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Abstract. A new exact solution to the problem of Marangoni layered convection is obtained. This solution

describes a layered steady-state flow of a viscous incompressible fluid at varying gradients of temperature and

pressure. The velocity components depend only on the transverse coordinate; the temperature and pressure fields

are three-dimensional. The Marangoni effect is observed on the upper free surface of the fluid layer. On the

lower solid surface of the fluid layer, three different cases of defining boundary conditions are considered: the

no-slip condition, the perfect slip condition and the Navier slip condition. The obtained exact solution is

determined by the interaction of three flows: a flow caused by pressure drop (the Poiseuille flow), a flow caused

by heating/cooling and the effect of the gravity force (the thermogravitational flow), and a flow caused by

heating/cooling and the fluid surface tension effect (the thermocapillary flow). The obtained exact solutions in

the case of each of the three types of boundary conditions specified on the lower surface are analyzed in detail. It

has been proved that, when certain ratios of the boundary value problem parameters are fulfilled, the velocity

components may acquire stagnation points, this being indicative of the presence of counterflow areas in the fluid

layer under consideration. In particular, the presence of up to two stagnation points in each of the two longi-

tudinal velocity components may cause a stratification of the velocity field in more than two regions. The

obtained exact solution of the Marangoni layered convection problem can describe flows in thin films through

the variation of the geometric anisotropy factor.
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1. Introduction

Currently, the problem of determining characteristics and

finding exact solutions for describing convective processes

in fluids and media close to fluids continues to evoke

constant interest among continuum mechanics researchers.

In particular, subject matters concerning the existence of

exact solutions to boundary value problems associated with

the most well-known hydrodynamic equations, that is, the

Navier–Stokes equations, are studied. Adding the heat

equation and the incompressibility equation to the Navier–

Stokes equations and taking into account the temperature

dependence of fluid density in the model, we obtain a

system of heat convection equations in the Oberbeck–

Boussinesq approximation [1–4].

Convective processes caused by linear temperature dis-

tribution at the boundary were first described by Ostroumov

[5] for regions with cylindrical symmetry. A solution

describing advection caused by thermocapillary forces on

the free surface was first obtained by Birikh [6]. Later, a

wider class of exact solutions for describing convective

processes in an incompressible fluid was considered [7, 8].

In this solution family, hydrodynamic fields are described

by functions that are linear in terms of horizontal coordi-

nates. This class of solutions was first proposed by Lin [9]

for problems of magnetohydrodynamics. The Lin class was

rediscovered for convection problems in [7, 10] and mod-

ified to describe thermal diffusion in [11]. A review of

exact solutions to the Navier–Stokes equations and their

classification for the case of a linear dependence of the

velocity components on two spatial variables can be found

in [12].

A distributed horizontal temperature gradient was con-

sidered earlier in the boundary value problems on the free

surfaces of a fluid layer, but a similar pressure gradient was

not taken into account [13]. The exact solution of the plane

boundary value problem of the convective fluid flow in a

two-layer system that takes into account the longitudinal*For correspondence
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pressure gradients at the boundary was investigated in [14].

In this paper, we construct a solution taking into account

longitudinal pressure variation to describe the convective

fluid flow in a three-dimensional case.

The choice of boundary conditions is a separate issue

when problems for describing the flow of a fluid layer

contacting a fixed solid surface are considered. By the mid-

1900s, for solving such problems, it had become a practice

to use the no-slip conditions at fluid–solid interfaces [15].

The no-slip condition is known to make the fluid velocity

field at a fixed boundary vanish. However, experimental

data [16, 17] often show the violation of the no-slip con-

dition on a solid wall and, as a result, the slip condition is

implemented. It should be noted that Navier used the slip

condition to model fluid flow processes [18]. In recent

decades, boundary conditions based on the slipping

hypothesis have been gaining acceptance. According to this

hypothesis, the tangential velocity component is non-zero

and related to the stress tensor.

There are currently a great number of mathematical

papers studying problems of hydrodynamics of Newtonian

fluids, which take into account the slip conditions on solid

boundaries, e.g. [16, 19–22]. Rajagopal [23] notes that it is

of particular importance to take into account the effect of

fluid slippage along the boundary.

In this paper we consider the Benard–Marangoni con-

vection on the free surface of a viscous incompressible fluid

layer with non-zero temperature and pressure gradients,

specifying different types of boundary conditions (no-slip

and slip) on a solid surface. Earlier the authors attempted to

take into account the combination of the afore-described

boundary conditions, but for unidirectional flows [24].

Therefore, the solution presented in this paper can be

regarded as a generalization of the already available results

to the case of non-dimensional flows. The combination

‘‘no-slip condition ? Marangoni condition’’ was studied,

for example, in the articles [25–36]. However, the authors

are not aware of a single study in which a comprehensive

investigation of all three variants of the Navier condition in

combination with the thermocapillary effect is carried out.

The obtained exact solution of the convection problem can

describe flows in thin films [37–40] through the variation of

the geometric anisotropy factor.

2. Problem statement

To solve the problem of the convective flow of a viscous

incompressible fluid, we write a system of equations con-

sisting of the Navier–Stokes equation in the Boussinesq

approximation, the heat equation and the incompressibility

equation in the coordinate form:

oVx

ot
þ Vx

oVx

ox
þ Vy

oVx

oy
þ Vz

oVx

oz

¼ � oP

ox
þ m

o2Vx

ox2
þ o2Vx

oy2
þ o2Vx

oz2

� �
;

oVy

ot
þ Vx

oVy

ox
þ Vy

oVy

oy
þ Vz

oVy

oz

¼ � oP

oy
þ m

o2Vy

ox2
þ o2Vy

oy2
þ o2Vy

oz2

� �
;

oVz

ot
þ Vx

oVz

ox
þ Vy

oVz

oy
þ Vz

oVz

oz

¼ � oP

oz
þ m

o2Vz

ox2
þ o2Vz

oy2
þ o2Vz

oz2

� �
þ gbT;

ð1Þ

oT

ot
þ Vx

oT

ox
þ Vy

oT

oy
þ Vz

oT

oz
¼ v

o2T

ox2
þ o2T

oy2
þ o2T

oz2

� �
;

ð2Þ

oVx

ox
þ oVy

oy
þ oVz

oz
¼ 0: ð3Þ

Here Vx;Vy and Vz are the velocities parallel to the corre-

sponding coordinate axes of the rectangular Cartesian

coordinate system Oxyz; P ¼ P x; y; zð Þ is the deviation of

pressure from hydrostatic, taken relative to the constant

average density of the fluid q; T is the deviation from the

average temperature; m and v are the coefficients of kine-

matic viscosity and of thermal diffusivity of the fluid,

respectively; g is the acceleration of gravity and b is the

temperature coefficient of volume expansion for the fluid.

In the system of equations (1) the Boussinesq hypothesis

is adopted, which makes it possible to relate the specific

mass force of gravity to the temperature field by means of

the coefficient of volume expansion, and this relationship is

represented by a linear dependence. In addition, taking into

account the law of conservation of mass of a moving vol-

ume of fluid in the form (3) limits the range of applicability

of model (1)–(3) since the concept of incompressibility of a

fluid is used only for non-fast flowing fluids (the average

flow velocity is about 1 m/s). However, taking into account

the fact that, for example, the open ocean currents with a

speed of 5.5 km/h (which is approximately equal to 1.53

m/s) and more are considered strong, the incompressible

fluid approximation turns out to be applicable to describe

the vast majority of ocean currents.

Let us make the following assumptions regarding the

motion of a viscous fluid described by the afore-mentioned

system of equations (1)–(3). We will further consider only

stable flows. This assumption will make it possible to

consider all the functions appearing in systems (1)–(3) to

be independent of time, and, therefore, will make it possible
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to neglect the partial derivative with respect to time, leav-

ing only the terms of the convective derivative in the

Navier–Stokes equations (1) and the heat equation (2). We

also assume that the fluid flow occurs inside an infinite

horizontal layer (see figure 1) of constant thickness h and is

sheared; moreover the fluid layers are directed parallel to

the horizontal plane Oxy. This assumption allows us to

consider the vertical velocity Vz identically equal to zero,

which in turn also leads to a simplification of the form of

system (1)–(3).

The exact solution of the system (1)–(3) is sought in the

form [41–43]

Vx ¼ U zð Þ; Vy ¼ V zð Þ; Vz ¼ 0;

P ¼ P0 zð Þ þ P1 zð Þxþ P2 zð Þy;
T ¼ T0 zð Þ þ T1 zð Þxþ T2 zð Þy:

ð4Þ

Note that solutions of the form (4) describe three-dimen-

sional (in coordinates) distributions of the temperature and

pressure fields, which make it possible to take into account

the inhomogeneity of the distribution of these physical

characteristics within each sub-layer. We also note that the

dependence of the velocities U, V (as well as the coeffi-

cients of linear forms describing the pressure P and the

temperature T) on the vertical coordinate z can have an

arbitrary character, i.e. be polynomial, exponential,

trigonometric or a general function.

In addition the fact that real processes in a fluid are

anisotropic gives grounds to use the thin layer approxima-

tion, i.e. consider the vertical size h (see figure 1) to be

much less than the characteristic horizontal size of the

layer. This assumption allows us to neglect the deformation

of the upper free surface of the considered fluid layer.

We substitute the class of exact solutions (4) into the

nonlinear system (1)–(3). The resulting expressions pro-

jected onto the axes Ox, Oy and Oz are written in the fol-

lowing form:

m
o2U

oz2
¼ P1; m

o2V

oz2
¼ P2;

oP0

oz
þ oP1

oz
xþ oP2

oz
y ¼ gb T0 þ T1xþ T2yð Þ;

UT1 þ VT2 ¼ v
o2T0
oz2

þ o2T1
oz2

xþ o2T2
oz2

y

� �
:

ð5Þ

Let us present similar terms in relations (5) and write the

resulting expressions as the following linear forms:

Ak þ Bkxþ Cky ¼ 0:

Let us further use the method of undefined coefficients, and

equate the expressions B, C in front of the independent

variables x, y, as well as the homogeneous term A to zero.

As a result of this operation we obtain the following sys-

tem, consisting of eight nonlinear equations, for the deter-

mination of the eight unknown functions (the equations in

the system are written in the order of integration):

T 00
1 ¼ 0; P0

1 ¼ gbT1;

T 00
2 ¼ 0; P0

2 ¼ gbT2;

mU00 ¼ P1; mV 00 ¼ P2;

vT 00
0 ¼ UT1 þ VT2; P0

0 ¼ gbT0:

ð6Þ

The resulting system (6) is a 13th-order system; therefore,

to determine the integration constants, it is necessary to set

13 boundary conditions.

3. Boundary value problem

We assume that the lower boundary of the infinite hori-

zontal layer of the fluid given by the equation z ¼ 0 is

absolutely solid and fixed. The temperature at the lower

boundary is equal to the zero reference value. Besides, the

Navier slip condition is set on the lower boundary.

In view of the structure (4) of the selected generalized

class of solutions, the Navier slip conditions are written in

the following form:

T0 0ð Þ ¼ T1 0ð Þ ¼ T2 0ð Þ ¼ 0;

a
oU

oz
jz¼0 ¼ U 0ð Þ; a

oV

oz
jz¼0 ¼ V 0ð Þ:

ð7Þ

Here, a is a dimensional slip factor (slip length).

The values of the temperature and pressure, as well as the

horizontal temperature and pressure gradients, are deter-

mined on the upper (free) surface z ¼ h. Besides, tangential
stresses induced by the thermocapillary effect are specified

on the upper boundary of the fluid layer. According to the

structure of the class of solutions (4), these conditions take

the following form:
Figure 1. Fluid flow scheme.
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T0 hð Þ ¼ 0; T1 hð Þ ¼ A; T2 hð Þ ¼ B;

P0 hð Þ ¼ S0; P1 hð Þ ¼ S1; P2 hð Þ ¼ S2;

g
oU

oz
jz¼h ¼ �rT1 hð Þ; g

oV

oz
jz¼h ¼ �rT2 hð Þ:

ð8Þ

Here, r and g are the temperature coefficients of surface

tension and dynamic viscosity, respectively. Note that

specifying a non-uniform pressure distribution at the upper

boundary of the layer under consideration allows one to

construct generalizations of the classical unidirectional

Poiseuille flow [44] caused by the pressure drop when

passing from one region of fluid flow to another. From the

point of view of the physics of the process such a boundary

condition arises, for example, when a fluid flows out

through a slot with a slowly varying gap width or at the

interface between a fluid and a gas.

The solution of the equation system (6), satisfying the

boundary conditions (7), (8), is polynomial, i.e.

T1 ¼
Az

h
; P1 ¼

Agb
2h

z2 � h2
� �

þ S1;

T2 ¼
Bz

h
; P2 ¼

Bgb
2h

z2 � h2
� �

þ S2;

U ¼ S1
2m

z2 � 2h zþ að Þ
� �

þ Agb
24mh

z4 � 6h2z2 þ 8h3 zþ að Þ
� �

� Ar
g

zþ að Þ;

V ¼ S2
2m

z2 � 2h zþ að Þ
� �

þ Bgb
24mh

z4 � 6h2z2 þ 8h3 zþ að Þ
� �

� Br
g

zþ að Þ;

T0 ¼
AS1 þ BS2
120hmv

3z5 � 10hz4 � 20hz3aþ h3z 7hþ 20að Þ
� �

þ A2 þ B2ð Þgb
5040h2mv

5z7 � 63h2z5 þ 140h3z4
�

þ280h3z3a� 2h5z 41hþ 140að Þ
�
þ

A2 þ B2ð Þr
12hvg

h� zð Þz h2 þ hþ zð Þ zþ 2að Þ
� �

;

P0 ¼ S0 �
AS1 þ BS2ð Þgb

240hmv
z� hð Þ2 4h4 � z4þ

�
2hz2 zþ 5að Þ þ 2h3 4zþ 5að Þ þ 5h2z zþ 4að Þ

�

� A2 þ B2ð Þgbr
120hgv

z� hð Þ2 3h3 þ 2hz 2zþ 5að Þþ
�

þz2 2zþ 5að Þ þ h2 6zþ 5að Þ
�

þ A2 þ B2ð Þg2b2

40320h2mv
z� hð Þ2 183h6 � 69h2z4 þ 10hz5þ

�
5z6 þ h4z 221zþ 1120að Þ þ h5 366zþ 560að Þ
þ4h3z2 19zþ 140að Þ

�
:

ð9Þ

In what follows, we focus on the investigation of the

velocity field (4) of the convective fluid flow. It follows

from the analysis of the formulas (9) that each velocity

component is determined by the interaction of three flows:

a flow caused by pressure drop (the Poiseuille flow), a flow

caused by heating/cooling and the effect of the gravity

force (the thermogravitational flow) and a flow caused by

heating/cooling and the fluid surface tension effect (the

thermocapillary flow). At a certain value of a, each of these

flows separately can admit the appearance of a stagnation

point. The overlap of these flows significantly complicates

the topology of the velocity field.

The velocity components U and V are proportional (ve-

locity U ¼ cV) when the following double equality holds:

S1
S2

¼ A

B
6¼ 0:

The flow becomes unidirectional, and the velocity direction

is determined by the angle c ¼ arctg U=Vð Þ measured from

the axis Ox. In this case, the dimension of the velocity

analysis problem can be reduced. Also note that, according

to (9), with a simultaneous substitution of S2 for S1 and B
for A, an expression for the velocity component V can be

obtained from the expression for U. Therefore, the results

of studying the velocity component U can be easily

extended to the case of considering the velocity component

V. In view of this reasoning, we will focus on studying the

behavior of the velocity Vx ¼ U.

Note that, in the isothermal case A ¼ B ¼ 0ð Þ, the

velocity component U is determined only by the Poiseuille

flow

U ¼ S1
2m

z2 � 2h zþ að Þ
� �

:

Moreover, the Poiseuille flow does not presume the

occurrence of stagnation points.

Let us further study the effect of slip length a and layer

thickness h on the velocity profile in the non-isothermal

case. For this purpose we consider the limiting case S1 ¼ 0

for which, by virtue of (9), the velocity component U is

described by the expression

U ¼ A
gb
24mh

z4 � 6h2z2 þ 8h3 zþ að Þ
� �

� r
g

zþ að Þ
� 	

:

ð10Þ

The form of the velocity component (10) clearly illustrates

that the absence of a Poiseuille-type flow leads to the fact

that, as distinct from the solution (9), the temperature

gradient A has no effect on the position of the critical point

in the fluid layer for the velocity component. Note that,

even when r ¼ 0, the velocity expression (10) is able to

describe the appearance of stagnation points. Figure 2

shows characteristic profiles of the velocity U for various
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values of h (the average values of the parameters for water

at a temperature of 20�C are considered in the calculations).

The number of stagnation points for a fixed value of a is

different for different values of h. This is due to the change

in the shape of the velocity component profile. There exists

such a value of layer thickness above which the linear term

Ar zþ að Þ=g dominates in the expression (10). Otherwise,

the velocity component profile is determined by the second

term. For the selected fluid (water at 20�C) the value of the
critical height is comparable to unity in the order of mag-

nitude, but this value may differ for other fluids and for

other temperature conditions.

4. Velocity field analysis for the no-slip condition
at the lower boundary

In the limiting case a ¼ 0, the Navier condition in the

boundary conditions (7) degenerates into the classical no-

slip condition U 0ð Þ ¼ 0. As a result, the velocity U takes

the following form:

U ¼ z
S1
2m

z� 2hð Þ þ Agb
24hm

z3 � 6h2zþ 8h3
� �

� Ar
g

� 	
:

ð11Þ

As mentioned earlier, each velocity component is deter-

mined by the interaction of three flows. The case of the

absence of the Poiseuille flow (the longitudinal pressure

gradient at the upper boundary is zero) was discussed in

detail in [45]. The possibility of the existence of counter-

flows induced in a fluid layer by the interaction of the

thermocapillary and thermogravitational flows was

demonstrated.

Next, we investigate the behavior of the fluid flow in the

horizontal layer under study additionally taking into

account the Poiseuille flow. The analysis of the structure of

expression (11) allows us to conclude that the contribution

of the Poiseuille flow described by the monotonic polyno-

mial z� 2hð Þ is that, in particular, the number of stratifi-

cation points in the velocity component U increases by one.

Thus, the total number of stagnation points in the velocity

component defined by equation (11) can reach two (see

figure 3).

The layer thickness h affects the contribution of the

nonlinear term to the final velocity (11) in the same way as

it does in expression (10). Figure 4 shows the profiles of the

velocity components U for different values of fluid layer

thickness h.
It is obvious that the profiles are nonlinear and that there

is no symmetry in their position relative to the axis Oz. In
addition, if the profile shape at a specific layer thickness h is
known, it is easy to evaluate the pressure gradient at which

the velocity component U has a stagnation point in the fluid

layer under study.

5. Boundary value problem with perfect slip
conditions at the lower boundary

The boundary conditions for the velocity components take

the following form in the case of perfect slip at the lower

boundary:

oU

oz
jz¼0 ¼ 0;

oV

oz
jz¼0 ¼ 0;

g
oU

oz
jz¼h ¼ �rT1 hð Þ; g oV

oz
jz¼h ¼ �rT2 hð Þ:

All these boundary conditions are Neumann-type boundary

Figure 2. Profiles of the velocity U in a particular case

S1 ¼ 0 m/s2 with different values of h: h ¼ 10 m (solid lines)

and h ¼ 0:1 m (dashed lines) (four slip length variants are taken in

the calculations: a0 ¼ 0 m (thick curves), a1 ¼ 0:1 m, a2 ¼ 0:3 m

and a3 ¼ 0:5 m).

Figure 3. Profile of the velocity component U in the limiting

case of two stagnation points.
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conditions; therefore, the question of their consistency

arises. It can be proved that, if the condition

S1 ¼
gbgh2 � 3mr

3hg
A ð12Þ

is met, the velocity component U can be determined with an

accuracy up to a constant term as

U ¼ 1

24hm
Agbz4 þ 12hS1 � 6Agbh2

� �
z2

� �
þ C: ð13Þ

The compatibility condition (12) imposed on the boundary

conditions means that, if the equality (12) holds, the stated

boundary value problem has a solution, but a non-unique

one, since the velocity component U depends on the con-

stant term C. It is necessary to add another boundary con-

dition for the velocity component to be determined

uniquely. This condition should be either Dirichlet-type or

Robin-type, since only these boundary conditions include

not only the derivative but also the function itself (the

velocity component in this case).

As an additional condition, we consider the fluid flow

rate through the layer thickness:

Q ¼
Z h

0

Udz: ð14Þ

If Q ¼ 0, the boundary value problem solution asymptoti-

cally describes the flow in a closed layer. Such flows

include, for example, the distribution of a viscous adhesive

(with the properties of a non-Newtonian fluid) in a sand-

wich composite used for a tighter adhesive bond between

the layers of the composite. Note that the flow rate value is

related to the average fluid flow velocity. The substitution

of solution (13) into condition (14) allows us to define the

constant C as

C ¼ �20h3S1 þ 9Agbh4 þ 120Qm
120hm

:

In this case, the velocity component U has the following

form:

U ¼ 1

120hm
5Agbz4 þ 60hS1 � 30Ahbh2

� �
z2

�
þ �20h3S1 þ 9Agbh4 þ 120Qm
� ��

:
ð15Þ

Let us now analyze the behavior of velocity component

(15) with an arbitrary fluid flow rate Q through the layer

thickness. Let us begin with the particular case when the

temperature gradient along the longitudinal coordinate at

the upper boundary of the fluid layer is equal to zero

A ¼ 0ð Þ. In this case, the velocity component expression

(15) can be written as

U ¼ 1

6hm
3hS1z

2 � h3S1 þ 6Qm
� �

:

Then, a single stagnation point can exist only when the

following inequality is fulfilled:

�h3S1 þ 6Qm
� �

h3S1 þ 3Qm
� �

\0:

The return flow is not observed if the longitudinal pressure

gradient is zero.

If the temperature gradient is nonzero A 6¼ 0ð Þ, we can

represent the velocity component U(15) as

U ¼ Agb
24hm

z4 þ 12h

gb
S1
A
� 6h2

� �
z2

�

þ � 4h3

gb
S1
A
þ 9

5
h4 þ 24m

gb
Q

A

� �	
:

ð16Þ

Next, we introduce the dimensionless vertical coordinate

Z ¼ z=h 2 0; 1½ �. The velocity component U (16) then has

the following form:

U ¼ Agbh3

24m
Z4 þ 2

6

gbh
S1
A
� 3

� �
Z2þ

�

þ � 4

gbh
S1
A
þ 9

5
þ 24m
gbh4

Q

A

� �	

¼ Agbh3

24m
Z2 þ 6

gbh
S1
A
� 3

� �2

�b

" #
;

ð17Þ

where

b ¼
4 3Agb 3Agbh4 � 10Qmð Þ � 40Agbh3S1 þ 45h2S21
� �

5A2g2b2h4
:

The study of the spectral properties of the polynomial (17)

allows us to conclude that the number of zeros in this

polynomial in the interval 0; 1ð Þ does not exceed two.

Consequently, the velocity component U can have two

Figure 4. Profiles of the velocity component U for fixed

S1 ¼ �0:7 m/s2 and different values of h: (curve 1—h ¼ 10 m,

curve 2—h ¼ 1 m, curve 3—h ¼ 0:1 m, curve 4—h ¼ 0:01 m,

curve 5—h ¼ 0:0001 m).
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stagnation points inside the fluid layer under study (see

figure 5).

Note that, due to the structure of velocity class (4), the

vorticity components

Xx ¼ � dV

dz
¼ � 1

h

dV

dZ
; Xy ¼

dU

dz
¼ 1

h

dU

dZ

coincide with tangential stresses with an accuracy up to a

constant factor:

syz ¼ g
dV

dz
¼ g

h

dV

dZ
; sxz ¼ g

dU

dz
¼ g

h

dU

dZ
:

The tangential stresses can change their sign through the

layer thickness. Indeed, the stress

sxz ¼
g
h

dU

dZ
¼ Agbh2g

6m
Z2 þ 6

gbh
S1
A
� 3

� �
Z

can vanish inside the layer at only one point

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 6

gbh
S1
A

s
;

if gbh=3\S1=A\gbh=2. The tangential stress changes its

type at this point (from tensile to compressive), and the

vortex Xy changes its direction to the opposite. As this takes

place, the velocity component U can have one or two

stagnation points or none at all.

If the condition gbh=3\S1=A\gbh=2 is not fulfilled the

vortex direction remains constant, and the stress sxz retains
its type through the entire layer thickness. Herewith, the

velocity component U can change its sign once inside the

fluid layer.

6. Boundary value problem with the Navier slip
condition at the lower boundary

Let us study the properties of the exact solution (9) for an

arbitrary a 2 0;1ð Þ. Here, we reduce the obtained solu-

tions (9) to a dimensionless form to analyze the velocity

field. We choose, respectively, h, l and gbAl3=m as the

characteristic scales of the vertical length, the horizontal

length and the velocity and introduce new dimensionless

variables as follows: X ¼ x=l; Y ¼ y=l; Z ¼ z=h. As a

result, in view of solution (9), the velocities can be written

in a dimensionless form as

U ¼ d2

2

Ga

Gr
Z2 � 2 Z þ a

d

� �h i
þ d3

24
Z4 � 6Z2 þ 8 Z þ a

d

� �h i

� dMg

GrPr
Z þ a

d

� �
;

V ¼ d2n
2

Ga

Gr
Z2 � 2 Z þ a

d

� �h i
þ d3f

24
Z4 � 6Z2 þ 8 Z þ a

d

� �h i

� dfMg

GrPr
Z þ a

d

� �
:

ð18Þ

Here,

Ga ¼ S1l
3

m2
; Gr ¼ gbAl4

m2
;

Mg ¼ Arl2

gv
; Pr ¼ m

v

are the Galileo, Grashof, Marangoni and Prandtl dimen-

sionless numbers, respectively; f ¼ B=A; n ¼ S2=S1 are the

ratios of the longitudinal components of the temperature

and pressure gradients, respectively; a ¼ a=l is a dimen-

sionless parameter characterizing the slip length relative to

the thickness of the fluid layer under study; d ¼ h=l is the
ratio of the vertical to horizontal characteristic dimension.

Each of the three terms of the velocity component U
describes the characteristic flows in the fluid layer. We

denote these terms as follows:

U1 ¼
d2

2

Ga

Gr
Z2 � 2 Z þ a

d

� �h i
;

U2 ¼
d3

24
Z4 � 6Z2 þ 8 Z þ a

d

� �h i
;

U3 ¼
dMg

GrPr
Z þ a

d

� �
:

The first term U1 describes the Poiseuille flow caused by

pressure drop, the second term U2 describes the thermo-

gravitational flow and the third term U3 describes the

thermocapillary flow. All the terms in the expressions (18)

are monotonic functions. We study these flows separately

and their interaction for the existence of stagnation points.

In the interval Z 2 0; 1ð Þ the functions U1;U2 and U3

cannot take the zero value. The polynomial (18) can have

Figure 5. Profile of the velocity U with perfect slip at the lower

boundary of the layer.
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up to two zeros in the interval 0; 1ð Þ depending on the

values of the dimensionless similarity numbers

Ga, Gr, Mg, Pr, i.e. the velocity component U can have

two stagnation points in the layer 0; 1ð Þ. Similar conclu-

sions are valid for the velocity component V.
As an example, figure 6 shows the profiles of the functions

U (solid line) and V (dashed line) for d ¼ 0:0843433; a ¼
0:00843433; Ga ¼ �1:64194; Gr ¼ �49:889; Pr ¼ 6:7;
Mg ¼ 0:18; n ¼ 0:882; f ¼ 0:85. Figures 7 and 8 show the

stream lines and the hodograph of the velocity vector V,
respectively, with the same values of the parameters. Fig-

ures 6–8 illustrate the counterflow areas in the fluid layer

under study.

We give a physical interpretation of the obtained solution

(18). Under certain conditions for the similarity numbers

Mg; Pr; Ga and Gr, the velocity components U and V can

vanish at the boundaries Z ¼ 0 and Z ¼ 1 of the fluid layer.

Thus, the velocity component U is equal to zero on the

lower solid surface when the following condition is met:

Mg ¼ dPr
3

dGr � 3Gað Þ: ð19Þ

Similarly, the velocity component V is zero on the lower

surface when the following condition is met:

Mg ¼ dPr
3f

dfGr � 3nGað Þ: ð20Þ

The tangential stresses defined by the relationships

sXZ ¼ 1

d
dU

dZ
¼ dGa

Gr
Z � 1ð Þ

þ d2

6
Z3 � 3Z þ 2
� �

� Mg

GrPr
;

sYZ ¼ 1

d
dV

dZ
¼ dnGa

Gr
Z � 1ð Þ

þ d2f
6

Z3 � 3Z þ 2
� �

� Mgf
GrPr

ð21Þ

vanish due to the boundary condition (7) when the condi-

tions (19) and (20) are fulfilled, respectively. Making a

reverse transition to dimensional variables in (21), we

obtain the values of layer thickness h at which the tan-

gential stresses sXZ and sYZ vanish at the lower boundary of

the fluid layer. These layer thickness values can be deter-

mined from the following algebraic equations:

h2

3l2
� S1h

gbAl2
� mr
gbl2g

¼ 0;

h2f
3l2

� S1nh
gbAl2

� mrf
gbl2g

¼ 0:

ð22Þ

Thus, there are no tangential stresses on the lower rigid

surface at the following fluid layer thickness values:

h1;2 ¼
3S1g�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9S21g

2 þ 12A2gbgmr
p

2Agbg
;

h3;4 ¼
3S1ng�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9S21n

2g2 þ 12A2f2gbgmr
q

2Afgbg
:

ð23Þ

For the values of layer thickness hiði ¼ 1; 4Þ determined by

the expressions (23) to have a physical meaning, several
Figure 6. Profiles of the velocity components U (solid lines) and

V profiles (dashed lines).

Figure 7. Stream lines.

Figure 8. Hodograph of the velocity vector V ¼ U;V ; 0ð Þ.
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conditions must be met: the non-negativity of the radicands

in (23):

S21 � � 4

3

A2gbmr
g

;

S21 � � 4

3

A2f2gbmr

gn2
;

ð24Þ

and such ratios of the pressure and temperature gradients

specified at the upper boundary that the resulting layer

thickness expressions are positive. The expressions in the

right-hand sides of the inequalities (24) may assume both

positive and negative values in view of the fact that the

temperature coefficient of surface tension may be both

positive and negative in the case of abnormal (non-New-

tonian) fluids [1].

It can be concluded from the analysis that, if the fluid

layer thickness h is equal to h1 or h2, the tangential stress

sXZ is zero on the solid lower surface. If the fluid layer

thickness h takes one of the values h3 or h4, the tangential

stress sYZ is zero on the lower surface. Obviously, with a

certain choice of parameters, the tangential stresses sXZ and

sYZ may vanish simultaneously on the lower surface spec-

ified by the equation Z ¼ 0. It is possible to observe this

effect in fluids whose surface tension coefficient decreases

with increasing temperature [1].

Similarly, the point Z ¼ 1 is the zero of functions U and

V if, respectively, the following conditions are met:

Mg ¼ dPr
24 aþ dð Þ d 8aþ 3dð ÞGr � 12 dþ 2að ÞGa½ �;

Mg ¼ dPr
24 aþ dð Þf d 8aþ 3dð ÞfGr � 12 dþ 2að ÞnGa½ �:

ð25Þ

Note that, due to the boundary condition (8), the tangential

stresses sXZ and sYZ can vanish at the upper boundary of the

fluid layer if the thermocapillary effect can be neglected

(the horizontal temperature gradients at the upper boundary

prove to be zero).

7. Conclusion

In this paper, an exact solution has been obtained for the

three-dimensional problem of the convective flow of a

viscous incompressible fluid. The velocity components

have been determined as functions of the transverse coor-

dinate. The temperature and pressure in a fluid layer have

been set by linear functions in two longitudinal coordinates.

On the upper free surface of the fluid layer, the Benard–

Marangoni convection with non-zero temperature and

pressure gradients has been considered. Three types of

boundary conditions have been considered on the lower

solid surface of the fluid layer: the no-slip condition, the

perfect slip condition and the Navier slip condition. It has

been shown how temperature and pressure variation on the

free surface and the value of the slip length a influence the

occurrence of stagnation points and counterflow regions in

the fluid layer flow. The resulting solution is applicable to

the description of both large-scale flows and flows in thin

films through the variation of the geometric anisotropy

factor.

List of symbols

A, B values of temperature gradients on upper

boundary of fluid layer

g acceleration of gravity

Ga; Gr Galileo and Grashof dimensionless numbers

h thickness of fluid layer

Ma Marangoni dimensionless number

P pressure, divided by average fluid density

P0;P1;P2 components of pressure field

Pr Prandtl dimensionless number

Q fluid flow rate through the layer thickness

S1; S2 values of pressure gradients on upper boundary

of fluid layer

T temperature

T0; T1; T2 components of temperature field

V velocity vector

Vx;Vy;Vz projections of velocity vector on coordinate

axis

U, u, V components of velocity field

x, y, z Cartesian coordinates

Z dimensionless vertical coordinate

a dimensional slip factor (slip length)

b temperature coefficient of volume expansion

d ratio of the vertical to horizontal characteristic

dimension

f ratio of the longitudinal components of the

temperature gradients

g coefficient of dynamic viscosity

m coefficient of kinematic viscosity of the fluid

n ratio of the longitudinal components of the

pressure gradients

r coefficient of temperature surface tension

sxz; syz tangential stresses

v coefficient of thermal diffusivity of the fluid

Xx;Xy vorticity components
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