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We revisit a problem of Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single bond
in cuprates specifying the local spin-orbital contributions to Dzyaloshinsky vector focusing on the
oxygen term. The Dzyaloshinsky vector and respective weak ferromagnetic moment is shown to
be a superposition of comparable and, sometimes, competing local Cu and O contributions. The
intermediate oxygen 17O Knight shift is shown to be an effective tool to inspect the effects of
Dzyaloshinsky-Moriya coupling in an external magnetic field. We predict the effect of strong oxygen
weak antiferromagnetism in edge-shared CuO2 chains due to uncompensated oxygen Dzyaloshinsky
vectors. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly
induced by Dzyaloshinsky-Moriya coupling.

I. INTRODUCTION

Fifthy years ago Borovik-Romanov and Orlova1

have discovered the phenomenon of weak ferromag-
netism which origin was shortly after2 bound up with
exchange-relativistic effect mainly with antisymmetric
exchange coupling. Starting from pioneer papers by
Dzyaloshinsky2 and Moriya3 the Dzyaloshinsky-Moriya
(DM) antisymmetric exchange coupling was extensively
investigated in 60-80ths in connection with weak ferro-
magnetism focusing on hematite α-Fe2O3 and orthofer-
rites RFeO3.

4 The stimulus to a renewed interest to the
subject was given by the cuprate problem, in particu-
lar, by the weak ferromagnetism observed in La2CuO4

5

and many other interesting effects for the DM systems,
in particular, the ”field-induced gap” phenomena.6 At
variance with typical 3D systems such as orthoferrites,
cuprates are characterised by a low-dimensionality, large
diversity of Cu-O-Cu bonds including corner- and edge-
sharing, different ladder configurations, strong quantum
effects for s = 1/2 Cu2+ centers, and a particularly strong
Cu-O covalency resulting in a comparable magnitude of
hole charge/spin densities on copper and oxygen sites.
Several groups (see, e.g., Refs.7,8,9) developed the micro-
scopic model approach by Moriya for different 1D and 2D
cuprates, making use of different perturbation schemes,
different types of low-symmetry crystalline field, differ-
ent approaches to intra-atomic electron-electron repul-
sion. However, despite a rather large number of publica-
tions and hot debates (see, e.g., Ref.10) the problem of
exchange-relativistic effects, that is of antisymmetric ex-
change and related problem of spin anisotropy in cuprates
remains to be open (see, e.g., Refs.11,12 for recent exper-
imental data and discussion). Common shortcomings of
current approaches to DM coupling in 3d oxides concern
a problem of allocation of Dzyaloshinsky vector and re-
spective ”weak” (anti)ferromagnetic moments, and full
neglect of spin-orbital effects for ”nonmagnetic” oxygen
O2− ions, which are usually believed to play only indi-
rect intervening role. From the other hand, the oxygen
17O NMR-NQR studies of weak ferromagnet La2CuO4

13

seem to evidence unconventional local oxygen ”weak-

ferromagnetic” polarization which origin cannot be ex-
plained in frames of current models. All this stimulated
the critical revisit of many old approaches to the spin-
orbital effects in 3d oxides, starting from the choice of
proper perturbation scheme and effective spin Hamilto-
nian model, implied usually only indirect intervening role
played by ”nonmagnetic” oxygen O2− ions.

In this paper we revisit a problem of DM antisymmet-
ric exchange coupling for a single bond in cuprates spec-
ifying the local spin-orbital contributions to Dzyaloshin-
sky vector focusing on the oxygen term. In Sec.II we
present a short overview of the spin-Hamiltonian of a
typical three-center (Cu-O-Cu) two-hole system. Micro-
scopic theory of DM coupling is presented in Sec.III. The
Dzyaloshinsky vector is shown to be a superposition of
comparable and, sometimes, competing local Cu and O
contributions. In Sec.IV we examine a response of DM
coupled Cu1-O-Cu2 bond on an uniform and staggered
external fields, and demonstrate some unusual manifes-
tations of local oxygen contribution to DM coupling. The
intermediate oxygen 17O Knight shift is shown to be an
effective tool to inspect the effects of DM coupling in an
external magnetic field. In Sec.V we revisit a problem of
symmetric spin anisotropy with inclusion of local oxygen
spin-orbital contributions.

FIG. 1: Geometry of the three-center (Cu-O-Cu) two-hole
system with ground Cu 3dx2

−y2 states.
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II. SPIN-HAMILTONIAN

For illustration, below we address a typical for cuprates
the three-center (Cu1-O-Cu2) two-hole system with
tetragonal Cu on-site symmetry and ground Cu 3dx2−y2

states (see Fig. 1) which conventional bilinear spin
Hamiltonian is written in terms of copper spins as fol-
lows

Ĥs(12) = J12(ŝ1 · ŝ2) +D12 · [ŝ1 × ŝ2] + ŝ1
↔
K12 ŝ2 , (1)

where J12 > 0 is an exchange integral, D12 is the

Dzyaloshinsky vector,
↔
K12 is a symmetric second-rank

tensor of the anisotropy constants. In contrast with

J12,
↔
K12, the Dzyaloshinsky vector D12 is antisymmet-

ric with regard to the site permutation: D12 = −D21.

Hereafter we will denote J12 = J,
↔
K12 =

↔
K,D12 = D, re-

spectively. It should be noted that making use of effective
spin Hamiltonian (1) implies a removal of orbital degree
of freedom that calls for a caution with DM coupling as
it changes both a spin multiplicity, and an orbital state.

It is clear that the applicability of such an operator as
Ĥs(12) to describe all the ”oxygen” effects is extremely
limited. Moreover, the question arises in what concerns
the composite structure and spatial distribution of what
that be termed as the Dzyaloshinsky vector density. Usu-
ally this vector is assumed to be located on the bond
connecting spins 1 and 2.

Strictly speaking, spin Hamiltonian Hs(12) can be
viewed as a result of the projection onto the purely ionic
Cu2+1 (3dx2−y2)-O2−(2p6)-Cu2+2 (3dx2−y2) ground state of
the two-hole spin Hamiltonian

Ĥs =
∑

i<j

I(i, j)(ŝ(i) · ŝ(j)) +
∑

i<j

(d(i, j) · [ŝ(i)× ŝ(j)]) +
∑

i<j

ŝ(i)
↔
K(i, j) ŝ(j) , (2)

which implies not only both copper and oxygen hole lo-
cation, but allows to account for purely oxygen two-hole
configurations. Moreover, such a form allows us to neatly
separate both one-center and two-center effects. Two-
hole spin Hamiltonian can be projected onto three-center
states incorporating the Cu-O charge transfer effects.
For a composite two s = 1/2 spins system one should

consider three types of the vector order parameters:

Ŝ = ŝ1 + ŝ2; V̂ = ŝ1 − ŝ2; T̂ = 2[ŝ1 × ŝ2] (3)

with a kinematic constraint:

Ŝ2+V̂2 = 3Î; (Ŝ·V̂) = 0; (T̂·V̂) = 6i; [T̂×V̂] = Ŝ. (4)

In a sense the V̂ operator describes the effect of local
antiferromagnetic order, while T̂ operator may be asso-
ciated with a vector chirality.14 In recent years, phases
with broken vector chirality in frustrated quantum spin
chains have attracted considerable interest. Such phases
are characterized by nonzero long-range correlations of
the vector order parameter 〈T̂〉. Interestingly that a chi-
rally ordered phase can manifest itself as a ”nonmag-
netic” one, with 〈Ŝ〉 = 〈V̂〉 = 0.

Both T̂ and V̂ operators change the spin multiplicity
with matrix elements

〈00|T̂m|1n〉 = −〈1n|T̂m|00〉 = iδmn;

〈00|V̂m|1n〉 = 〈1n|V̂m|00〉 = δmn, (5)

where we made use of Cartesian basis for S = 1. The
eigenstates of the operators V̂n and T̂n with nonzero

eigenvalues ±1 form Néel doublets 1√
2
(|00〉 ± |1n〉) and

DM doublets 1√
2
(|00〉 ± i|1n〉), respectively. The Néel

doublets correspond to classical collinear antiferromag-
netic spin configurations, while the DM doublets corre-
spond to quantum spin configurations which sometimes
are associated with a rectangular 900 spin ordering in the
plane orthogonal to the Dzyaloshinsky vector.
It should be noted that the both above spin Hamil-

tonians can be reduced to within a constant to a spin
operator acting in a total spin space

ĤS =
1

4
J(Ŝ2−V̂2)+

1

2
(D·T̂)+

1

4
Ŝ
↔
K

S

Ŝ− 1

4
V̂

↔
K

V

V̂ . (6)

For simple dipole-like two-ion anisotropy as in Exp. (1)
↔
K

S

=
↔
K

V

=
↔
K, though in general these tensorial pa-

rameters can differ from each other. Making use of the
anticommutator relations

{Ŝi, Ŝj}+ {V̂i, V̂j} = 2δij ; {V̂i, V̂j} = {T̂i, T̂j}, (7)

we conclude that the effective operator of symmetric
anisotropy can be equivalently expressed in terms of sym-
metric products {Ŝi, Ŝj}, {V̂i, V̂j}, or {T̂i, T̂j}.
The most general form of the spin Hamiltonian (6)

does not discriminate against copper or oxygen contri-
bution and can be used to properly account for oxygen

effects. As we will see below the D and
↔
K parameters

allow the correct separation of local copper and oxygen
contributions.
It should be noted that the total spin representation

and overall quantum approach is especially efficient to de-
scribe antisymmetric exchange in Cu-Cu dimer systems
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(see, e.g. Ref.15 and references therein). Classical ap-
proach to s = 1/2 spin-Hamiltonian should be applied
with a caution, particularly for 1D systems.
Before going to microscopic analysis we should note

that the interaction of our three-center system with ex-
ternal spins and/or fields Ĥext is usually addressed by
introducing only two types of effective external fields:
the conventional Zeeman-like uniform field and uncon-
ventional Néel-like staggered field, so that Ĥext reads as
follows

Ĥext = −(hS · Ŝ)− (hV · V̂). (8)

It should be noted that an ideal Néel state is attainable
only in the limit of infinitely large staggered field, there-
fore for a finite staggered field hV ‖ n the ground state
is a superposition of a spin singlet and a Néel state,

Ψ = cosα|00〉+ sinα|1n〉, tan 2α =
2hV

J
,

which composition reflects the role of quantum effects.
For instance, in a Heisenberg spin 1/2 chain with nn ex-
change the maximal value of staggered field hV = J/2
hence the Ψ function strongly differs from that of Néel
state (〈V̂n〉 = sin 2α = 1√

2
), and quantum mechanical av-

erage for a single spin 〈sz〉 ≤ 1
2 sinπ/4 = 1√

2
· 12 ≈ 0.71 · 12

deviates strongly from classical value 1
2 . It should be

noted that for the isolated antiferromagnetically coupled
spin pair the zero-temperature uniform spin susceptibil-
ity turns into zero: χS = 0, while for the staggered spin
susceptibility we obtain χV = 2/J .

III. MICROSCOPIC THEORY OF DM

COUPLING IN CUPRATES

A. Preliminaries

For the microscopic expression for Dzyaloshinsky vec-
tor to derive Moriya3 made use of the Anderson’s formal-
ism of superexchange interaction16 with two main con-
tributions of so called kinetic and potential exchange,
respectively. Then he took into account the spin-orbital
corrections to the effective d-d transfer integral and po-
tential exchange. Such an approach seems to be im-
proper to account for purely oxygen effects. In later pa-
pers (see, e.g. Refs.8,17) the authors made use of the
Moriya scheme to account for spin-orbital corrections to
p-d transfer integral, however, without any analysis of
oxygen contribution. It is worth noting that in both in-
stances the spin-orbital renormalization of a single hole
transfer integral leads immediately to a lot of problems
with correct responsiveness of the on-site Coulomb hole-
hole correlation effects. Anyway the effective DM spin-
Hamiltonian evolves from the high-order perturbation ef-
fects that makes its analysis rather involved and leads to
many misleading conclusions.

At variance with the Moriya approach we start with
the construction of spin-singlet and spin-triplet wave
functions for our three-center two-hole system taking ac-
count of the p-d hopping, on-site hole-hole repulsion, and
crystal field effects for excited configurations {n} (011,
110, 020, 200, 002) with different hole occupation of Cu1,
O, and Cu2 sites, respectively. The p-d hopping for Cu-O
bond implies a conventional Hamiltonian

Ĥpd =
∑

αβ

tpαdβ p̂
†
αd̂β + h.c. , (9)

where p̂†α creates a hole in the α state on the oxygen

site, while d̂β annihilates a hole in the β state on the
copper site; tpαdβ is a pd-transfer integral (tpxdx2

−y2
=

√
3
2 tpzdz2

= tpdσ > 0, tpydxy
= tpdπ > 0).

For basic 101 configuration with two dx2−y2 holes lo-
calized on its parent sites we arrive at a perturbed wave
function as follows

Ψ101;SM = Φ101;SM +
∑

{n}Γ
c{n}(

2S+1Γ)Φ{n};ΓSM , (10)

where the summation runs both on different config-
urations and different orbital Γ states. It is worth
noting that the probability amplitudes c{011}, c{110} ∝
tpd, c{200}, c{020}, c{002} ∝ t2pd. To account for orbital ef-
fects for Cu1,2 3d holes and the covalency induced mixing
of different orbital states for 101 configuration we should
introduce an effective exchange Hamiltonian

Ĥex =
1

2

∑

αβγδµµ′

J(αβγδ)d̂†1αµd̂
†
2βµ′ d̂2γµd̂1δµ′ +h.c. (11)

Here d̂†1αµ creates a hole in the αth 3d orbital on Cu1 site

with spin projection µ. Exchange Hamiltonian (11) in-
volves both spinless and spin-dependent terms, however,
it preserves the spin multiplicity of Cu1-O-Cu2 system.
Exchange parameters J(αβγδ) are of the order of t4pd.
Then we introduce a standard effective spin Hamil-

tonian operating in a fourfold spin-degenerated space
of basic 101 configuration with two dx2−y2 holes and
can straightforwardly calculate the singlet-triplet sep-
aration to find effective exchange integral J12 =
J(dx2−y2dx2−y2dx2−y2dx2−y2), calculate the singlet-
triplet mixing due to three local spin-orbital terms,
Vso(Cu1), Vso(O), Vso(Cu2), respectively, to find the
local contributions to Dzyaloshinsky vector:

D = D(1) +D(0) +D(2). (12)

Local spin-orbital coupling is taken as follows:

Vso =
∑

i

ξnl(li · si) =
ξnl
2
[(̂l1 + l̂2) · Ŝ+ (̂l1 − l̂2) · V̂]

= Λ̂S · Ŝ+ Λ̂V · V̂ (13)
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with a single particle constant ξnl > 0 for electrons
and ξnl < 0 for holes. We make use of orbital
matrix elements: for Cu 3d holes 〈dx2−y2 |lx|dyz〉 =
〈dx2−y2 |ly|dxz〉 = i, 〈dx2−y2 |lz|dxy〉 = −2i, 〈i|lj|k〉 =
−iǫijk with Cu 3dyz=|1〉, 3dxz=|2〉 3dxy=|3〉, and for O
2p holes 〈pi|lj |pk〉 = iǫijk. Free cuprous Cu2+ ion is de-
scribed by a large spin-orbital coupling with |ξ3d| ∼= 0.1
eV (see, e.g., Ref.18), though its value may be signifi-
cantly reduced in oxides. Information regarding the ξ2p
value for the oxygen O2− ion in oxides is scant if any.
Usually one considers the spin-orbital coupling on the
oxygen to be much smaller than that on the copper,
and therefore may be neglected.19,20 However, even for
a free oxygen atom the electron spin orbital coupling
turns out to reach of appreciable magnitude: ξ2p ∼= 0.02
eV,21 while for the oxygen O2− ion in oxides one ex-
pects the visible enhancement of spin-orbital coupling
due to a larger compactness of 2p wave function.22 If to
account for ξnl ∝ 〈r−3〉nl and compare these quantities
for the copper (〈r−3〉3d ≈ 6 − 8 a.u.22) and the oxygen
(〈r−3〉2p ≈ 4 a.u.13,22) we arrive at a maximum factor
two difference in ξ3d and ξ2p.
Hereafter we assume a tetragonal symmetry at Cu sites

with local coordinate systems as shown in Fig.1. The
global xyz coordinate system is chosen so as Cu1-O-Cu2
plane coincides with xy-plane, x-axis is directed along

Cu1-Cu2 bond (see Fig.1). In such a case the basic unit
vectors x,y, z can be written in local systems of Cu1 and
Cu2 sites as follows:

x = (sin
θ

2
,− cos

θ

2
cos δ1,− cos

θ

2
sin δ1);

y = (cos
θ

2
, sin

θ

2
cos δ1, sin

θ

2
sin δ1); z = (0, sin δ1, cos δ1)

for Cu1, while for Cu2 site θ, δ1 should be replaced by
−θ, δ2, respectively.

The exchange integral can be written as follows:

J =
∑

{n},Γ
[|c{n}(3Γ)|2 E3Γ({n})− |c{n}(1Γ)|2 E1Γ({n})].

(14)

As concerns the DM interaction we deal with two com-
peting contributions. The first is derived as a first order
contribution which does not take account of Cu1,2 3d-
orbital fluctuations for a ground state 101 configuration.
Projecting the spin-orbital coupling (13) onto states (10)

we see that Λ̂V · V̂ term is equivalent to purely spin DM
coupling with local contributions to Dzyaloshinsky vector

D
(m)
i = −2i〈00|Vso(m)|1i〉 = −2i

∑

{n}Γ1,Γ2

c∗{n}(
1Γ1)c{n}(

3Γ2)〈Φ{n};Γ100|ΛV
i |Φ{n};Γ21i〉 (15)

In all the instances the nonzero contribution to the local
Dzyaloshinsky vector is determined solely by the spin-
orbital singlet-triplet mixing for the on-site 200, 020,
002 and two-site 110, 011 two-hole configurations, re-
spectively. For on-site two-hole configurations we have
D(200) = D(1), D(020) = D(0), D(002) = D(2).

The second contribution, associated with Cu1,2 3d-
orbital fluctuations within a ground state 101 configura-
tion, is more familiar one and evolves from a second order
combined effect of Cu1,2 spin-orbital Vso(Cu1,2) and ef-
fective orbitally anisotropic Cu1-Cu2 exchange coupling

D
(m)
i = −2i〈00|Vso(m)|1i〉 = −2i

∑

Γ

〈{101}; Γs00|Λ̂V
i |{101}; Γ1i〉〈{101}; Γ1i|Ĥex|{101}; Γt1i〉
E3Γt

({101})− E3Γ({101})

−2i
∑

Γ

〈{101}; Γs00|Ĥex|{101}; Γ00〉〈{101}; Γ00|Λ̂V
i |{101}; Γt1i〉

E1Γs
({101})− E1Γ({101})

(16)

It should be noted that at variance with the origi-
nal Moriya approach3 both spinless and spin-dependent
parts of exchange Hamiltonian contribute additively and
comparably to DM coupling, if one takes account of the
same magnitude and opposite sign of the singlet-singlet

and triplet-triplet exchange matrix elements on the one
hand and orbital antisymmetry of spin-orbital matrix el-
ements on the other hand.

It is easy to see that the contributions of 002 and 200
configurations to Dzyaloshinsky vector bear a similarity
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to the respective second type (∝ VsoHex) contributions,
however, in the former we deal with spin-orbital coupling
for two-hole Cu1,2 configurations, while in the latter with
that of one-hole Cu1,2 configurations.

B. Copper contribution

First we address a relatively simple instance of strong
rhombic crystal field for intermediate oxygen ion with the
crystal field axes oriented along global coordinate x, y, z-
axes, respectively. It is worth noting that in such a case
the oxygen O 2pz orbital does not play an active role
both in symmetric and antisymmetric (DM) exchange

interaction as well as Cu 3dyz orbital appears to be in-
active in DM interaction due to a zero overlap/transfer
with oxygen O 2p orbitals.

For illustration, hereafter we address the first contribu-
tion (15) of two-hole on-site 200, 002 d2x2−y2 , dx2−y2dxy,
and dx2−y2dxz configurations, which do covalently mix
with ground state configuration. Calculating the singlet-
triplet mixing matrix elements in the global coordi-
nate system we find all the components of the local
Dzyaloshinsky vectors. The Cu1 contribution turns out
to be nonzero only for 200 configuration, and may be
written as a sum of several terms. First we present the
contribution of singlet (d2x2−y2)1A1g state:

D(1)
x = −2i〈00|Vso(Cu1)|1x〉 =

√
2ξ3d c200(

1A1g)[c200(
3Eg) cos δ1 − 2c200(

3A2g) sin δ1] cos
θ

2
;

D(1)
y = −2i〈00|Vso(Cu1)|1y〉 = −

√
2ξ3d c200(

1A1g)[c200(
3Eg) cos δ1 − 2c200(

3A2g) sin δ1] sin
θ

2
;

D(1)
z = −2i〈00|Vso(Cu1)|1z〉 = −

√
2ξ3d c200(

1A1g)[c200(
3Eg) sin δ1 − 2c200(

3A2g) cos δ1], (17)

where

c200(
1A1g) = − 3

2
√
2
t2pdσ

1

E1A1g

[
sin2 θ

2

ǫx
− cos2 θ

2

ǫy

]
,

c200(
1,3A2g) = −

√
3

4
tpdσtpdπ

1

E1,3A2g

(
1

ǫx
+

1

ǫy

)
sin θ cos δ1,

c200(
1,3Eg) = −

√
3

4
tpdσtpdπ

1

E1,3Eg

(
1

ǫx
+

1

ǫy

)
sin θ sin δ1,

are probability amplitudes for singlet (d2x2−y2)1A1g and

singlet/triplet (dx2−y2dxy)
1,3A2g, (dx2−y2dxz)

1,3Eg 200
configurations in the ground state wave function, re-
spectively. E1A1g

= A + 4B + 3C is the energy of

the two-hole copper singlet with d2x2−y2 configuration,
E1A2g

= ǫxy + A + 4B + 2C, E3A2g
= ǫxy + A + 4B,

E1Eg
= ǫxz + A + B + 2C, E3Eg

= ǫxz + A − 5B
are the energies of the two-hole copper terms with
dx2−y2dxy and dx2−y2dxz configurations, respectively, A,
B, and C are Racah parameters. Taking into account
that c002(

1A1g) = c200(
1A1g), c002(

3A2g) = c200(
3A2g),

c002(
3E2g) = c200(

3Eg)
23 we see that the Cu2 contribu-

tion to the Dzyaloshinsky vector can be obtained from
Exps. (17), if θ, δ1 replace by −θ, δ2, respectively. In-

terestingly to note that D
(1,2)
x,y ∝ sin θ sin 2δ1,2. Both

collinear (θ = π) and rectangular (θ = π/2) superex-
change geometries appear to be unfavorable for copper

contribution to antisymmetric exchange, though in the
latter the result depends strongly on the relation between
the energies of oxygen O 2px and O 2py orbitals.
Contribution of singlet (dx2−y2dxy)

1A2g and
(dx2−y2dxz)

1Eg states to the Dzyaloshinsky vector
yields

d(1)x = d(1) sin
θ

2
, d(1)y = d(1) cos

θ

2
, d(1)z = 0 ,

where d(1) = ξ3d(c200(
1A2g)c200(

3Eg) −
c200(

1Eg)c200(
3A2g)). Here we deal with a vector directed

along Cu1-O bond which modulus d(1) ∝ sin2 θ sin 2δ1 is
determined by a partial cancellation of two terms.
It is easy to see that the copper Vso(1) contribution to

the Dzyaloshinsky vector for two-site 110 and 011 con-
figurations is determined by a dp-exchange.

C. Oxygen contribution

In frames of the same assumption regarding the orien-
tation of rhombic crystal field axes for intermediate oxy-
gen ion the local oxygen contribution to the Dzyaloshin-
sky vector for one-site 020 configuration appears to be
oriented along local Oz axis and may be written as fol-
lows

D(0)
z = −2i〈00|Vso(O)|1z〉 =

√
2ξ2p ct(pxpy)[c(p

2
x)+c(p2y)],

(18)
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where c(p2) = c020(p
2) with

c(p2x) = − 3

2
√
2
t2pdσ

sin2 θ
2

ǫxEs(p2x)
; c(p2y) =

3

2
√
2
t2pdσ

cos2 θ
2

ǫyEs(p2y)
;

ct(pxpy) =
3

8
t2pdσ

(
1

ǫx
+

1

ǫy

)
sin θ

Et(pxpy)
(19)

are probability amplitudes for singlet p2x, p
2
y and triplet

pxpy 020 configurations in the ground state wave func-

tion, respectively; Es(p
2
x,y) = 2ǫx,y + F0 + 4

25F2,

Et(pxpy) = ǫx + ǫy + F0 − 1
5F2 are the energies of the

oxygen two-hole singlet (s) and triplet (t) configurations
p2x, p

2
y and pxpy, respectively, F0 and F2 are Slater inte-

grals. This vector can be written as follows24

D(0) = DO(θ)[r1 × r2], (20)

where r1,2 are unit radius-vectors along Cu1-O, Cu2-O
bonds, respectively, and

DO(θ) =
9ξ2pt

4
pdσ

16

1

Et(pxpy)

(
1

ǫx
+

1

ǫy

)[
cos2 θ

2

ǫxEs(p2x)
− sin2 θ

2

ǫyEs(p2y)

]
. (21)

It is worth noting that D(0) does not depend on the δ1, δ2
angles. The DO(θ) dependence is expected to be rather
smooth without any singularities for collinear and rect-
angular superexchange geometries.

The local oxygen contribution to the Dzyaloshinsky
vector for two-site 110 and 011 configurations appears
to be oriented along local Oz axis as well and may be
written as follows

D(0)
z = −2i〈00|Vso(O)|1z〉 = ξ ([cs(dp)× ct(dp)]z + [cs(pd)× ct(pd)]z), (22)

cs,t(dpx) = −
√
3

2

tpdσ
Es,t(dpx)

sin
θ

2
, cs,t(dpy) = −

√
3

2

tpdσ
Es,t(dpy)

cos
θ

2
, (23)

where cs,t(dp) = c110(dp), cs,t(pd) = c011(dp) are proba-
bility amplitudes for different singlet (cs) and triplet (ct)
110 (dx2−y2px,y) and 011 (px,ydx2−y2) configurations in
the ground state wave function, respectively. The ener-
gies Es,t(dpx,y) are those for singlet and triplet states of
dpx,y configurations, respectively: Es,t(dpx,y) = ǫx,y +

Kdpx,y ± Idpx,y, where Kdpx,y and Idpx,y are Coulomb
and exchange dp-integrals, respectively. It is easy to see
that the nonzero contribution to Dzyaloshinsky vector is
determined by a direct dp-exchange and may be written
similarly to (20) with

DO(θ) =
3ξ2pt

2
pdσ

8

1

ǫxǫy

(
Idpx
ǫx

− Idpy
ǫy

)
≈

3ξ2pt
2
pdσ

8

1

ǫxǫy

(
sin2 θ

2

ǫx
− cos2 θ

2

ǫy

)
Idpσ, (24)

where we take account only of dpσ exchange (Idpσ ∝
t2pdσ).

Thus, the total Dzyaloshinsky vector D is a superpo-
sition of three contributions D = D(1) +D(0) +D(2) at-
tached to the respective sites. In general, all the vectors
can be oriented differently. Their magnitudes strongly

depend on the Cu1-O-Cu2 bond geometry and crystal
field effects, however, comparative analysis of Exps. (17)
and (21) given estimations for different parameters typi-
cal for cuprates25 (tpdσ ≈ 1.5 eV, tpdπ ≈ 0.7 eV, A = 6.5
eV, B = 0.15 eV, C = 0.58 eV, F0 = 5 eV, F2 = 6 eV)
evidences that copper and oxygen Dzyaloshinsky vectors
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can be of comparable magnitude.

D. Dzyaloshinsky-Moriya coupling in La2CuO4

The DM coupling and magnetic anisotropy in
La2CuO4 and related compounds has attracted consid-
erable attention in 90-ths (see, e.g., Refs.7,8,9), and is
still debated in the literature.11,12 In the low-temperature
tetragonal (LTT) and orthorhombic (LTO) phases of
La2CuO4, the oxygen octahedra surrounding each copper
ion rotate by a small tilting angle (δLTT ≈ 30, δLTO ≈ 50)
relative to their location in the high-temperature tetrag-
onal phase. The structural distortion allows for the
appearance of the antisymmetric Dzyaloshinsky-Moriya
interaction. In terms of our choice for structural pa-
rameters to describe the Cu1-O-Cu2 bond we have for
LTT phase: θ = π; δ1 = δ2 = π

2 ± δLTT for bonds
oriented perpendicular to the tilting plane, and θ =
±(π− 2δLTT ); δ1 = δ2 = π

2 for bonds oriented parallel to
the tilting plane. It means that all the local Dzyaloshin-
sky vectors turn into zero for the former bonds, and turn
out to be perpendicular to the tilting plane for the latter
bonds. For LTO phase:θ = ±(π −

√
2δLTO); δ1 = δ2 =

π
2 ± δLTO. In such a case the largest (∝ δLTO) compo-
nent of the local Dzyaloshinsky vectors (z-component in
our notation) turn out to be oriented perpendicular to
the Cu1-O-Cu2 bond plane. Other two components of
the local Dzyaloshinsky vectors are fairly small: that of
perpendicular to CuO2 plane (y-component in our nota-
tion) is of the order of δ2LTO, while that of oriented along
Cu1-Cu2 bond axis (x-components in our notation) is of
the order of δ3LTO.

IV. DM COUPLED CU1-O-CU2 BOND IN

EXTERNAL FIELDS

A. Uniform external magnetic field

Application of an uniform external magnetic field hS

will produce a staggered spin polarization in the antifer-
romagnetically coupled Cu1-Cu2 pair

〈V12〉 = L = − 1

J2
12

[
∑

i

D
(i)
12 × hS ] =

↔
χ

V S

hS (25)

with antisymmetric V S-susceptibility tensor: χV S
αβ =

−χV S
βα . One sees that the sense of a staggered spin po-

larization, or antiferromagnetic vector, depends on that
of Dzyaloshinsky vector.26 The V S coupling results in
many interesting effects for the DM systems, in particu-
lar, the ”field-induced gap” phenomena in 1D s=1/2 an-
tiferromagnetic Heisenberg system with alternating DM
coupling.6 Approximately, the phenomenon is described
by a so called staggered s=1/2 antiferromagnetic Heisen-

berg model with the Hamiltonian

Ĥ = J
∑

i

(ŝi · ŝi+1)− huŝiz − (−1)ihsŝix , (26)

which includes the effective uniform field hu and the in-
duced staggered field hs ∝ hu perpendicular both to the
applied uniform magnetic field and Dzyaloshinsky vector.

B. Staggered external field

Application of a staggered field hV for an antiferro-
magnetically coupled Cu1-Cu2 pair will produce a local
spin polarization both on copper and oxygen sites

〈Si〉 =
1

J2
12

[D
(i)
12 × hV ] =

↔
χ

SV

(i)hV , (27)

which can be detected by different site-sensitive meth-
ods including neutron diffraction and, mainly, by nu-
clear magnetic resonance. It should be noted that SV -
susceptibility tensor is the antisymmetric one: χSV

αβ =

−χSV
βα . Strictly speaking, both formulas (25),(27) work

well only in a paramagnetic regime and for relatively
weak external fields.
Above we addressed a single Cu1-O-Cu2 bond, where,

despite a site location, the direction and magnitude
of Dzyaloshinsky vector depends strongly on the bond
strength and geometry. It is clear that a site rather
than a bond location of DM vectors would result in a
revisit of conventional symmetry considerations and of
magnetic structure in weak ferro- and antiferromagnets.
Interestingly that the expression (27) predicts the effects
of a constructive or destructive (frustration) interference
of copper spin polarizations in 1D, 2D, and 3D lattices
depending on the relative sign of Dzyaloshinsky vectors
and staggered fields for nearest neighbours. It should
be noted that with the destructive interference the lo-
cal copper spin polarization may turn into zero and DM
coupling will manifest itself only through the oxygen spin
polarization. Another interesting manifestation of oxy-
gen Dzyaloshinsky-Moriya antisymmetric exchange cou-
pling concerns the edge-shared CuO2 chains (see Fig.2),
ubiquitous in many cuprates, where we deal with an ex-
act compensation of copper contributions to Dzyaloshin-
sky vectors and the possibility to observe the effects of
uncompensated though oppositely directed local oxygen
contributions. Applying the staggered field along chain
direction (Ox) we arrive in accordance with Exp.(27) at
a weakly antiferromagnetic Oy ordering of oxygen spin
polarizations which magnitude is expected to be strongly
enhanced due to usually small magnitudes of 90o sym-
metric superexchange. It should be emphasized that the
summary Dzyaloshinsky vector turns into zero hence in
terms of a conventional approach to DM theory we miss
the anomalous oxygen spin polarization effect. In this
connection it is worth noting the neutron diffraction data
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FIG. 2: The fragment of a typical edge-shared CuO2 chain
with copper and oxygen spin orientation under staggered field
applied along x-direction. Note the antiparallel orientation of
oxygen Dzyaloshinsky vectors.

by Chung et al.27 which unambiguously evidence the oxy-
gen momentum formation and canting in edge shared
CuO2 chain cuprate Li2CuO2.

C. Intermediate oxygen 17O Knight shift as an

effective tool to inspect DM coupling for Cu-O-Cu

bonds

As an important by-product of the cuprate activity we
arrived at a significant progress in different experimen-
tal methods and new opportunities to elucidate subtle
details of electron and spin structure. In particular, it
concerns the oxygen 17O NMR-NQR as an unique local
probe to study the charge and spin densities on oxygen
sites.13 In this connection we point to papers by R. Walst-
edt et al.13 as a first direct observation of anomalous oxy-
gen hyperfine interactions in generic cuprate La2CuO4.
With the approaching transition to the ordered magnetic
phase, the authors observed anomalously large negative
17O Knight shift for planar oxygens which anisotropy re-
sembled that of weak ferromagnetism in this cuprate.
The giant shift was observed only when external field
was parallel to the local Cu-O-Cu bond axis (PL1 lines)
or perpendicular to CuO2 plane. The effect was not
observed for PL2 lines which correspond to oxygens in
the local Cu-O-Cu bonds which axis is perpendicular
to in-plane external field. The data were interpreted as
an indication of oxygen spin polarization due to a local
Dzyaloshinsky-Moriya antisymmetric exchange coupling.
However, either interpretation of NMR-NQR data in such
low-symmetry systems as La2CuO4 needs in a thorough
analysis of transferred hyperfine interactions and a re-
visit of some textbook results being typical for the model
high-symmetry systems. First we draw attention to spin-
dipole hyperfine interactions for O 2p-holes which are
main participants of Cu1-O-Cu2 bonding. Starting from

a conventional formula for a spin-dipole contribution to
local field

Hn = −gsµB

∑

i

3(ri · si)ri − r2i si
r5i

and making use of an expression for appropriate matrix
element

〈pi|
3xαxβ − r2δαβ

r5
|pj〉 = −2

5

〈
1

r3

〉

2p

〈pi|3l̃αlβ−2δαβ|pj〉 =

2

5

〈
1

r3

〉

2p

(
3

2
δαiδβj +

3

2
δαjδβi − δαβδij) (28)

we present a local field on the 17O nucleus in Cu1-O-Cu2
system as a sum of ferro- and antiferromagnetic contri-
butions as follows26

Hn =
↔
A

S

· 〈Ŝ〉+
↔
A

V

· 〈V̂〉 (29)

where

↔
A

S

=
↔
A

S

(dp) +
↔
A

S

(pd);
↔
A

V

=
↔
A

V

(pd)−
↔
A

V

(dp) ,

AS
ij(dp) = A(0)

p [3ct(dpi)ct(dpj)− |ct(dp)|2δij ] ,

AS
ij(pd) = A(0)

p [3ct(pid)ct(pjd)− |ct(pd)|2δij ] ,

AV
ij(dp) = A(0)

p [3 ˜cs(dpi)ct(dpj)− (cs(dp) · ct(dp))δij ] ,

AV
ij(pd) = A(0)

p [3 ˜cs(pid)ct(pjd)− (cs(pd) · ct(pd))δij ] ,

where A
(0)
p = 2

5gsµB

〈
1
r3

〉
2p
, the tilde points to a sym-

metrization. Thus, along with a conventional textbook
ferromagnetic (∝ 〈Ŝ〉) transferred hyperfine contribution
to local field which simply mirrors a sum total of two
Cu-O bonds, we arrive at an additional unconventional
antiferromagnetic difference (∝ 〈V̂〉) contribution which
symmetry and magnitude strongly depend on the orien-
tation of the oxygen crystal field axes and Cu1-O-Cu2
bonding angle. With the Cu1-O-Cu2 geometry shown in

Fig.1 we arrive at a diagonal
↔
A

S

tensor:

AS
xx = 2Ap(3 sin

2 θ

2
−1); AS

yy = 2Ap(3 cos
2 θ

2
−1); AS

zz = −2Ap,

and the only nonzero components of
↔
A

V

tensor:

AV
xy = AV

yx = 3Ap sin θ

with

Ap =
3

4

(
tdpσ
ǫp

)2

A0
p = fσA

0
p,
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where fσ is the parameter of a transferred spin density
and we made use of a simple approximationEs,t(dpx,y) ≈
ǫp. Generally speaking, we should take into account an
additional contribution of magneto-dipole hyperfine in-
teractions.
The two-term structure of oxygen local field implies a

two-term S-V structure of the 17O Knight shift

17K =
↔
A

S↔
χ

SS

+
↔
A

V ↔
χ

V S

that points to Knight shift as an effective tool to in-
spect both uniform and staggered spin polarization. The
existence of antiferromagnetic term in oxygen hyperfine
interactions yields a rather simple explanation of the
17O Knight shift anomalies in La2CuO4

13 as a result
of the external field induced staggered spin polarization

〈V̂〉 = L =
↔
χ

VS

Hext. Indeed, ”our” local y axis for
Cu1-O-Cu2 bond corresponds to the crystal tetragonal c-
axis oriented perpendicular to CuO2 planes both in LTO
and LTT phases of La2CuO4 while x-axis does to local
Cu-O-Cu bond axis. It means that for the geometry of
the experiment by Walstedt et al.

13 (the crystal is ori-
ented so that the external uniform field is either ‖ or
⊥ to the local Cu-O-Cu bond axis) the antiferromag-
netic contribution to 17O Knight shift will be observed
only a) for oxygens in Cu1-O-Cu2 bonds oriented along
external field or b) for external field along tetragonal c-
axis. Experimental data13 agree with staggered magne-
tization along the tetragonal c-axis in the former and
along the rhombic c-axis (tetragonal ab-axis) in the lat-
ter. Interestingly, the sizeable effect has been observed
in La2CuO4 for temperatures T ∼ 500 K that is essen-

tially higher than TN ≈ 300 K. Given L = 1, A
(0)
p ≈ 100

kG/spin,13 | sin θ| ≈ 0.1, and fσ ≈ 20% we obtain ≈ 6
kG as a maximal value of a low-temperature antiferro-
magnetic contribution to hyperfine field which is paral-
lel to external magnetic field. This value agrees with a
low-temperature extrapolation of high-temperature ex-
perimental data by Walstedt et al.

13 Similar effect of
anomalous 13C Knight shift has recently been observed
in copper pyrimidine dinitrate [CuPM(NO3)2(H2O)2]n, a
one-dimensional S=1/2 antiferromagnet with alternating
local symmetry.32 However, the authors did take into ac-
count only the inter-site magneto-dipole contribution to
↔
A

V

tensor that questions their quantitative conclusions
regarding the ”giant” spin canting.
The ferro-antiferromagnetic S-V structure of local field

on the nucleus of an intermediate oxygen ion in a Cu1-
O-Cu2 triad points to 17O NMR as, probably, the only
experimental technique to measure both the value, direc-
tion, and the sense of Dzyaloshinsky vector. The latter
possibility was realized earlier with 19F NMR for weak
ferromagnet FeF3.

26 The experimental observation of an-
tiferromagnetic contribution to the Knight shift provides
probably the sole way to find out the problem of the sense
of Dzyaloshinsky vector in cuprates. For instance, the
negative sign of 17O Knight shift in La2CuO4

13 points

to a negative sign of
↔
χ

V S

for Cu1-O-Cu2 triad with
AV

xy > 0, hence to a positive sense of z-component of the
summary Dzyaloshinsky vector in Cu1-O-Cu2 triad with
geometry shown in Fig.1 given θ ≤ π, δ1 = δ2 ≈ π/2.
This agrees with theoretical predictions both for cop-
per and oxygen contributions based on Exps.(17) and
(21). It should be emphasized that the above effect
is determined by the summary Dzyaloshinsky vector in
Cu1-O-Cu2 triad rather than by a local oxygen ”weak-
ferromagnetic” polarization as it was proposed by Wal-
stedt et.al.13

V. SYMMETRIC SPIN ANISOTROPY

Symmetric spin anisotropy for a Cu1-Cu2 pair is de-
scribed by an effective Hamiltonian

Ĥan =
1

4
Ŝ
↔
K

S

Ŝ− 1

4
V̂

↔
K

V

V̂ (30)

with kinematic relations (7).
Depending on the sign of the anisotropy constants we

arrive at two types of spin configurations minimizing the
energy of spin anisotropy: the conventional twofold de-
generated ferromagnetic state or unconventional multiple
degenerated antiferromagnetic state. As a relevant illus-
trative example one might refer to the axial anisotropy:
Ĥan = KŜ2

z which stabilizes the |1 ± 1〉 doublet given
K < 0 or a set of superposition states

Ψα,φ = cosα|00〉+ eiφ sinα|10〉 (31)

given K > 0. The latter incorporates the limiting con-
figurations |00〉 and |10〉, the Néel ( 1√

2
(|00〉 ± |10〉) and

DM doublets ( 1√
2
(|00〉 ± i|10〉), and any other their su-

perpositions.
As usual, the term is processed in frames of a num-

ber of simple model approximations. First, instead of
the generalized form (30) one addresses a pseudodipole
anisotropy

Ĥan = ŝ1
↔
K12 ŝ2 . (32)

Second, one makes use of a trivial local MFA approach
which applicability for s=1/2 spin systems is question-
able. Indeed, calculating the classical energy of the pseu-
dodipole two-ion anisotropy K〈ŝ1z〉〈ŝ2z〉 = 1

4K(〈Ŝz〉2 −
〈V̂z〉2) and respective quantum energy K〈ŝ1z ŝ2z〉 =
1
4K(〈Ŝ2

z 〉− 〈V̂ 2
z 〉) for a two-ion state cosα|00〉+sinα|1n〉

induced by a Néel-like staggered field hV ‖ n we arrive at
Eclass = − 1

4K sin 2α · n2
z and Equant =

1
4K(1− 2 sin2 α ·

n2
z), respectively, that evidences the crucial importance of

quantum effects when addressing the numerical aspect of
spin anisotropy. Note that the mean value 〈V̂ 2

z 〉 reaches
the maximum (=1) on a set of superposition states (31),

while 〈V̂z〉2 does on a single Néel state Ψα=π/4,φ=0.
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A. Effective symmetric spin anisotropy due to DM

interaction

When one says about an effective spin anisotropy due
to DM interaction one usually addresses a simple classical
two-sublattice weak ferromagnet where the free energy
has a minimum when both ferro- (∝ 〈Ŝ〉) and antiferro-

magnetic (∝ 〈V̂〉) vectors, being perpendicular to each
other, lie in the plane perpendicular to Dzyaloshinsky
vector D. However, the issue is rather involved and ap-
peared for a long time to be hotly debated.9,10,29,30 In our
opinion, first of all we should define what spin anisotropy
is. Indeed, the description of any spin system implies the
free energy Φ depends on a set of vectorial order parame-
ters (e.g.,〈Ŝ〉,∝ 〈V̂〉,∝ 〈T̂〉) under kinematic constraint,
rather than a single magnetic moment as in a simple fer-
romagnet, that can make the orientational dependence of
Φ extremely involved. Such a situation needs in a careful
analysis of respective spin Hamiltonian with a choice of
proper approximations.
Effective symmetric spin anisotropy due to DM inter-

action can be easily derived as a second order perturba-
tion correction due to DM coupling as follows:

ĤDM
an = P̂ ĤDM R̂ĤDM P̂ ,

where P̂ is the projection operator projecting on the
ground manifold and R̂ = (1 − P̂ )/(E0 − Ĥ0). For an-

tiferromagnetically coupled spin 1/2 pair ĤDM
an may be

written as follows:

ĤDM
an =

∑

ij

∆KV
ij V̂iV̂j

with ∆KV
ij = 1

8JDiDj provided |D| ≪ J . We see that in
frames of a simple MFA approach this anisotropy stabi-
lizes a Néel state with 〈V̂〉 ⊥ D. However, in fact we deal
with an MFA artefact. Indeed, let examine the second
order perturbation correction to the ground state energy

of an antiferromagnetically coupled spin 1/2 pair in a
Néel-like staggered field hV ‖ n:

EDM
an = − |D · n|2

4(E‖ − Eg)
− |D× n|2

4(E⊥ − Eg)
cos2 α , (33)

where E⊥ = J ;E‖ = J cos2 α + hV sin 2α;Eg =

J sin2 α − hV sin 2α. First term in (33) stabilizes n ‖ D

configuration while the second one does the n ⊥ D

configuration. Interestingly that (E‖ − Eg) cos
2 α =

(E⊥ − Eg), that is for any staggered field EDM
an does

not depend on its orientation. In other words, at vari-
ance with a simple MFA approach, the DM contribution
to the energy of anisotropy for an exchange coupled spin
1/2 pair in a staggered field turns into zero. The con-
clusion proves to be correct in the limit of a zero field as
well.

B. Microscopics of symmetric spin anisotropy

Anyway, the ĤDM
an term has not to be included into

an effective spin anisotropy Hamiltonian (6). As con-
cerns the true symmetric two-ion spin anisotropy (pseu-
dodipole, or exchange anisotropy), its magnitude can be
obtained if we take into account all other effects quadratic
in spin-orbital coupling.

At variance with the effective DM spin-Hamiltonian
the symmetric spin anisotropy evolves from the higher-
order perturbation effects that makes its analysis even
more involved and leads to many misleading estimations.
Similarly to DM interaction we deal with two competing
contributions. The first is derived as a lowest order con-
tribution which does not take account of orbital fluctua-
tions for Cu1,2 3d states. To this end we take into account
the effects of spin-orbital mixing for ground state singlet
and triplet 101 configurations perturbed by covalent ef-
fects. Assuming the validity of conventional perturbation
series we arrive at a modified expression for respective
functions as follows

Ψ101;SM = Φ101;SM +
∑

{n}Γ
c{n}(

2S+1Γ)

[
Φ{n};ΓSM −

∑

S′M ′Γ′

〈{n}; Γ′S′M ′|Vso|{n}; ΓSM〉
E2S′+1Γ′({n})− E2S+1Γ0

(101)
Φ{n};Γ′S′M ′

]
(34)

and arrive at the expressions for the tensorial anisotropy parameters as follows:

KS
ij =

∑

{n}Γ1,Γ2,Γ′

c∗{n}(
3Γ1)c{n}(

3Γ2)
〈{n};3 Γ1|ΛS

i |{n};3 Γ′〉〈{n};3 Γ′|ΛS
j |{n};3 Γ2〉

E3Γ′({n})− E3Γ0
(101)

, (35)
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KV
ij =

∑

{n}Γ1,Γ2,Γ′

c∗{n}(
3Γ1)c{n}(

3Γ2)
〈{n};3 Γ1|ΛV

i |{n};1 Γ′〉〈{n};1 Γ′|ΛV
j |{n};3 Γ2〉

E1Γ′({n})− E3Γ0
(101)

. (36)

We see that KS
ij and KV

ij are determined by the triplet-
triplet and singlet-triplet mixing, respectively. Interest-
ingly that for nonzero orbital matrix elements in (35) and
(36) we find

〈{n};3 Γ1|ΛS
i |{n};3 Γ′〉 = 〈{n};3 Γ1|ΛV

i |{n};1 Γ′〉

hence KS
ij = KV

ij , if we will suppose that E1Γ′({n}) =
E3Γ′({n}), that is neglect the singlet-triplet splitting for
Γ′ terms, or respective exchange effects. It should be
noted that the contribution of two-hole on-site 200, 002,
and 020 configurations in (35) and (36) is actually re-
lated to an on-site, or single ion spin anisotropy. Thus
we conclude that, strictly speaking, a simple two-site
pseudodipole form of symmetric anisotropy (1) fails to
capture correctly all the features of spin anisotropy in
our three-center two-hole system. Firstly it concerns the
quantitative predictions and estimations. The contri-
bution of two-hole two-site 110 and 011 configurations
to spin anisotropy turns out to be nonzero, only if pd-
exchange is taken into account.
The second contribution is associated with orbital fluc-

tuations for Cu1,2 3d states within a ground state 101
configuration, and evolves from a third order combined
effect of Cu1,2 spin-orbital Vso(Cu1,2) and effective Cu1-
Cu2 exchange coupling (see, e.g., a detailed analysis in
Ref.28). Thus, we see that any decisive conclusions re-
garding the quantitative estimations of symmetric spin
anisotropy imply a thorough analysis of numerous com-
peting contributions.

VI. CONCLUSIONS

In conclusion, we have revisited a problem of
Dzyaloshinsky-Moriya antisymmetric exchange coupling
in cuprates specifying the local spin-orbital contributions
to Dzyaloshinsky vector focusing on the oxygen term. We

have applied a scheme that provides an optimal way to
account for intra-atomic electron correlations and sepa-
rate the local contributions to Dzyaloshinsky vector. The
Dzyaloshinsky vector and respective weak ferromagnetic
momentum is shown to be a superposition of compara-
ble and, sometimes, competing local Cu and O contri-
butions. The intermediate oxygen 17O Knight shift is
shown to be an effective tool to inspect the effects of
Dzyaloshinsky-Moriya coupling in an external magnetic
field. Anisotropic antiferromagnetic contribution to 17K
explains the anomalies observed in La2CuO4.

13 We pre-
dict the effect of strong oxygen weak antiferromagnetism
in edge-shared CuO2 chains due to uncompensated oxy-
gen Dzyaloshinsky vectors. Its experimental observation
could provide a direct evidence of the oxygen DM cou-
pling. We revisit the effects of symmetric spin anisotropy,
in particular, those directly induced by Dzyaloshinsky-
Moriya coupling.

Finally it should be noted that the anionic contribution
to Dzyaloshinsky vector is crucial for the very existence
of the DM coupling in the pair of rare-earth ions (see,
e.g., Yb3+-As4−-Yb3+ triads in Yb4As3

31) because very
strong spin-orbital coupling for rare-earth ions is diago-
nalized within a ground state multiplet.
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12 M. Hücker, V. Kataev, J. Pommer, U. Ammerahl, A.

Revcolevschi, J. M. Tranquada, and B. Büchner, Phys.
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22 S. Renold, S. Pliberŝek, E.P. Stoll, T.A. Claxton, and P.F.
Meier, Eur. Phys. J. B 23, 3 (2001).

23 This is true to within a replacement δ1 ↔ δ2. It should be
noted that the probability amplitudes for triplet 200 and
002 configurations are of the same sign due to double-minus
effect: 1) θ ↔ −θ replacement, and 2)the antisymmetry of
orbital functions: 200-function ∝ dx2

−y2(1)dxy(2), while
002-function ∝ dx2

−y2(2)dxy(1).
24 Such a simple and helpful formula for Dzyaloshinsky vec-

tor was phenomenologically proposed by Keffer (F. Keffer,
Phys. Rev. 126, 896 (1962)) and microscopically derived
by Moskvin (see, e.g., Ref.4).

25 H. Eskes and G.A. Sawatzky, Phys. Rev. B43, 119 (1991).
26 A.S. Moskvin, Sov. Phys. Solid State 32, 959 (1990).
27 E.M.L. Chung, G.J. McIntyre, D.McK. Paul, G. Balakr-

ishnan, and M.R. Lees, Phys. Rev. B68, 144410 (2003).
28 A.S. Moskvin, I.G. Bostrem, M.A. Sidorov, JETP, 77, 127,

1993.
29 A. Zheludev, S. Maslov, G. Shirane, I. Tsukada, T. Ma-

suda, K. Uchinokura, I.A. Zaliznyak, R. Erwin, L.P. Reg-
nault, Phys. Rev. B59, 11432 (1999-I).

30 M.D. Lumsden, B.C. Sales, D. Mandrus, S.E. Nagler, and
J.R. Thompson, Phys. Rev. Lett. 86, 159 (2001).

31 M. Oshikawa, K. Ueda, H. Aoki, A. Ochiai, and M. Kohgi,
J. Phys. Soc. Japan, 68, 3181 (1999).

32 A.U.B. Wolter, P. Wzietek, S. Sullow, F.J. Litterst, A.
Honecker, W. Brenig, R. Feyerherm, and H.-H. Klauss,
Phys. Rev. Lett. 94, 057204 (2005).


