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Abstract. We present several infinite series of synchronizing automata
for which the minimum length of reset words is close to the square of
the number of states. These automata are closely related to primitive
digraphs with large exponent.

1 Background and overview

A complete deterministic finite automaton (DFA) is a triple A = 〈Q,Σ, δ〉,
where Q and Σ are finite sets called the state set and the input alpha-

bet respectively, and δ : Q × Σ → Q is a totally defined function called
the transition function. Let Σ∗ stand for the collection of all finite words
over the alphabet Σ, including the empty word. The function δ extends
to a function Q × Σ∗ → Q (still denoted by δ) in the following natural
way: for every q ∈ Q and w ∈ Σ∗, we set δ(q, w) = q if w is empty and
δ(q, w) = δ(δ(q, v), a) if w = va for some v ∈ Σ∗ and a ∈ Σ. Thus, via δ,
every word w ∈ Σ∗ acts on the set Q.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if the action of some
word w ∈ Σ∗ resets A , that is, leaves the automaton in one particular
state no matter at which state in Q it is applied: δ(q, w) = δ(q′, w) for all
q, q′ ∈ Q. Any such word w is said to be a reset word for the DFA. The
minimum length of reset words for A is called the reset length of A .

Synchronizing automata serve as transparent and natural models of
error-resistant systems in many applications (coding theory, robotics,
testing of reactive systems) and also reveal interesting connections with
symbolic dynamics and other parts of mathematics. For a brief introduc-
tion to the theory of synchronizing automata we refer the reader to the
recent surveys [15,22]. Here we focus on the so-called Černý conjecture
that constitutes a major open problem in this area.

In 1964 Černý [5] constructed for each n > 1 a synchronizing au-
tomaton Cn with n states whose reset length is (n− 1)2. Soon after that
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he conjectured that these automata represent the worst possible case,
that is, every synchronizing automaton with n states can be reset by a
word of length (n−1)2. This simply looking conjecture resists researchers’
efforts for more than 40 years. Even though the conjecture has been con-
firmed for various restricted classes of synchronizing automata (cf., e.g.,
[9,6,11,19,20,2,23]), no upper bound of magnitude O(n2) for the reset
length of n-state synchronizing automata is known in general. The best
upper bound achieved so far is n3

−n
6

, see [13].

One of the difficulties that one encounters when approaching the
Černý conjecture is that there are only very few extreme automata, that
is, n-state synchronizing automata with reset length (n−1)2. In fact, the
Černý series Cn is the only known infinite series of extreme automata.
Besides that, only a few isolated examples of such automata have been
found, see [22] for a complete list. Moreover, even slowly synchronizing
automata, that is, automata with reset length close to the Černý bound
are very rare. This empirical observation is supported also by probabilistic
arguments. For instance, the probability that a composition of 2n ran-
dom self-maps of a set of size n is a constant map tends to 1 as n goes to
infinity [10]. In terms of automata, this result means that the reset length
of a random automaton with n states and at least 2n input letters does
not exceed 2n. For further results of the same flavor see [16]. Thus, there
is no hope to find new examples of slowly synchronizing automata by a
lucky chance or via a random sampling experiment.

We therefore have designed and performed a set of exhaustive search
experiments. Our experiments are briefly described in Section 5 while the
main body of the paper is devoted to a theoretical analysis of their out-
come. We concentrate on two principal issues. In Section 3 we discuss a
similarity between the distribution of reset lengths of synchronizing au-
tomata and the distribution of exponents of primitive digraphs. Section 4
presents a few series of slowly synchronizing automata. Most of these se-
ries have been expanded from new examples discovered in the course of
our experiments. In our opinion, the proof technique is also of interest;
in fact, we provide a transparent and uniform approach to all sufficiently
large slowly synchronizing automata with 2 input letters, both new and
already known ones.

2 Preliminaries

We start with recalling two elementary and well-known number-theoretic
results.



Lemma 1 ([14, Theorem 1.0.1]). If k1, . . . , km are positive integers whose

greatest common divisor is equal to 1, then there exists an integer N such

that every integer larger than N is expressible as a non-negative integer

combination of k1, . . . , km.

The question of how the least N with the property stated in Lemma 1
depends on the integers k1, . . . , km is known as the diophantine Frobenius

problem and in general is highly non-trivial, see [14]. There is, however,
a simple special case which we will need in Section 4.

Lemma 2 ([14, Theorem 2.1.1]). If k1, k2 are relatively prime positive

integers, then k1k2 − k1 − k2 is the largest integer that is not expressible

as a non-negative integer combination of k1 and k2.

A directed graph (digraph) is a pair D = 〈V,E〉 where V is a finite set
and E ⊆ V × V . We refer to elements of V and E as vertices and edges.
Observe that our definition allows loops but excludes multiple edges. If
v, v′ ∈ V and e = (v, v′) ∈ E, the edge e is said to be outgoing for v.
We assume the reader’s acquaintance with basic notions of the theory of
directed graphs such as (directed) path, cycle, isomorphism etc.

Given a DFA A = 〈Q,Σ, δ〉, its underlying digraph D(A ) hasQ as the
vertex set and (q, q′) ∈ Q×Q is an edge of D(A ) if and only if q′ = δ(q, a)
for some a ∈ Σ. It is easy to see that a digraph D is isomorphic to the
underlying digraph of some DFA if and only if each vertex of D has at
least one outgoing edge. In the sequel, we always consider only digraphs
satisfying this property. Every DFA A such that D ∼= D(A ) is called a
coloring ofD. Thus, every coloring ofD is defined by assigning non-empty
sets of labels (colors) from some alphabet Σ to edges of D such that the
label sets assigned to the outgoing edges of each vertex form a partition
of Σ. Fig. 1 shows a digraph and two of its colorings by Σ = {a, b}.
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Fig. 1. A digraph and two of its colorings



The matrix of a digraph D = 〈V,E〉 is just the incidence matrix
of the edge relation, that is, a V × V -matrix whose entry in the row v

and the column v′ is 1 if (v, v′) ∈ E and 0 otherwise. For instance, the
matrix of the digraph in Fig. 1 (with respect to the chosen numbering

of its vertices) is

(

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0

)

. Conversely, given an n× n-matrix P = (pij)

with non-negative real entries, we assign to it a digraph D(P ) on the set
{1, 2, . . . , n} as follows: (i, j) is an edge of D(P ) if and only if pij > 0. This
“two-way” correspondence allows us to formulate in terms of digraphs
several important for the sequel notions and results which originated in
the classical Perron–Frobenius theory of non-negative matrices.

Recall that a digraph D = 〈V,E〉 is said to be strongly connected if
for every pair (v, v′) ∈ V × V , there exists a path from v to v′. By the
tth power of D we mean the digraph Dt with the same vertex set V , such
that (v, v′) ∈ V × V is an edge of Dt if and only if there is a path in
D from v to v′ of length precisely t. If M is the matrix of D, then the
digraph Dt can be equivalently defined as D(M t), where M t is the usual
tth power of M .

A strongly connected digraph D is called primitive if the greatest
common divisor of the lengths of all cycles in D is equal to 1. (In the
literature such graphs are sometimes called aperiodic.) Lemma 1 readily
implies that if D is a primitive digraph, then in some power Dt of D every
pair of vertices constitutes an edge, i.e., Dt is a complete digraph with
loops. (This is equivalent to saying that every entry of the matrix M t,
where M is the matrix of D, is positive.) The least t with this property
is called the exponent of the digraph D and is denoted by γ(D). We need
some results on exponents of digraphs summarized as follows.

Theorem 1. (a) (Wielandt’s theorem, see [24,7], [8, Theorem 1]) If a

primitive graph D has n vertices, then γ(D) ≤ (n− 1)2 + 1.
(b) [8, Theorem 6 and Corollary 4] Up to isomorphism, there is exactly

one primitive digraph D on n > 2 vertices with γ(D) = (n− 1)2 +1, and
exactly one with γ(D) = (n− 1)2. The matrices of the digraphs are













0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .

0 0 0 . . . 0 1
1 1 0 . . . 0 0













and













0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .

1 0 0 . . . 0 1
1 1 0 . . . 0 0













respectively. (1)

(c) [8, Theorem 7] If n > 4 is even, then there is no primitive digraph

D on n vertices such that n2 − 4n + 6 < γ(D) < (n − 1)2, and, up to



isomorphism, there are either 3 or 4 primitive digraphs D on n vertices

with γ(D) = n2 − 4n + 6, according as n is or is not a multiple of 3.

(d) [8, Theorem 8] If n > 3 is odd, then there is no primitive digraph

D on n vertices such that n2 − 3n + 4 < γ(D) < (n − 1)2, and, up to

isomorphism, there is exactly one primitive digraph D on n vertices with

γ(D) = n2 − 3n + 4, exactly one with γ(D) = n2 − 3n + 3, and exactly

two with γ(D) = n2 − 3n+ 2. The matrices of these digraphs are:

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .

0 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 1 . . . 0 0

















,

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .

0 0 0 . . . 1 0
0 1 0 . . . 0 1
1 0 1 . . . 0 0

















,

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .

1 0 0 . . . 1 0
0 1 0 . . . 0 1
1 0 1 . . . 0 0

















,

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .

1 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 1 . . . 0 0

















. (2)

(e) [8, Theorem 8] If n > 3 is odd, then there is no primitive digraph

D on n vertices such that n2 − 4n+ 6 < γ(D) < n2 − 3n+ 2, and, up to

isomorphism, there are either 3 or 4 primitive digraphs D on n vertices

with γ(D) = n2 − 4n + 6, according as n is or is not a multiple of 3.

3 Exponents of digraphs vs lengths of reset words

As mentioned in Section 1, this paper has grown from certain observa-
tions made when we analyzed experimental results. One such observation
has been a similarity between the “upper parts” of two sequences: the se-
quence of possible reset lengths of 2-letter synchronizing automata with n

states and the sequence of possible exponents of primitive digraphs with
n vertices. As it is clear from Theorem 1, the upper part of the latter
sequence has certain gaps whose sizes and positions depend on the parity
of n; our experiments have revealed a similar pattern of gaps in the upper
part of the former sequence. Table 1 illustrates this observation for n = 9.

Table 1. Exponents of primitive digraphs with 9 vertices vs lengths of
shortest reset words for 2-letter synchronizing automata with 9 states

N 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51

Number of non-isomorphic primitive
digraphs with exponent N

1 1 0 0 0 0 0 1 1 2 0 0 0 0 4

Number of non-isomorphic 2-letter
synchronizing automata with reset
length N

0 1 0 0 0 0 0 1 2 3 0 0 0 4 4



The data in the second row of Table 1 are calculated from Theorem 1,
while the data in the third row come from our experiments.

Concerning gaps in the upper part of the sequence of possible reset
lengths of 2-letter synchronizing automata with a given number of states,
we notice that the first gap was registered in earlier experiments. (Namely,
according to [17,18], for n = 7, 8, 9, 10 there exists no 2-letter synchro-
nizing automata with n states with reset lengths between n2 − 2n and
n2 − 3n + 5.) However, to the best of our knowledge, the second gap as
seen in Table 1 has not been reported in the literature up to now.

We strongly believe that the observed similarity is more than a coin-
cidence. Clearly, there are deep connections between primitive digraphs
and synchronizing automata. Indeed, it is well known (see [1]) that if the
underlying digraph of a synchronizing automaton is strongly connected
that the digraph must be primitive; on the other hand, as follows from
Trahtman’s proof [21] of the so-called Road Coloring conjecture by Adler,
Goodwyn, and Weiss [1], every primitive digraph admits a synchronizing
coloring. This, however, does not suffice to explain similarities such as
in Table 1 because many of slowly synchronizing automata “responsible”
for non-zero entries in the third row cannot be obtained as colorings of
primitive digraphs with large exponents corresponding to non-zero en-
tries in the second row. In the next section we demonstrate some new
connections between primitive digraphs with large exponents and slowly
synchronizing automata with two input letters. In this way, we derive all
known series of such automata and construct many new ones.

4 Some series of slowly synchronizing automata

Due to space limitations, we present here only a part of our results on
slowly synchronizing automata. Namely, we restrict ourselves to series
derived from three of the primitive digraphs whose matrices are listed in
Theorem 1. These series, in particular, ensure that the “island” of reset
lengths between n2 − 3n+ 2 and n2 − 3n+ 4 exists for each n.

We start with the digraph Wn corresponding to the first matrix in (1).
The digraph (more precisely, its matrix) first appeared in Wielandt’s sem-
inal paper [24]. It has n vertices 1, 2, . . . , n, say, and the following n + 1
edges: (i, i + 1) for i = 1, . . . , n− 1, (n, 1), and (n, 2).

It is easy to see that, up to isomorphism and renaming of letters, there
exists a unique coloring of the digraph Wn by two letters. Let Wn denote
this coloring. Fig. 2 shows the digraph Wn and the DFA Wn.



1

n 2

n−1 3. . .
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n−1 3

b
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a, b

a, b
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Fig. 2. The digraph Wn and its unique coloring Wn

Theorem 2. The automaton Wn is synchronizing and its reset length is

n2 − 3n+ 3.

Proof. It is routine to verify that the word (abn−2)n−2a, whose length is
(n− 1)(n − 2) + 1 = n2 − 3n+ 3, is a reset word for Wn.

Now let w be a reset word for Wn and assume that the length of w
(denoted |w|) is minimal. Let j ∈ Q = {1, 2, . . . , n} be the state to which
the action of w brings Wn. Then from every state in Q there is a path to
j labelled w. It is clear that for each j 6= 2 all paths ending at j share
the last edge. Therefore, if j 6= 2, removing the last letter from the word
w produces a word that still would be a reset word for Wn. We conclude
that j = 2 because |w| is minimal.

If u ∈ {a, b}∗, the word uw also is a reset word and it also brings the
automaton to the state 2. Hence, for every ℓ ≥ |w|, there is a path of
length ℓ in Wn from any given vertex i to 2. In particular, setting i = 2,
we conclude that for every ℓ ≥ |w| there is a cycle of length ℓ in Wn.
The digraph Wn has only two simple cycles: one of length n and one of
length n− 1. Each cycle of Wn must consist of these two cycles traversed
several times whence each number ℓ ≥ |w| must be expressible as a non-
negative integer combination of n and n − 1. Here we invoke Lemma 2
which implies that |w| > n(n− 1)− n− (n− 1) = n2 − 3n + 1. Suppose
that |w| = n2 − 3n + 2. Then there should be a path of this length from
the vertex 1 to the vertex 2. The only outgoing edge of 1 is (1, 2), and
thus, in the path it must be followed by a cycle of length n2 − 3n+1. No
cycle of such length may exist by Lemma 2. Hence |w| ≥ n2 − 3n+ 3.

The series Wn was discovered by the first author in 2008 (unpublished).
His rather involved proof of Theorem 2 used a technique developed in [4].

As mentioned in Section 3, Trahtman’s recent result [21] implies that
every primitive digraph admits a synchronizing coloring. This gives rise
to the following natural question: given a primitive digraph on n vertices,



what is the minimum length of reset words for its synchronizing color-
ings? Observe that in general underlying digraphs of slowly synchronizing
automata may admit colorings with rather short reset words. Fig. 1 illus-
trates this phenomenon: the first coloring of the 4-vertex digraph in Fig. 1
is the Černý automaton C4 with shortest reset word of length 9 while the
second coloring can be reset of the word a3 of length 3. Wielandt’s di-
graphs Wn, however, can be colored in a essentially unique way, whence
Theorem 2 gives the lower bound n2 − 3n + 3 for the value in question.
We strongly believe that this lower bound is in fact tight, in other words,
we suggest a conjecture that is in a sense parallel to the Černý one.

Conjecture 1. Every primitive digraph on n vertices admits a synchroniz-
ing coloring that can be reset by a word of length n2 − 3n+ 3.

We observe that while there is a clear analogy between Conjecture 1 and
the Černý conjecture, the validity of none of them immediately implies
the validity of the other.

Now we discuss a less straightforward way to get a slowly synchro-
nizing series from Wielandt’s digraphs Wn. Namely, we aim to show that
the Černý automata Cn are closely related to these digraphs. First, re-
call the definition of Cn. We may assume that the state set of Cn is
Q = {1, 2, . . . , n} and the letters a and b act on Q as follows:

δ(i, a) =

{

i if i < n,

1 if i = n;
δ(i, b) =

{

i+ 1 if i < n,

1 if i = n.

The automaton Cn is shown in Fig. 3 on the left.
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Fig. 3. The automaton Cn and the automaton induced by the actions of
b and c = ab

Now we present a new simple proof for the following classic result.



Theorem 3 ([5, Lemma 1]). The automaton Cn is synchronizing and its

reset length is (n− 1)2.

Proof. It is easy to see that the word (abn−1)n−2a of length n(n−2)+1 =
(n− 1)2 is a reset word for Cn.

Now let w be a reset word of minimum length for Cn. Since the letter
b acts on Q as a cyclic permutation, the word w cannot end with b.
(Otherwise removing the last letter gives a shorter reset word.) Thus, we
can write w as w = w′a for some w′ ∈ {a, b}∗ such that the image of Q
under the action of w′ is precisely the set {1, n}.

Since the letter a fixes each state in its image {1, 2, . . . , n− 1}, every
occurrence of a in w except the last one is followed by an occurrence of b.
(Otherwise a2 occurs in w as a factor and reducing this factor to just a
results in a shorter reset word.) Therefore, if we let c = ab, then the word
w′ can be rewritten into a word v over the alphabet {b, c}. The actions of b
and c induce a new automaton on the state set Q; this induced automaton
(shown in Fig. 3 on the right) is obviously isomorphic to the automaton
Wn. Since w

′ and v act on Q in the same way, the word vc is a reset word
for the induced automaton. By Theorem 2 the length of vc (as a word
over {b, c}) is at least n2 − 3n + 3. Since the action of b on any set S of
states cannot change the cardinality of S and the action of c can decrease
the cardinality by 1 at most, the word vc must contain at least n − 1
occurrences of c. Hence the length of v over {b, c} is at least n2 − 3n+ 2
and v contain at least n − 2 occurrences of c. Since each occurrence of
c in v corresponds to an occurrence of the factor ab in w′, we conclude
that the length of w′ over {a, b} is at least n2− 3n+2+n− 2 = n2− 2n.
Thus, |w| = |w′a| ≥ n2 − 2n+ 1 = (n− 1)2.

We have found two more series of slowly synchronizing automata re-
lated to Wielandt’s digraphs Wn: a series with reset length n2 − 3n + 2
and another one with reset length n2 − 4n + 6. These two series will be
presented in an extended version of the paper.

Now we discuss a few series related to the digraph Dn defined by the
second matrix in (1). The digraph is obtained from Wn by adding the
edge (n− 1, 1). Fig. 4 shows the digraph Dn and its colorings D ′

n and D ′′

n .

Theorem 4. The automata D ′

n and D ′′

n are synchronizing with reset

lengths n2 − 3n + 4 and n2 − 3n + 2 respectively.

Proof. The proof of Theorem 4 is similar to that of Theorem 2. First
we prove that the automaton D ′

n is synchronizing and its reset length is
n2 − 3n+ 4.
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n 2
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a

a, b

a, b

a

b

b

. . .

Fig. 4. The digraph Dn and its colorings D ′

n and D ′′

n

It is routine to verify that the word (abn−2)n−2ba, whose length is
(n− 1)(n − 2) + 2 = n2 − 3n+ 4, is a reset word for D ′

n.

Now let w be a reset word of minimum length for D ′

n. Since the letter
b acts as cyclic permutation of Q, the word w ends with a. The action
of a sends the states n and 1 to the state 2. Therefore the action of w
also brings the automaton to the state 2 and so does the action of the
word uw for any u ∈ {a, b}∗. Hence, for every ℓ ≥ |w|, there is a path
of length ℓ in Dn from any given vertex i to 2. In particular, setting
i = 2, we conclude that for every ℓ ≥ |w| there is a cycle of length ℓ

in Dn. The digraph Dn has only three simple cycles: one of length n

and two of length n− 1. Since each cycle of Dn must be composed from
these three cycles, every number ℓ ≥ |w| must be expressible as a non-
negative integer combination of n and n− 1. Then Lemma 2 implies that
|w| > n(n− 1)− n− (n − 1) = n2 − 3n+ 1.

Suppose that |w| = n2 − 3n + 2. Then in Dn there should be a path
of this length from the vertex 1 to the vertex 2. The only outgoing edge
of 1 is (1, 2), and thus, in the path it must be followed by a cycle of
length n2−3n+1. No cycle of such length may exist by Lemma 2. Hence
|w| ≥ n2 − 3n + 3.

Finally, suppose that |w| = n2−3n+3. There should be a path of this
length from the vertex n−1 to the vertex 2. Since b is a cyclic permutation,
the first letter of w must be a but a sends n − 1 to 1. Therefore in Dn

there is a path of length n2 − 3n + 2 from the vertex 1 to the vertex 2.
In the previous paragraph we have shown that this is not possible. Hence
|w| ≥ n2 − 3n + 4.

Now we show that the automaton D ′′

n is synchronizing and its reset
length is n2 − 3n + 2.

Again, the word (ban−1)n−3ba of length n(n− 3) + 2 = n2 − 3n+2 is
easily seen to be a reset word for D ′′

n .



Now let w be a reset word for D ′′

n . Then, as above, each ℓ ≥ |w|must be
the length of a cycle in the digraphDn whence |w| > n(n−1)−n−(n−1) =
n2 − 3n+ 1 by Lemma 2.

The series D ′

n is of interest because for n > 6 it yields the maximum
known value of reset length beyond the Černý series Cn and also the
maximum known value of reset length for synchronizing automata with-
out loops. The series D ′′

n also enjoys an extremal property: it provides
the maximum known value of reset length for synchronizing automata in
which no letter acts as a permutation.

One more series of slowly synchronizing automata related to the di-
graphs Dn has reset length n2−4n+6. It will be presented in an extended
version of this paper.

Except the Černý series Cn, the only infinite series of 2-letter slowly
synchronizing automata published so far was the series Bn (n > 3 is odd)
constructed in [4]. The automaton Bn has Q = {1, 2, . . . , n} as its state
set, and its input letters a and b act on Q as follows:

δ(i, a) =











i if i < n− 1,

1 if i = n− 1,

2 if i = n;

δ(i, b) =

{

i+ 1 if i < n,

1 if i = n.

The automaton Bn is shown in Fig. 5 on the left.
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. . .

Fig. 5. The automaton Bn and the automaton induced by the actions of
b and c = ab

Theorem 5 ([4, Theorem 1.1]). If n > 3 is odd, then the automaton Bn

is synchronizing and its reset length is n2 − 3n + 2.

The proof of Theorem 5 in [4] is quite involved. Now we can easily
prove this result using an argument similar to that in our proof of Theo-
rem 3. The key observation is that the automaton induced by the actions



of b and c = ab on the set Q as shown in Fig. 5 on the right is nothing but
a coloring of one of the digraphs with exponent n2 − 3n + 2, namely, of
the digraph defined by the second matrix in (2). The details of the proof
will appear in an extended version of this paper.

5 Experiments

Here we briefly describe the settings of our experiments. Recall that a
DFA A = 〈Q,Σ, δ〉 is said to be initially-connected if there exists a state
q0 ∈ Q from which every state q ∈ Q is reachable, that is, q = δ(q0, w)
for some w ∈ Σ∗. In general a synchronizing automaton need not be
initially-connected. However, it is well known that when studying the
Černý conjecture, we may restrict ourselves to DFA whose underlying
digraphs are strongly connected because the validity of the conjecture
can be easily reduced to this case (see [12] for example). Clearly, DFA
with strongly connected underlying digraphs are initially-connected.

We used a convenient string representation of initially-connected DFA
(ICDFA) developed in [3] to generate all such DFA with up to 9 states
and 2 input letters. Each ICDFA was tested for synchronizability and
then for each synchronizing automaton its reset length was calculated.
For these tasks, we implemented standard algorithms (see [15,22]) in C.

The main difficulty that had to be overcome is that the number of
ICDFA dramatically grows with the number of states. (For 9 states, there
are about 700 billions ICDFA with 2 input letters.) The problem, how-
ever, can be efficiently parallelized. For this, a dedicated processor was
programmed to generate ICDFA in portions (slices in terminology of [3])
that were fed to other processors for synchronization tests etc. The man-
agement program was written in C with MPI. Calculations organized this
way took less than a day of running a small size computer grid based on
a number of AMD Opteron 2.6 GHz processors.

All slowly synchronizing automata that we found were double-checked
by running on them the package TESTAS developed by Trahtman [17].

Our experiments have also produced some interesting statistical re-
sults that will be discussed elsewhere.
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