonable estimations for off-diagonal exchange integrals
Iug ≈ 0.1 eV, g − u energy separation ∆gu ≈ 2 eV,

dipole matrix element |〈g|er|u〉| ≈ 0.1Å, spin function
|〈(s · Sn)〉| ≈ 1 we arrive at estimation of maximal value
of electric polarization: P ≈ 104 µC/m2. This estimate
points to exchange-induced electric polarization to be a
potentially the most significant source of magnetoelectric
coupling for new giant multiferroics.
It is worth noting that the exchange-induced polar-

ization effect we consider is particularly strong for the
3d clusters such as MeOn with the intensive low-lying
electro-dipole allowed transition |g〉 → |u〉 which both
initial and final states are coupled due to a strong ex-
change interaction with a spin surroundings. This sim-
ple rule may be practically used to seek new multiferroic
materials.
The parity-breaking exchange coupling can produce a

strong electric polarization of oxygen ions in 3d oxides
which can be written as follows

PO =
∑

n

Πn(〈SO〉 · Sn) , (49)

where Sn are spins of surrounding 3d ions, 〈SO〉 ∝
∑

n

↔
I nSn is a spin polarization of oxygen ion due to sur-

rounding 3d ions with
↔
I n being the exchange coupling

tensor. It seems the oxygen exchange-induced electric
polarization of purely electron origin is too little appreci-
ated in the current pictures of multiferroicity in 3d oxides.

VI. LACK OF SPIN-DEPENDENT ELECTRIC

POLARIZATION IN EDGE-SHARING CuO2

CHAINS

According to the phenomenological theory by
Mostovoy10 and microscopic model by Katsura et al.9

the spin-spiral chain cuprates LiCuVO4 and LiCu2O2

seem to be prototypical examples of 1D spiral-magnetic
ferroelectrics revealing the relativistic mechanism of
”ferroelectricity caused by spin-currents”. Indeed,
the net nonrelativistic polarization of a spin chain
formed by Me 3d ions even with no center of symmetry
inbetween can be written as follows5

Peff = Π
∑

j=even

[(Sj · Sj+1)− (Sj · Sj−1)] , (50)

FIG. 3: The fragment of a typical edge-shared CuO2 chain.
Note the antiparallel orientation of the oxygen Dzyaloshinsky
vectors directed perpendicular to the chain plane.

hence for a simple plane spiral ordering both the on-
site and net polarizations vanish while the spin-current
mechanism9,10 directly points to a nonzero polarization
concomitant spin spiral order. However, a detailed anal-
ysis of relativistic effects for the system of eg-holes in
a perfect chain structure of edge-shared CuO4 plaque-
ttes as in LiCuVO4 shows that the in-chain spin cur-
rent does not produce an electric polarization. First of
all we should point to a high symmetry of Cu1-O-Cu2
bonds in edge-sharing CuO2 chains (see Fig. 3) that re-
sults in a full cancellation of a net Dzyaloshinsky vector,
though the partial oxygen contributions survive being of
opposite sense.36,37 Cancellation of the Dzyaloshinsky-
Moriya coupling in perfect edge-sharing CuO2 chains im-
plies immediately the same effect for the net exchange-
relativistic-dipole moment P. Indeed, the dominant con-
tribution to the exchange-relativistic-dipole moment for
isolated Cu1-O-Cu2 bonds is governed straightforwardly
by the respective Dzyaloshinsky vectors, hence their can-
cellation for Cu1-OI-Cu2 and Cu1-OII-Cu2 bonds in
edge-sharing CuO2 chain geometry (see Fig.3) leads to
the vanishing of the exchange-relativistic electric polar-
ization. It seems, small nonlocal terms addressed in Sec.
IV could survive, however, the symmetry considerations
point to their vanishing as well. Indeed, both the xz and
yz components of the Πij tensor differ in sign for the
Cu1-OI-Cu2 and Cu1-OII-Cu2 bonds while the zy com-
ponents differ in sign for the contribution of VSO(Cu1)
and VSO(Cu2). Thus we may state that the edge-shared
CuO4 plaquettes chain arrangement appears to be ro-
bust regarding the proper spin-induced electric polariza-
tion both of the nonrelativistic and relativistic origin. It
means that we should look for the origin of puzzling mul-
tiferroicity observed in LiCuVO4 and LiCu2O2 some-
where within the out-of-chain stuff.54,55
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VII. CONCLUSION

We have considered a microscopic theory of spin-
dependent electric polarization in 3d oxides starting with
a generic three-site two-hole cluster. A perturbation
scheme realistic for 3d oxides is applied which implies the
quenching of orbital moments by low-symmetry crystal
field, strong intra-atomic correlations, the pd-transfer ef-
fects, and rather small spin-orbital coupling. An effective
spin operator of the electric dipole moment is deduced in-
corporating both nonrelativistic∝ (̂s1·ŝ2) and relativistic
∝ [̂s1 × ŝ2] terms. The nonrelativistic exchange-dipole
moment is mainly governed by the effects of the redistri-
bution of the local on-site charge density due to pd cova-
lency and exchange coupling. The relativistic exchange-
dipole moment is mainly stems from the nonrelativis-
tic one due to the perturbation effect of Dzyaloshinsky-
Moriya coupling and is estimated to be a weak contrib-
utor to the electric polarization observed in the most
of 3d multiferroics. Our description is focused on Cu1-
O-Cu2 clusters typical for different cuprates, however,
the generalization of the results onto the M1-O-M2 clus-
ters in other 3d oxides is trivial. The approach real-
ized in the paper has much in common with the mech-
anism of the bond- and site-centered charge order com-
petition (see, e.g. Ref.56) though we start with the el-
ementary pd charge transfer rather than the dd charge
transfer. An alternative approach to the derivation of the

spin-dependent electric polarization is considered which
is based on the parity-breaking exchange coupling and
exchange induced polarization.
We point to the oxygen electric polarization effects due

to an exchange-induced electric fields to be an important
participant of the multiferroic performance. Anycase, the
nonrelativistic electronic polarization mechanism is be-
lieved to govern the multiferroic behaviour in 3d oxides.
It is shown that the perfect chain structure of edge-

shared CuO4 plaquettes as in LiCuVO4 or LiCu2O2 ap-
pears to be robust regarding the proper spin-induced
electric polarization both of nonrelativistic and relativis-
tic origin. In other words, in contrast with the predic-
tions of the model by Katsura et al.9 the in-chain spin
current does not produce an electric polarization. Hence
the puzzling multiferroicity observed in LiCuVO4 and
LiCu2O2

18,19 originates from an out-of-chain stuff.
Clearly, the model approach applied can provide only

a semiquantitative description of magnetoelectric effects
in 3d oxides. More correct account for the overlap, or
nonorthogonality effects and those produced by a non-
magnetic surroundings of the three-site two-hole cluster
are needed.
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