
Control for Set-Valued Movements
of Dynamical Systems Under Uncertainty
with Applications

Tatiana F. Filippova

Abstract The guaranteed control problems for nonlinear dynamical systems with
uncertainty in initial states and parameters are studied. The case is investigate when
only the bounding sets for initial system states and for system parameters are given
without any additional statistical or probabilistic information on these values. Apply-
ing the previously developed approaches and new results developed here to evalu-
ating trajectory tubes and reachable sets, we study the properties of optimal control
that solves the problem of control for the trajectory tube of a dynamic system with
uncertainty and nonlinearity of a quadratic type.
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1 Introduction

The paper investigates the problems associated with the study of reachable sets of a
nonlinear control dynamical system (and of a corresponding differential inclusion)
with incomplete information on the initial states of the system or on other system
parameters, limited by specifying only some special sets containing the unknown
elements (Kurzhanski [14], Kurzhanski and Varaiya[16], Allgöwer and Zheng [1],
Milanese et al. [18], Scweppe [22], Walter and Pronzato [23]). As indicated in many
studies, the geometry of the reachable sets of nonlinear dynamical systems may be
very complicated. In these cases, the approximation of reachable sets by domains of
a certain canonical form is of interest. As such canonical figures, the most natural
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are ellipsoids, parallelepipeds, polyhedra and some other canonical figures. A num-
ber of important approaches are relevant for assessing the unknown states of control
systems and corresponding trajectory tubes of differential inclusions through approx-
imation by canonical sets and tubes of motions with an accurate description of their
parameters and dynamic characteristics (Kurzhanski and Valyi [15], Chernousko [5],
Kostousova [12], Polyak et al. [21]).

Currently the principal facts and results of the theory of linear differential systems
with uncertain parameters are well developed, a number of important and computa-
tionally useful algorithms have been constructed for finding the external and internal
(with respect to the inclusion of sets) approximations of the set-valued states of
dynamical systems in the case of a linear system dynamics. However the presence
of nonlinear terms in the state velocities of the control systems causes a loss of
the convexity of the reachable sets and, therefore, raises many theoretical questions
and therefore requires the development of related mathematical tools and algorithms
that are adequate to the indicated problems of nonlinear analysis. Some ideas and
approaches to the study of set-valued motions (trajectory tubes) for a number of
differential systems with nonlinearity and uncertainty in dynamics were presented
earlier in Filippova [7], Filippova and Lisin [8], Filippova and Matviychuk [9] (see
also references in the indicated publications).

In this paper we assume that in a dynamic system there are two types of non-
linearity, namely, we have a combination of bilinear and quadratic functions in the
state velocities. Earlier, we examined the problems of evaluating the reachable sets
of systems under study taking into account all possible controls at once. Knowing
the areas of reachability with respect to all parameters of the system under study
(for all possible initial states, disturbances, controls) is very useful, since it helps
to evaluate the capabilities of the system. However, it seems important to have a
description of the trajectory tube generated by a specific choice of a control func-
tion, it will allow solving optimization problems for set-valued movements of the
considered systems under uncertainty. Note that in this paper we consider a special
class of control systems with nonlinearity and uncertainty under other informational
assumptions than was done in a recent paper Filippova and Matviychuk [10]. Thus,
this research continues and complements developments in the field of mathematical
control theory related to the study of the dynamics of multivalued states of nonlinear
control systems. The approaches and algorithms presented here may be applied in
the study of models with nonlinearity and uncertainty in real systems in robotics,
economics, biology and other fields (considered e.g. in Allgöwer and Zheng [1],
Bayen and Rapoport [2], Cecarelli et al. [4], Keller et al. [11]).
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2 Problem Formulation

2.1 Basic Notations

The main notations used in the paper are basic; however, we define here some addi-
tional, most frequently used and important constructions.

We denote by R
n the n-dimensional vector space and by compRn the set of all

compact subsets of Rn . Also Rn×m denotes the set of all n × m-matrices.
The usual inner product of x, y ∈ R

n is x ′y = (x, y) = ∑n
i=1 xi yi with prime as

a transpose and also the

‖x‖ = ‖x‖2 = (x ′x)1/2, ‖x‖∞ = max
1≤i≤n

|xi |

are corresponding norms for x ∈ R
n .

For the identity matrix we use the symbol I ∈ R
n×n . Denote by Tr(A) a trace (a

sumof diagonal elements) ofn × n-matrix A. Let B(a, r) = {x ∈ R
n : ‖x − a‖ ≤ r}

be a ball in Rn with a center a ∈ R
n and with a radius r > 0.

We use here also the notation

E(a, Q) = {x ∈ R
n : (Q−1(x − a), (x − a)) ≤ 1}

for the ellipsoid inRn , where a ∈ R
n is its center and a n × n-matrix Q is symmetric

and positive definite.

2.2 Main Problem

We study here the nonlinear control system

ẋ = A(t)x + f (x)d + u(t),

x0 ∈ X0, t0 ≤ t ≤ T,
(1)

here x, d ∈ R
n , ‖x‖ ≤ K (K > 0), the function f (x) is quadratic in x , that is f (x) =

x ′ Bx, with a positive definite and symmetric n × n-matrix B.
Functions u(t) (“controls") in (1) are assumed to be Lebesgue measurable on

[t0, T ] and
u(t) ∈ U , f or a.e. t ∈ [t0, T ].

We assume that the constraint set U is given and U ∈ compRn . The n × n-matrix
function A(t) in (1) has the form

A(t) = A0 + A1(t), (2)
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where the n × n-matrix A0 is given and the measurable n × n-matrix A1(t) is
unknown but bounded, A1(t) ∈ A1 for t ∈ [t0, T ], namely we have

A(t) ∈ A = A0 + A1,

A1 = {
A={ai j }∈Rn×n : |ai j |≤ci j , i, j=1, . . . n

}
, (3)

where ci j ≥ 0 (i, j = 1, . . . n) are given numbers. The latter relations mean that all
elements of the matrix A(t) are known only up to certain errors, the values of which
are given (this does not exclude the case when some elements of the matrix can be
known exactly, this corresponds to the situation when some ci j = 0).

Assume that we have the ellipsoid as an initial set X0 in (1), that is

X0 = E(a0, Q0),

with a symmetric and positive definite matrix Q0 ∈ R
n×n and with a center a0.

If it will be necessary we will use also a notation x(t; u(·)) = x
(
t; u(·), A(·), x0

)

with indication of additional parameters A(·), x0 for an absolutely continuous func-
tion x(t) which is the solution to (1)–(3) with initial state x0 ∈ X0, with admissible
control u(·) and with a matrix A(·) satisfying (2)–(3).

Due to the fact that some quantities are unknown but bounded, we are forced
to consider all possible versions of motions compatible with additional data as a
generalized solution to the control system, that is, we need to replace a single-valued
trajectory by a bundle or tube of motions of the following form X (t; u(·)).
Definition 1 For each admissible control u(·) the generalized solution tube
X (t; u(·)) (with t ∈ [t0, T ]) of system (1)–(3) is defined as follows,

X (t; u(·)) = {x ∈ R
n : ∃ x0∈X0, ∃ A(·)∈A,

x = x(t) = x
(
t; u(·), A(·), x0

)}.

Let us consider the following main problems.

Problem 1 For each feasible control u(·)∈U , find the optimal external ellipsoidal
estimate E(â, Q̂; T, u(·)) of the reachable set X (T ; u(·)) of the system (1)–(4), such
that

X (T ; u(·)) ⊂ E(â, Q̂; T, u(·)).

Remark 1 Here we understand the optimality of the desired ellipsoidal estimate,
bearing in mind the closest operation with respect to inclusion of related sets.

Problem 2 Given a vector x∗ ∈ Rn find the feasible control u∗(·) ∈ U such that the
related ellipsoidal estimate is optimal, that is we have

d(x∗, E(â∗, Q̂∗; T, u∗(·))) = inf
u(·)∈U

d(x∗, E(â∗, Q̂∗; T, u(·))) = ε∗.
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3 Main Results

First, we define an auxiliary parameter k, which is required to formulate the main
result (see also Filippova [7]). To do this, consider thematrix B1/2Q0B1/2 and denote
its maximal eigenvalue as k2, that is we have

E(a0, Q0) ⊆ E(a0, (k
+
0 )2B−1), (4)

and k+
0 is the smallest positive number for which this estimate (4) is true.

Theorem 1 The upper ellipsoidal estimate is true

X (t0 + σ ; u(·)) ⊆ E(a∗(t0 + σ), Q∗(t0 + σ) | u(·)) + o(σ )B(0, 1) (5)

with σ−1o(σ ) → 0 for σ → +0 and

a∗(t0 + σ) = ã(t0 + σ) + σ(â + a′
0Ba0 · d + k2d) + σu(t0), (6)

and with functions ã(t), Q∗(t) satisfying the following equations

˙̃a = Ã0ã, t0 ≤ t ≤ T, ã(t0) = a0, (7)

Q̇∗ = Ã0Q∗ + Q∗( Ã0)′ + q Q∗ + q−1G, Q∗(t0) = Q0, t0 ≤ t ≤ T, (8)

where
Ã0 = A0 + 2d · a′

0B, q = (
n−1 Tr ((Q∗)−1G)

)1/2
, (9)

G = diag
{
(n − v)

[ n∑

i=1

c ji |ãi | + (
max

σ={σi j }

n∑

p,q=1

Q∗
pqc jpc jqσ j pσ jq

)1/2]2
}
, (10)

with a maximum in (10) calculated over numbers σi j = ±1, i, j = 1, . . . , n, such
that we have ci j = 0 and v is a number of such indices i for which ci j = 0 for all
j = 1, . . . , n.

Proof The relation (5) is established along the main lines and ideas presented in
Filippova [7]. Indeed, from the funnel equation Panasyuk [20] we have

X (t0 + σ ; u(·)) ⊆
⋃

x̃∈E(0,k+
0
2

B−1)

(a0 + x̃ + σ(A0 + A1)(a0+

x̃) + σ(a0 + x̃)′ B(a0 + x̃)) + σu(t0) + o(σ )B(0, 1). (11)
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We remind that we may use here the property that at the boundary points x̃ of the
ellipsoid E(0, (k+

0 )2B−1) we have the equality x̃ ′ Bx̃ = (k+
0 )2 (for a more simple

case detailed explanations of the last property may be found also in Filippova [7]).
With this property and rearranging the terms in (11), we come to the formulas
(5)–(10).

Remark 2 We see here that the ellipsoidal estimates of the tube X (t; u(·)) for each
fixed control u(·) are under investigation here and therefore the parameters of the
estimation procedures dependonu(·).We can complicate the problembyadditionally
assuming the presence of state constraints or by considering a slightly more general
class of uncertainty, e.g. in the coefficients of the matrix of linear terms of the state
velocities.

Remark 3 It follows from Theorem 1 that we can construct a discrete tube
E(â, Q̂; T, u(·)) with ellipsoidal cross-sections that solves Problem 1 and for which
we have the inclusion

X (T ; u(·)) ⊆ E(â+(T ), Q̂+(T ); u(·)) + o(ε)B(0, 1). (12)

We emphasize that this discrete construction may be used as a basis for related com-
putational schemes and algorithms allowing to find the trajectory tubes numerically.

Using the results Filippova and Matviychuk [9], we may derive the following
result.

Theorem 2 Let ε∗, u∗(·) be the optimal values of the Problem 2. Then we have the
relations

ε∗ = min
u(·)∈U

max||l||=1
{r+(T ; u(·))(l ′ B−1l)1/2+

l ′(a+(T ; u(·)) − x∗)} = max||l||=1
{r+(T ; u∗(·))(l ′ B−1l)1/2+ (13)

l ′(a+(T ; u∗(·)) − x∗)}.

Proof First, we find the minimal positive number ε such that the following inclusion
is true

E(a+(T ), Q+(T ); T, u(·)) ⊆ B(x∗, ε),

or equivalently

ρ(l|E(a+(T ), Q+(T ); T, u(·)) ≤ ρ(l|B(x∗, ε)), ∀l ∈ R
n.

Appling the result of Theorem 1, we get the relation

l ′a+(T ) + (l ′ Q+(T )l)1/2 ≤ l ′x∗ + ε||l||,
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and from the above relations we conclude that

ε∗ = min
u(·)

max||l||=1
((l ′ Q+(T )l)1/2 + l ′(a+(T ) − x∗)).

Taking into account the equality Q+(T ) = r+(T )B−1 we get the
equations (13).

The proposed results may be used as the basis for the development of compu-
tational algorithms for solving applied problems of controlling and estimating the
movements of real systems operating in conditions of uncertainty and nonlinearity, in
particular, in the fields of robotics, economics and finance, biology and other fields.
Related algorithms with computational examples (for lower dimensional systems)
that illustrate the approach may be found e.g. in Filippova and Matviychuk [9]. In
the next section a more complicated example of a dynamical system in the space R3

is given and discussed.

Fig. 1 Projections Proj1,2E+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue color) and pro-
jections Proj1,2X (t) of reachable sets (black color) X (t) at the plane of {x1, x2, t}-coordinates
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4 Numerical Simulations

Example. Consider the following control system

⎧
⎨

⎩

ẋ1 = −x1 + x2
1 + x2

2 + 2x2
3 + u1(t),

ẋ2 = x2 + u2(t),
ẋ3 = x3 + u3(t),

(14)

Assume that U = B(0, 1), x0 ∈ X0 = B(0, 1) and t ∈ [0, T ] with T = 0.4. The
projections of reachable sets X (t) togetherwith related estimating ellipsoids E+(t) =
E(a+(t), Q+(t)) onto the planes of state coordinates (related planes are (x1, x2),
(x1, x3) and (x2, x3), respectively) are shown in Figs. 1, 2, and 3 for time grid t =
0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4 (we need to specify here that for simplicity we
put u(t) = 0 here, in other cases calculations and pictures are similar).

The last Fig. 4 shows the upper estimating ellipsoid E+(t) = E(a+(t), Q+(t))
and the reachable set X (t) as they are in the related space R

3 of state variables
{x1, x2, x3} for t = 0.4.

Note that the evaluating ellipsoid touches the reachable set (that is, the external
estimate is “tight"), which implies that without changing the structure of parameters

Fig. 2 Projection Proj1,3E+(t) of ellipsoids E+(t) = E(a+(t), Q+(t)) (blue lines) and projec-
tions Proj1,3X (t) of reachable sets (black lines) X (t) at the plane of {x1, x3, t}-coordinates
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Fig. 3 The projections Proj2,3E+(t) of estimating ellipsoids E+(t) = E(a+(t), Q+(t)) (indi-
cated in blue lines) and projections Proj2,3X (t) of reachable sets (indicated in black lines) X (t) at
the plane of {x2, x3, t}-coordinates

(for example, without changing the main matrix of coefficients), it cannot be reduced
to a smaller ellipsoid.

5 Further Theoretical Directions and Possible Applications

Theoretical schemes and related numerical algorithms for evaluating trajectory tubes
andmethods for solving control problems for set-valuedmotions based on Theorems
1–2 can be developed further in many directions, among them we note the following
areas:

• studies of optimization and robust stabilization problems for uncertain nonlinear
systems with impulsive control functions,

• problems of viability and control for dynamical systems described by nonlinear
differential equations and differential inclusions,

• improvement and development of new numerical methods for estimating set-
valued motions of nonlinear dynamical systems (ensembles of trajectories) based
on the proposed ideas for high-dimensional systems,

• researchof new,more complex classes of nonlinearity in the dynamics of controlled
systems with uncertain factors,
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Fig. 4 Reachable set X (t) and its upper ellipsoidal estimate E+(t) = E(a+(t), Q+(t)) for t = 0.4
(3d-picture in the plane of state variables {x1, x2, x3})

• development of theoretical approaches to the estimation of set-valued motions
using approximations for set-valued motions based on the use of discrete schemes
of the theory of differential inclusions with a large order of accuracy.

The applications of the problems discussed here are in the nonlinear control and
estimation theory and related nonlinear models with unknown but bounded errors.
Numerous applicationmodels can be noted here, in particular, realmodels in robotics,
in transportation systems, in biology, medicine and economics. In these aspects, we
would like to highlight, in particular, the studies and results obtained earlier by Bayen
and Rapoport [2], Cecarelli et al. [4], Koller et al. [11]), Filippova and Matviychuk
[9], Kuntsevich and Volosov [13], Malyshev and Tychinskii [17], Ovsyannikov [19].

6 Conclusion

The paper deals with the state estimation problems for uncertain dynamical control
systems for which we assume that the initial state is unknown but boundedwith given
constraints. We consider here a special case of uncertainty and nonlinearity when
the matrix parameters in state velocities are unknown but bounded.
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The system nonlinearity under study is generated also by the presence of bilinear
terms and quadratic forms in related differential equations. The problem is reformu-
lated as the control problem for the motion of related set-valued states.

Using the ideas developed earlier for some classes of uncertain systems we solve
here the control problem with a new class of uncertainty and with a special structure
of nonlinearity. So we construct the external ellipsoidal estimates of reachable sets
for the system under study and find the solution of the related optimization problem.

Acknowledgements The study was partially supported by the Russian Foundation for Basic
Researches (RFBR Project No.1̃8-01-00544).
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