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For two-dimensional Heisenberg antiferromagnet we present an analysis of topological coreless
excitations having a stripe form. These textures are characterized by singularities at boundaries. A
detailed classification of the stripe textures results in a certain analogy with the coreless excitations
in 3He − A phase: Mermin-Ho and Anderson-Toulouse coreless vortices. The excitations of the
last type may have a low bulk energy. The stripe textures may be observed as an occurrence of
short-range incommensurate order in the antiferromagnetic environment.

I. INTRODUCTION

The Heisenberg antiferromagnet (AFM) in two dimensions (2D) supports nonlinear pseudoparticles with a vortex
structure. An existence of these excitations with a singular point, the center of the topological defect, is issued from
nontriviality of higher homotopic group π2(RP 2) = Z (Z is an integer group) of the space RP 2 = O(3)/O(2)×O(1) (or

Grassmann manifold G3,1), the space of the antiferromagnetic order parameter ~L. It is believed that these topological
excitations are of importance in the understanding of static and dynamical properties of 2D AFM.
The paper is devoted to another topological structures that may occur in the system. Their appearance may be

argued for the following reasonings. The twofold degeneracy in the direction of antiferromagnetic vector is a source
for formation of a domain structure with domain walls between Néel-like ground states. The domain walls have an
energy scaling with a linear size of the system. Apart from the domain structure formation there is another reason

for the field ~L to be inhomogeneous. One may assume an appearance of a helical coreless spin texture between two
uniform Néel-like ground states which is a topological excitation, soliton, with finite energy. First, this idea has
been proposed in the study of spin properties of quantum Hall (QH) states. A formation of low-energy topological
excitations localized in the domain walls between oppositely polarized domains has been considered in the investigation
of a multidomain structure in a ferromagnetic QH liquid.1 Later, it has been shown that QH ferromagnets (QHF)
with vanishing Zeeman energy and a pronounced spin-orbit coupling are unstable concerning to the formation of a
helical state.2 Recently, a similar approach has been recurred for a QH Ising ferromagnet at even filling factor.3 In
the presence of domains between ferromagnetic and unpolarized ground states, charge excitations can be trapped in
the walls forming confined isospin textures, charged solitons at the domain wall. Due to nonzero spin-orbit coupling
the finite energy of such a soliton has been found to be rather small.
The excitations with the same structure have been analyzed for a 2D Heisenberg ferromagnet.4 Contrary to QHF

they carry no electrical charge and they are energetically expensive. It is very close to the situation with Skyrmion-like
textures. Whereas skyrmion/antiskyrmion pairs may be thermally activated in QHF (Ref. 5) they actually freeze out
in ordinary 2D ferromagnets.
At last, we note that 2D stripe textures are well known in physics of liquid crystals. Freely suspended smectic

liquid-crystal films of HOBACPC [R(-) hexyloxybenzylidene p’-amino-2-chloropropyl cinnamate] display distinctive
stripe textures. These patterns have been observed experimentally.6

Guided by the arguments we predict an appearance of stationary stripelike coreless textures with an inner incom-
mensurability in 2D antiferromagnet. These textures may be viewed as excitations whose scale along one direction
in the plane coincides with the incommensurate periodicity and, in other direction, they have soliton (kink) features.
By using a continuum approximation we classify these excitations and find conditions needed for their appearance.
We reveal that for the most important types of the textures a space behavior of staggered magnetization along one
of the plane directions is akin to arrangement of order parameter (angular moment of pair) in coreless vortices of
3He − A phase, namely, in Mermin-Ho (MH)7 and Anderson-Toulouse (AT)8 vortices. Our analysis shows that a
stripe counterpart of AT vortex may have a low bulk energy.
In contrary to excitations with a point singularity in a center an appearance of the stripe excitations forms singular

points at their boundaries with a nonsingular (coreless) bulk structure inside. In the theory of liquid helium this type
of a ”surface” singularity is known as boojum.9,10

The paper is organized in the following way. In Sec. II the continuum approximation based upon equations of
nonlinear spin dynamics is presented. In Secs. II.A-II.D the solutions with collinear antiferromagnetic, spin-flop,
spin-flip, and so-called ”instanton-like” spin arrangements at the texture outskirts are considered. Finally, in Sec.
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III we discuss a possible application of the found textures for an explanation of incommensurate (IC) correlations in
cuprate materials of the spin glass (SG) regime.11,12,13

II. MODEL

The quantative analysis of a stripe texture is based on the Hamiltonian of a spin-S antiferromagnet

H =
1

2
J⊥

∑

〈mα,nβ〉

(

Sx
mαS

x
nβ + Sy

mαS
y
nβ

)

+
1

2
Jz

∑

〈mα,nβ〉

Sz
mαS

z
nβ − h

∑

mα

Sz
mα, (1)

where Sk
mα is the kth component of the spin operator of the mth site and α sublattice. The Hamiltonian has an

exchange anisotropy, the J⊥, Jz are the nearest neighbor exchange integrals, and 〈. . .〉 denotes the sum over the
nearest neighbor pairs. We have also included in Eq.(1) a Zeeman term with an external magnetic field h along the
z axis.
By computing in spin-coherent representation an equation of motion for the raising operator ih̄

(

dS†
mα/dt

)

=
[

S†
mα, H

]

(α = 1, 2) and going over to a continuum approximation we get the coupled system of non-linear equations

for the variables θ1,2 and ϕ1,2 that parametrize the spin fields ~Sα = S (sin θα cosϕα, sin θα sinϕα, cos θα)

h̄ sin θ1
dϕ

1

dt
= −J⊥S

{

cos (ϕ2 − ϕ1) cos θ1 sin θ2

[

4− (∇θ2)
2 − (∇ϕ2)

2
]

+cos θ1 cos θ2 cos (ϕ2 − ϕ1)∆θ2 − sin (ϕ2 − ϕ1) cos θ1 sin θ2∆ϕ2

−2 sin (ϕ2 − ϕ1) cos θ1 cos θ2 (∇ϕ2∇θ2)}

+ JzS
{

4 sin θ1 cos θ2 − sin θ1 sin θ2∆θ2 − sin θ1 cos θ2 (∇θ2)
2
}

− h sin θ1, (2)

h̄
dθ1
dt

= J⊥S
{

sin (ϕ2 − ϕ1) sin θ2

[

4− (∇θ2)
2
− (∇ϕ2)

2
]

+cos (ϕ2 − ϕ1) sin θ2∆ϕ2 + cos θ2 sin (ϕ2 − ϕ1)∆θ2

+2 cos (ϕ2 − ϕ1) cos θ2 (∇ϕ2∇θ2)} , (3)

where a lattice constant is taken unit. The rearrangement of the lower indices 1 ⇀↽ 2 yields another pair of equations.
We look for solitons having a stripelike texture. Below, we use the parametrization θ1,2 = θ1,2(y) and ϕ1,2 = ϕ1,2(x)

with ϕ1,2 obeying the constraint ϕ2 −ϕ1 = π over the 2D plane. That parametrization reduces Eq. (3) to the simple
equation △ϕ1,2 = 0. A suitable solution may be taken in the form ϕi = ϕi0+ qx (i = 1, 2) within an interval of length
2π/q (0 ≤ x ≤ 2π/q) and as a constant value ϕi0 out of that interval. The width of the stripe texture is managed by
a continuous parameter q. The θ1,2(y) profiles in the stripe texture may be obtained from Eq. (2)

0 = −h sin θ2 + J⊥S

{

cos θ2 sin θ1

[

4−

(

dθ1
dy

)2

− q2

]

+ cos θ2 cos θ1
d2θ1
dy2

}

+ JzS

{

4 sin θ2 cos θ1 − sin θ2 sin θ1
d2θ1
dy2

− sin θ2 cos θ1

(

dθ1
dy

)2
}

, (1 ⇀↽ 2). (4)

The degeneracy over the q sign in Eq.(10) corresponds to a clockwise or counter-clockwise spiral. Topological classes
of spin textures with the different chirality belong to the homotopic group π1(RP 2) = Z2 (Z2 is a cyclic group).
At zero field a symmetry of the sublattices θ2 = π − θ1 reduces the system (10) to the equation suitable for 2D

ferromagnet.4 At nonzero magnetic field one may expect a small net magnetization, a weak ferromagnetism, due to
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a slight deviation of the sublattice magnetization from antiparallel arrangement. Unfortunately, an account of the
magnetic field is essential and we have not been able to obtain analytical solution. Therefore, we mention the results
of numerical investigation made by shooting method whenever it is necessary.
The first integral of the system (10) is readily derived. One have to multiply the first equation by dθ2/dy, the

second by dθ1/dy and sum the results

[

cos (θ1 + θ2)−
K

J⊥
sin θ1 sin θ2

]

dθ1
dy

dθ2
dy

=

(

h

J⊥S

)

[cos θ10 + cos θ20 − cos θ1 − cos θ2] + 4
K

J⊥
[cos θ1 cos θ2 − cos θ10 cos θ20]

+ q2 [sin θ1 sin θ2 − sin θ10 sin θ20] + 4 [cos (θ1 + θ2)− cos (θ10 + θ20)] . (5)

One can see this by nothing that a two-sublattice counterpart of Eqs. (4) and (5.18) in Refs. 4, 14 , respectively.
Hereinafter, the anisotropy parameter K = Jz − J⊥ denotes a difference between the exchange integrals.
Our calculation of energetics of the topological textures is based on the continuum approximation. For the bulk

energy per stripe we find

E =

2π/q
∫

0

dx

∞
∫

−∞

dy ω =

2π/q
∫

0

dx

∞
∫

−∞

dy
{

J⊥S
2
[(

−4 + q2
)

sin θ1 sin θ2 + cos θ1 cos θ2 (∇θ1∇θ2)
]

+ JzS [4 cos θ1 cos θ2 − sin θ1 sin θ2 (∇θ1∇θ2)]− hS (cos θ1 + cos θ2)} .

The soliton energy must be measured from the energy E0 =
2π/q
∫

0

dx
∞
∫

−∞

dy ω0 of a background spin configuration

corresponding to an arrangement at outskirts of the stripe. Because of a twist in ϕ1,2 angles the background spin
order may differ essentially from the ground state of the remaining system. The background energy density is given
by

ω0 = J⊥S
2
(

−4 + q2
)

sin θ10 sin θ20 + 4JzS cos θ10 cos θ20 − hS (cos θ10 + cos θ20) , (6)

where θ10,20 are the constant values θ1,2|y=±∞, respectively.
To evaluate the soliton energy density ω measured from ω0 it is convenient to use Eq.(5)

ω − ω0 = 2J⊥S
2q2 (sin θ1 sin θ2 − sin θ10 sin θ20) + 8J⊥S

2 (cos (θ1 + θ2)− cos (θ10 + θ20))

+8KS2 (cos θ1 cos θ2 − cos θ10 cos θ20) + 2hS (cos θ10 + cos θ20 − cos θ1 − cos θ2) .

In the expressions for the energy we neglect any surface terms. Their appearance is associated with the abrupt θ1,2
behavior at the boundaries between the stripe texture and surrounding Néel-like ground states. A model estimation
of the surface contribution is given in Appendix A.
The stationary stripe textures are determined by the system (10) with the conditions θ1,2|y=±∝ = θ10,20 and

(dθ1,2/dy)|y=±∞ = 0

{

4 sin (θ10 + θ20)− q2 cos θ10 sin θ20 + 4 K
J⊥

cos θ20 sin θ10 −
h

J⊥S sin θ10 = 0

4 sin (θ10 + θ20)− q2 cos θ20 sin θ10 + 4 K
J⊥

cos θ10 sin θ20 −
h

J⊥S sin θ20 = 0
, (7)

where θ10,20 are the boundary configurations. At q = 0 each of the configurations corresponds to a certain ground
state of antiferromagnet at nonzero magnetic field along z axis.
The system (7) results in four types of boundary states. Here we list these classes.
(I) θ10 = 0, θ20 = π (or vice versa). Collinear or antiferromagnetic state with the opposite spins aligned along z

direction.
(II) θ10 = θ20 = θ0, cos θ0 = h/

(

8J⊥S + 4KS − J⊥Sq
2
)

. Spin-flop state with the canted spins. The staggered
magnetization is in the plane (basal plane) perpendicular to a nonzero value of the total magnetization along z axis.
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(III) θ10 = 0, θ20 = 0 (or π). Spin-flip state with the sublattice spins directed along z axis.
(IV) θ10 6= θ20. A class of instanton solutions with the relationship

θ10 = 2 tan−1

[

cot

(

θ20
2

)

J⊥S
(

4− q2
)

+ 4JzS − h

J⊥S (4− q2) + 4JzS + h

]

(8)

and the restriction to the q parameter

q2 = 4±

√

16(Jz/J⊥)2 − (h/J⊥S)
2
.

Depending on the value of the magnetic field different homogeneous states outside of the stripe texture can be
realized. We mention two characteristic fields that may be obtained at q = 0 from Eq. (6). At zero field in easy-axis

regime (K > 0) and in a magnetic field h < hc1 = 4S
√

J2
z − J2

⊥ the uniform antiferromagnetic state has the lowest
energy. At the field hc1 the antiferromagnetic vector ”flops” down onto the basal plane. In the region hc1 < h < hc2

the total magnetization increases with increasing field and finally at the ”exchange” field hc2 = 4S(J⊥ + Jz) the
spin-flop state continuously transforms into the saturated spin-flip state with a maximal total magnetization and zero
staggered magnetization.
An asymptotic of Eq. (10) at y → ±∞ allows to build a phase diagram of the stripe textures. It depends on

the parameters (J⊥,K, h) which span a three-dimensional phase space for the solutions. Before giving the detailed
analysis, let us point out general features of possible spin textures in the system (see also Appendix B). In the
case of fixed field, the phase diagram in the plane (q2,K/J⊥) includes regions with different textures separated by
”hypersurfaces” (Fig.1).
In the small field limit h < hc1 energetically unfavorable spin-flip textures are supported over a wide range of twist

parameter q and couplings K/J⊥. The line with the parametric equation

q2 = 4−

√

16 (1 +K/J⊥)
2
− (h/J⊥S)

2
(9)

limits from below the region of collinear antiferromagnetic solitons. As one can see the both textures can coexist in a
vast area. There are also three nonconnected regions of spin-flop excitations. The small q region is of special interest
in view of continuum approximation validity and possible applications of the theory to real systems. The instanton
like solutions with θ10 6= θ20 realize at the critical line (9) dividing the spin-flop textures of small q and the collinear
antiferromagnetic excitations.
By inspecting of the phase diagram in long-wave sector q → 0 one may find three distinct values of coupling

constants:

• K/J⊥ > −1 +
√

1 + (h/4J⊥S)2 (easy-axis exchange) corresponds to excitations with a collinear arrangement
at the boundaries y → ±∞, i.e. spin-flip and collinear antiferromagnetic excitations;

• −3/2 + 1/2
√

1 + (h/4J⊥S) < K/J⊥ < −1 +
√

1 + (h/4J⊥S)2 (easy-plane exchange, predominantly) corre-
sponds to spin-flop excitations only;

• −1 < K/J⊥ < −3/2+1/2
√

1 + (h/4J⊥S). None of the above stripe textures realize at small q, just short-range
excitations with essentially nonzero q values are possible here.

A. Collinear antiferromagnetic texture

The numerical integration of Eq.(10) obtained by shooting method with the aid of linear approximation near zero
point (y = 0) θ1 ≈ c1y and θ2 ≈ π− c2y (see also Appendix C) yields the set of solutions θ1,2(y) that may be classified
as a pair of kinks (−π, π) and (2π, 0). These solutions have a range 2π over y axis.
The in-plane magnetic arrangements of both sublattices are presented in Figs.2 (a,b). We note that the line

y = 0 may divide the regions with the same or opposite in-plane spin directions along y axis. We present here
the first case when one may use solutions θ1,2 in the unphysical region [dotted lines in Fig 2(e)] together with the
change ϕi → ϕi + π. This observation is based upon the trivial relations sin (π − δ) cosϕ1 = sin (π + δ) cos (ϕ1 + π),
sin (π − δ) sinϕ1 = sin (π + δ) sin (ϕ1 + π), and cos (π − δ) = cos (π + δ).
At given x coordinate the staggered magnetization vector does not incline from a fixed angle with y axis while the

component ~M⊥ of total magnetization changes its direction into opposite twice. The profile Lz(y) [Fig.2(f)] exhibits
a Skyrmion-like behavior Lz|y=0 = −1 and Lz|y=±∞ = 1. The regions with a nonzero component Mz occur as two
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symmetrical narrow bands around the line y = 0. One can understand this considering evolution of the relative
spin orientation [Fig.2(g)]. The state with a pure antiparallel orientation is broken by an applied field. The unique
coexistence of weak ferromagnetism and chiral modulations in these solitons enables the occurrence of short-range
incommensurate structures with weak ferromagnetic moments.
This stripe texture is similar to Anderson-Toulouse coreless vortex texture in superfluid 3He−A. Indeed, by moving

in the real space along the y axis one maps the line into the path in the AFM order space which has the topology of
projective plane RP 2, the two-dimensional sphere S2 with identical diametrically opposite points on the surface. A
path from y = −∞ to the center y = 0 is equivalent to the path between the two identified poles on the sphere and
topologically nontrivial, but a second path from the center to the y = +∞ returns the AFM vector to the starting
point and the resultant is equivalent topologically to no AFM vector rotation at all. In other words, the Pontryagin
topological index

Q =
1

8π

2π/q
∫

0

dx

+∞
∫

−∞

dy εµν ~L ·
(

∂µ~L
)

×
(

∂ν~L
)

= 0.

For small fields h < hc1 or, equivalently, for couplings K/J⊥ greater some critical value corresponding to hc1 the
soliton bulk energy E(q) has a minimum at small q. At this point the energy gap between the collinear Néel-like ground
state and the soliton has a minimal value Emin. The gap value scales linearly with q that resembles a dependence on
wave vector of ordinary spin-wave Goldstone mode.
A phase transition outside of the stripe between the collinear antiferromagnetic and the canted spin-flop ground

states modifies the q dependence of the soliton bulk energy in a drastic way (see Fig. 3). When a decreasing of exchange
couplingK/J⊥ reaches a certain treshold of easy-axis regime at given applied field or, equivalently, at h > hc1 for a fixed

K/J⊥ the energy decreases gradually with a decreasing q. In the lowest point q0 = 4−

√

16 (1 +K/J⊥)
2
− (h/J⊥S)

2

it equals zero. Nevertheless, the excitations occur to be gapped. The point is that we define a soliton energy with
regards to the energy of stripe arrangement at y = ±∞, i.e. collinear Neel order in this case. However, it is no longer
a ground state of the system.

B. Spin-flop texture

In this subsection we consider the spin-flop textures. In order to get θ1,2(y) numerically we use the quadratic
approximation in the vicinity of zero point θ1 ≈ θ0 + c1y

2 and θ2 ≈ θ0 − c2y
2. Obtained solutions have the form

of kinks (−θ0, 2π − θ0) and (2π − θ0,−θ0) of range 2π [Fig.4(e)]. In order to keep the same directions of in-plane
sublattice magnetizations in the vicinity of the line y = 0 it is convenient to use unphysical values of θ1,2(y) presented
by dotted lines in Fig 4(e). The movement into the unphysical region must be simultaneous with the rotation of ϕ1,2

by π.

At a given x coordinate in-plane projections of staggered magnetization ~L⊥ point fixedly into one direction at

any y coordinate while ~M⊥ changes its direction at the line y = 0 [Figs.4(c-d)]. An evolution of the relative spin
arrangement is depicted in Fig.4(g). The staggered magnetization of the initial configuration (y = −∞) lies in the

basal plane with a total magnetization ~M parallel to z axis. A path from y = −∞ to the center y = 0 is accompanied
by a rotation of the sublattice spins. At first, the spins align along z axis then the initial configuration restores in the
center and further the rotation runs in reverse order. This explains the oscillating behavior of Lz component and Mz

profile which is entirely opposite to the case of collinear antiferromagnetic texture [Fig.4(f)].

To attain an analogy with vortex states in superfluid 3He−A phase we note a similarity between ~L(y) dependence
and radial behavior of order parameter in MH vortex in liquid helium. However, the spin-flop texture has a more
complex core structure where a canted spin arrangement repeats in the center.
The q dependences of the bulk energy per stripe are presented in Fig.5. The energy is measured from the background

value which is a twisted spin-flop phase with the period q. The energy turns into zero at the line dividing the regions
of spin-flop and collinear antiferromagnetic excitations in the phase diagram.

C. Spin-flip texture

In this subsection we discuss properties of spin-flip textures. To obtain the corresponding solutions of Eq.(10)
one have to use the linear approximations θ1 ≈ π + c1y and θ2 ≈ π − c2y near y = 0. The θ1,2(y) profiles may be
classified as the (0, 2π) and (2π, 0) kinks. The projections of the sublattice magnetizations onto the plane are shown
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in Figs.6(a-b). Contrary to previous cases, the total magnetization ~M becomes more essential in comparison with

the staggered magnetization ~L. Both in-plane arrangements of sublattice spins and the component ~L⊥ of staggered

magnetization have the same form as those for the collinear antiferromagnetic excitations [Fig.6(c)]. However, the ~M⊥

and Lz components do not appear at all. The Mz(y) dependence exhibits a Skyrmion-like behavior: Mz|y=0 = −1
and Mz|y=±∞ = 1 [Fig.6(d)]. These features are easily explained by a symmetrical deviation of the sublattice
magnetizations from parallel arrangement [Fig.6e]. At last, we note that for small applied fields ( h < hc1) an
appearance of the spin-flop texture leads to a great loss in energy of the system.

D. Instanton like textures

These solutions are similar to instanton-like excitations with a point singularity for systems with an axial
symmetry15. Indeed, one of the variables, for example θ20, is determined according to Eq.(8) by another variable θ10
which can be taken arbitrarily in the range (0, π). These solitons may exist only at line (9) and require fulfillment of
condition h ≤ 4JzS. An instanton nature of these excitations lays in the fact that they provide a gradual transition
from collinear antiferromagnetic stripe textures, (−π, π) and (2π, 0) kinks, to the spin-flop excitations, (−θ0, 2π− θ0)
and (2π−θ0,−θ0) kinks. When (−π, π) kink shifts upward by an angle π−θ0 another (2π, 0) kink displaces downward
by an angle θ0 until the spin-flop texture recovers.

III. CONCLUSION

Let us discuss briefly a possible application of the solutions found to real systems. The physics of the intermediate
doping regime of cuprate materials, spin glass regime, is the hotly debated subject nowadays. The neutron scattering
data on La2−xSrxCuO4 have revealed incommensurate correlations in this compound. The experiments have shown
that the correlation lengths in the SG regime (0.02 < x < 0.05) are extremely short and of the same as the periodicity
of the IC modulations. In addition, there are experimental observation of macroscopic in-plane a − b asymmetry in
transport and magnetic properties.16

In early theory, Shraiman and Siggia predicted a forming of static spiral spin correlations with a pitch proportional
to the hole density but inside the superconducting phase17. For the insulating state, along with the picture of well-
ordered stripes, assuming an existence of a charge order,18 a different explanation of the two IC peaks in the SG
phase has been proposed in the dipole model.19,20 According to the model the IC signals may arise from the formation
of a spiral magnetic order which breaks O(3)/O(2) symmetry of collinear AFM phase without invoking any kind
of charge order.21 In the dipole model the randomly distributed holes act as frustration centers for the underlying
antiferromagnetic background, generating dipole moment. A fraction of these dipoles may order ferromagnetically,
while the others may remain disordered. To explain observable short range incommensurate correlations it has been
considered a phenomenological theory of stabilization of incommensurate spiral configuration with nonzero average
twist of the AFM order and simultaneous alignment of the dipoles. In the perturbative RG analysis the dipole disorder
leads to a simple renormalization of the spin stiffness which in its turn leads to a finite correlation length already at
T = 0. However, a strongly disordered regime, associated with a SG, is only found once topological defects of spin
textures are accounted for. In this approach an attention has been paid to the topological defects analogous to that
of the XY model with the difference that these topological defects have their origin in the chiral degeneracy of the
spiral (Z2 defects).22

In view of these investigations, it is not be excluded that the collinear antiferromagnetic stripe texture may be
relevant to physics of SG phase in cuprates. These nonlinear excitations are essentially anisotropic, they have a scale
along the selected direction coinciding with a pitch of spiral, they may possess an Izing-like anisotropy, they are
stationary and has a bulk energy smaller then topological structures with a core. A loss in the surface energy provides
a natural mechanism of a stripe attraction and leads to an extension of region with the topological solitons. Due to
the specific structure (nonzero macroscopic ferromagnetic moment) one can admit that an interaction between the
spin texture and the external dipole subsystem involves an additional dipole-dipole mechanism of energy decreasing,
which is of importance for undesirable surface energy. In the dipole model this solves some principal difficulties with
a simultaneous dipole ordering and a fast correlation length growing in the spin spiral.
The collinear antiferromagnetic stripe texture has two boundary point singularities at x = 0 and x = 2π/q where

the staggered magnetization changes its direction. We call these points the surface Z2 defects. Then, one may say, the
stripe texture occurs due to their presence. As for ordinary Ising-like domain walls, an origin of the defects is caused
by nontriviality of the topological group π0(RP 2) = Z2 of the space RP 2 of AFM order parameter. We emphasize
here a topological difference between these Z2 defects and those that have been used in the dipole model.21 The latter
describe a change of spiral chirality, clockwise or counter-clockwise twist.
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Finally, we discuss a dynamical stabilization of the stripe excitations. Let us assume that stripe texture moves with
a constant velocity v along x axis. We take into account the moving via the parametrization ϕ1(x) = q(x − vt) and
ϕ2(x) = q(x− vt) + π. One may see that Eq.(2) can be written as

0 = − (h− h̄qv) sin θ2 + J⊥S

{

cos θ2 sin θ1

[

4−

(

dθ1
dy

)2

− q2

]

+ cos θ2 cos θ1
d2θ1
dy2

}

+ JzS

{

4 sin θ2 cos θ1 − sin θ2 sin θ1
d2θ1
dy2

− sin θ2 cos θ1

(

dθ1
dy

)2
}

, (1 ⇀↽ 2). (10)

i.e., the moving is equivalent to an inclusion of an effective ”magnetic field” −h̄qv breaking the hidden chiral symmetry.
Naturally, all results found above may be extended for the case of mobile textures that may occur at zero external
magnetic field (h = 0) due to the ”self-focus” effect. The conservation of macroscopic momentum of magnetization
Px provides a mechanism of dynamical stability due to the relation

δE = h̄Sqv

∫

dxdy (sin θ1δθ1 + sin θ2δθ2) = vδPx (11)

between variations of the energy δE and the momentum δPx (see Appendix D).
Now, we consider briefly some experiments on doped cuprates in the spin-glass regime. It is well known that the

magnetism and the transport properties in the doped La2CuO4 system are intimately related24. Measurements of
electrical resistivity in untwinned single crystals La2−xSrxCuO4 (x = 0.02 − 0.04) give evidence that the doped
electrons self-organize into a macroscopically anisotropic state: the transport is found to be easier along one of
the plane direction, demonstrating that the stripes are intrinsically conducting in cuprates.16 The resulting in-plane
anisotropy grows rapidly with decreasing temperature below 150K and cannot be explained if one assumes that the
anisotropy is due to simply orthorombicity of the crystal. A mechanism responsible for the observed anisotropy
behavior is a remaining puzzle problem.
Extensive elastic neutron scattering studies have been performed on lightly doped La2−xSrxCuO4 (0 ≤ x ≤ 0.055)

in order to elucidate the static magnetic properties in the spin glass regime. The studies reveal that the static spin
correlations in the spin-glass phase show a one-dimensional spin modulation. In the lightly doped regime 0 ≤ x ≤ 0.02,
it is well established that a three-dimensional (3D) antiferromagnetic long-range ordered phase and a spin-glass phase
coexist at low temperatures. Matsuda et al. suggested that in this regime electronic phase separation of the doped
holes occurs so that some regions with hole concentration ch ∼ x exhibit incommensurate correlations while the rest
with ch ∼ 0 shows 3D AF order25. Matsuda et al. also found that the magnetic correlations change from being
incommensurate to commensurate at T ∼ 70K13.
We suggest the following qualitative physical picture modeling a situation in the lightly doped La2CuO4 system.

Although the picture may not be the only possible explanation for the specific behavior of the cuprates, the following
discussion shows that it does not contradict the experimental facts mentioned above.
Let us assume that to gain in a kinetic energy the doped charge may deforms homogeneous Néel ground state

into the excited collinear antiferromagnetic stripe texture. The doped hole can be trapped in the created stripe
forming a charged soliton akin to charged excitations in quantum Hall Ising ferromagnets. As a hole travels it favors
to pass across the stripe along regions with nonzero ferromagnetic moments. During the process, the doped hole
may deforms adiabatically homogeneous Neel ground state around that would be a source of a stripe movement.
An effective ”magnetic field” −h̄qv originating from the nonzero stripe velocity is responsible for an appearance of
noncompensated ferromagnetic moments inside the stripe. On the other hand, the movement provides a mechanism of
dynamical stabilization of the new spin texture [Eq.(11)]. The latter is directly analogous to the scheme of ”rotating
bucket” used in experiments with liquid helium.26,27 Under this rotation, the formation of vortices is, in principle,
a consequence of thermal equilibrium. Above a critical rotation frequency Ωc, the term −ΩLz in the Hamiltonian
H̃ = H − ΩLz, where H is the Hamiltonian in the absence of rotation, can favor the creation of a state where the
condensate wave function has an angular momentum along z axis and therefore contains a vortex filament.28 The stripe
spin texture moving with the velocity v provides a minimum of the functional H̃ = H − vPx. Due to this reason, the

collinear AFM texture acts as a steady state supporting conserving momentum ~P . Then, it is natural to assume that
the IC spin modulation observed in elastic neutron scattering arises from the static correlations of the steady stripe
texture. On the contrary, only elementary excitations, i.e. usual spin waves, carry nonzero momentum in the case of
uniform Néel-like ground state and contribute to inelastic magnetic spectra in neutron scattering measurements.
Ando et al. found that resistivity anisotropy ρb/ρa in La2−xSrxCuO4 (0.02 ≤ x ≤ 0.04) falls rapidly with increasing

temperature in the range 50 ∼ 100K.16 We may conclude that such a behavior strongly violates the dynamical
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stabilization of the stripe texture due to decreasing of an effective stripe velocity v. Without the moving, the stripe
texture is no longer a steady state and after the movement is removed, one expects that the spins will eventually relax
to nontopological Néel-like order. These arguments may explain the results discovered by Matsuda et al.13, namely,
why the magnetic correlations change from being incommensurate to commensurate at ∼ 70K in La2−xSrxCuO4

(0.02 ≤ x ≤ 0.055) .
A detailed quantative discussion of these effects is an important open question and way beyond the scope of the

present paper. We hope that this discussion will stimulate some further studies of the stripelike nonlinear textures
and would be interesting for experimental researches.
In summary, an analysis of the stripe-like coreless textures in 2D antiferromagnet is presented. The ”kink” classifica-

tion is given for these nonlinear excitations. The topological mechanism explaining an appearance of incommensurate
quasi-one-dimensional structures in a 2D antiferromagnet is suggested.
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APPENDIX A: SURFACE ENERGY

Let us consider one stripe in the AFM environment. An additional surface energy will be finite when a background
state at the stripe outskirts (y = ±∞) coincides with the uniform state of the remaining AFM matrix. By assuming
the ratio ϕ2 −ϕ1 = π is kept over the plane, i.e., inside and outside of the stripe, one obtain the linear density of the
surface energy

J⊥S2mS1s = J⊥S
2 [sin θ1 sin θ20 cos (ϕ20 − ϕ1) + cos θ1 cos θ20] = J⊥S

2 cos (θ20 + θ1) ,

where the border spins S2m of the external AFM matrix interact with the stripe border spins S1s. For simplicity,
we take an isotropic case. If were the border line is being inside the stripe completely it would contribute the value
J⊥S

2 cos (θ2 + θ1) into the energy. This expression accounts implicitly a similar spin arrangement around the line.
Hence, a contribution into the full energy, that the surface brings in, has the form

Es = 2J⊥S
2

∞
∫

−∞

dy [cos (θ20 + θ1)− cos (θ2 + θ1)] ,

where Es is twice as much of the result for one border. The full energy associated with the stripe is the sum of
the bulk and the surface energies. Now, we estimate Es for the collinear antiferromagnetic solitons with θ20 = π by
assuming a step-like approximation, θ1(y) = π at |y| ≤ λ−1 and θ1(y) = 0 at |y| > λ−1, that yields immediately the
rude estimation Es = 16πJ⊥S

2/λ.

APPENDIX B: PHASE DIAGRAM

In order to get an asymptotic expansion at large distances we suppose in Eq.(10) θ1 = θ10 + δ1 and θ2 = θ20 + δ2,
where δ1 = A exp(−λy) and δ1 = B exp(−λy) are small additions to the boundary values θ10, θ20. The linearization
of the system gives

δ1
[

−(4− q2) sin θ10 sin θ20 + 4Jz/J⊥ cos θ10 cos θ20 − h/J⊥S cos θ10
]

+δ2
[

(4− q2) cos θ10 cos θ20 − 4Jz/J⊥ sin θ10 sin θ20
]

+ [cos θ10 cos θ20 − Jz/J⊥ sin θ10 sin θ20]
d2δ2
dy2

= 0,

δ1
[

(4− q2) cos θ10 cos θ20 − 4Jz/J⊥ sin θ10 sin θ20
]

+δ2
[

−(4− q2) sin θ10 sin θ20 + 4Jz/J⊥ cos θ10 cos θ20 − h/J⊥S cos θ20
]

+ [cos θ10 cos θ20 − Jz/J⊥ sin θ10 sin θ20]
d2δ1
dy2

= 0.

The requirement of exponential decay at y → ∞ yields a parametric region where excitations with given θ10,20 exist.
The λ coefficient may be found from

[

(4 + λ2 − q2) cos θ10 cos θ20 − (4 + λ2)Jz/J⊥ sin θ10 sin θ20
]2

=

[

(q2 − 4) sin θ10 sin θ20 + 4Jz/J⊥ cos θ10 cos θ20 − h/J⊥S cos θ10
]

×
[

(q2 − 4) sin θ10 sin θ20 + 4Jz/J⊥ cos θ10 cos θ20 − h/J⊥S cos θ20
]

.

The relation between A and B is given by

[

−(4− q2) sin θ10 sin θ20 + 4Jz/J⊥ cos θ10 cos θ20 − h/J⊥S cos θ10
]

A+

[

(4 + λ2 − q2) cos θ10 cos θ20 − (4 + λ2)Jz/J⊥ sin θ10 sin θ20
]

B = 0.
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One have to choose between two variants of λ2 those that provides a different sign of A and B amplitudes.
For the collinear antiferromagnetic texture

λ2 = q2 − 4 + 4

√

(1 +K/J⊥)
2
− (h/4J⊥S)

2
.

The corresponding region with λ2 ≥ 0 lies above the hyperbola

(1 +K/J⊥)
2

(h/4J⊥S)
2

−

(

q2 − 4
)2

(h/J⊥S)
2
= 1

in the phase diagram. The domain is dashed horizontally in Fig.1.
The flop-type excitations (θ10 = θ20 = θ0) with

λ2 =
q2 + 4K/J⊥ − (h/J⊥S) cos θ0

cos2 θ0 − (1 +K/J⊥) sin
2 θ0

are supported by three regions determined by the conditions λ2 ≥ 0 and |cos θ0| ≤ 1. The relevant domain is shown in
the phase diagram by the grey filling. The region of the spin-flip textures with λ2 = q2 + 4K/J⊥ − h/ (J⊥S) lies over
the line λ2 = 0. It should be noted here an existence of regions where solitons of several types exist simultaneously.

APPENDIX C: APPROXIMATION OF STARTING VALUES.

In a numerical calculation by shooting method one have to use suitable series expansions for θ1,2 variables in the
vicinity of the line y = 0

θi ≈ θi0 + ci1y + ci2y
2 + ci3y

3 (i = 1, 2).

By substituting these expressions into the system (10) one may obtain relations between the different coefficients and
determine which of them equal to zero. This procedure gives the following result for the AFM texture (θ10 = 0,
θ20 = π)

−2J⊥Sc22 +
{

−c11h+ JzS(−4c11 + c11c
2
21) + J⊥S

[

−6c23 − c21(4− c221 − q2)
]}

y +O(y2) = 0,

−2J⊥Sc12 +
{

c21h+ JzS(−4c21 + c21c
2
11) + J⊥S

[

−6c13 − c11(4− c211 − q2)
]}

y +O(y2) = 0

that provides c12 = c22 = 0 and we may restrict by the linear approximation θi ≈ θi0 + ci1y in a numerical study.
The same reasonings are suitable for the spin-flip excitations (θ10 = θ20 = π) that yields θi ≈ π + ci1y. However, for
the spin-flop excitations (θ10 = θ20 = θ0) we obtain the relations

c2i1 = 4
J⊥ − Jz
J⊥ + Jz

cot (2θ0) ci2.

At given second coefficient ci2 the first coefficient ci1 is negligible for the small exchange anisotropy K = J⊥ − Jz and
far from the values θ0 = 0 and π. This observation allows one to use a quadratic approximation θi ≈ θ0 + ci1y

2 for
numerical studies.

APPENDIX D: THE MOMENTUM OF MAGNETIZATION IN THE STRIPE.

The Lagrangian density of the system

L =

2
∑

i=1

h̄S (cos θi − 1)
∂ϕi

∂t
− J⊥S

2 [4 sin θ1 sin θ2 cos (ϕ1 − ϕ2) + sin θ1 cos θ2 sin (ϕ1 − ϕ2) (∇θ2∇ϕ1)

− sin θ1 sin θ2 cos (ϕ1 − ϕ2) (∇ϕ1∇ϕ2) + cos θ1 sin θ2 sin (ϕ2 − ϕ1) (∇θ1∇ϕ2)
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− cos θ1 cos θ2 cos (ϕ2 − ϕ1) (∇θ1∇θ2)]

−JzS
2 [4 cos θ1 cos θ2 − sin θ1 sin θ2 (∇θ1∇θ2)] + hS (cos θ1 + cos θ2)

allows us to get a momentum

Pk = h̄S

2
∑

i=1

(1− cos θi)
∂ϕi

∂xk
, (k = x, y)

by using the Noether operator

N t = −

2
∑

i=1

θik
∂

∂θit
−

2
∑

i=1

ϕik
∂

∂ϕit

on the density L.23

The full macroscopic momentum for the stripe texture with ϕik = qδkx

Pk = δkx h̄Sq

2
∑

i=1

(1− cos θi) .

One has to measure the momentum from the macroscopic momentum P 0
k of a background order realizing at the stripe

outskirts. The background momentum of collinear antiferromagnetic texture is P 0
k = 2h̄Sqδkx that results in the

relative momentum

△Pk = −h̄Sq (cos θ1 + cos θ2) δkx

as associated with the stripe.
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FIG. 1: The phase diagram of the stripe textures. Magnetic field h/(4J⊥S) = 0.1.

FIG. 2: Collinear antiferromagnetic stripe texture: in-plane arrangement of sublattice magnetizations (a,b), total magnetization
(c) and staggered magnnetization (d). The θ1,2(y) profiles (e), Lz and Mz components (f). An evolution of relative spin
arrangement along the y axis (g).

FIG. 4: Spin-flop stripe texture: in-plane arrangement of sublattice magnetizations (a,b), total magnetization (c) and staggered
magnetization (d). The θ1,2(y) profiles (e) and the components Lz and Mz (f). An evolution of relative spin arrangement along
the y axis (g).

FIG. 5: The q-dependence of bulk energy for the spin-flop stripe texture at h/(4J⊥S) = 0.1.

FIG. 6: Spin-flip stripe texture: in-plane arrangement of sublattice magnetizations (a,b), staggered magnetization vector L⊥

(c) and Mz(y) profile (d). A relative spin arragement along the y axis is shown below (e).

FIG. 3: The q dependence of bulk energy for the collinear antiferromagnetic stripe texture at h/(4J⊥S) = 0.1 (a); the q
dependence of the energy gap Emin (b), numbers in the plot point the K/J⊥ ratio.
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