ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 55-10 (2022) 572-577

A Problem-Specific Branch-and-Bound

Algorithm for the Protected Shortest

Simple Path Problem with Must-Pass
Nodes

Yuri Ogorodnikov *** Roman Rudakov *** Daniil Khachai ***
Michael Khachay *

* Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg,
Russia (e-mail: {khachay,yogorodnikov} @imm.uran.ru)
** Ural State Federal University, Fkaterinburg, Russia, (e-mail:
r.a.rudakov@gmail.com)
*** Kedge Business School, Bordeaux, France (e-mail:

daniil.khachai@kedgebs.com)

Abstract: An instance of the Protected Shortest Simple Path Problem with Must-Pass
Nodes (PSSPP-MPN) is specified by an edge-weighted directed graph with dedicated source,
destination, and additional must-pass nodes. The goal is to find two vertex-disjoint paths, such
that the former one is simple, visits all the must-pass nodes, and has the minimum transportation
cost. In this paper, we show that the PSSPP-MPN is strongly NP-hard even for subsets of
must-pass nodes of arbitrary fixed size and propose a novel problem-specific branch-and-bound
algorithm for this problem. Results of competitive numerical evaluation against the public
dataset 'Rome99’ from the 9th DIMACS Implementation Challenge show that the proposed
algorithm notably outperforms the state-of-the-art MIP-optimizer Gurobi both by accuracy

and execution time.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Protected Shortest Simple Path Problem with Must-Pass Nodes,

Branch-and-Bound algorithm, MILP models

1. INTRODUCTION

The Protected Shortest Simple Path Problem with Must-
Pass Nodes (PSSPP-MPN) is a combinatorial optimiza-
tion problem that has a great influence on communication
network construction (Rak (2015); Su et al. (2019)).

Generally speaking, the PSSPP-MPN can be formulated
as follows.

We are given by a transportation network represented in
terms of an edge-weighted digraph with selected source
node s, destination node t and an additional subset of
must-pass nodes F, respectively. It is required to find a
shortest simple s-t-path visiting all the nodes from F' (also
called main path) protected by an additional backup s-
t-path that has no common nodes with the former one,
except its end-points. In communication networks, such a
path plays a role of a backup route in case of any accidence
on the main one (Cholda et al. (2008, 2009)).

Unlike the close Shortest Path Problem (SPP) that can
be solved to optimality in polynomial time by the well-
known Dijkstra’s algorithm (Dijkstra (1959)), the PSSPP-
MPN appears to be strongly NP-hard enclosing the classic
Traveling Salesman Problem (TSP).

Related work. The PSSPP-MPN belongs to a wide
family of the optimal routing combinatorial optimiza-

tion problems, including the classic TSP and its gener-
alizations (see, e.g. Gutin and Punnen (2007); Khachay
and Neznakhina (2018, 2020)) and Vehicle Routing Prob-
lem (Pessoa et al. (2020); Khachai and Dubinin (2017);
Khachay et al. (2021)). Among them, the most close is
the Shortest Simple Path Problem with Must-Pass Nodes
(SSPP-MPN), whose goal is the same as for the considered
problem excluding a backup path construction. To the
best of our knowledge, the SSPP-MPN was introduced
in (Saksena and Kumar (1966)). Also, in the same paper
there was proposed the first simple algorithm for SSPP-
MPN but, as shown in (Dreyfus (1969)), it turns to be
erroneous. Later, there were developed the first dynamic
programming scheme and branch-and-bound algorithm
(Ibaraki (1973)) relied on the flow MILP-model for the
classic Shortest Path Problem. Unfortunately, these meth-
ods have a huge running times and cannot be applied to
practical instances.

First compact MILP-models, which can be tackled by
MIP-solvers, were proposed in (Andrade (2016)). Several
efficient meta-heuristics are known for SSPP-MPN (Su
et al. (2019); Gomes et al. (2017); Martins et al. (2017)).
Finally, in (Kudriavtsev et al. (2021)), a first branch-and-
bound algorithm was proposed, which is proven to be
efficient even on large networks (Kudriavtsev et al. (2021)).

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2022.09.455

Yuri Ogorodnikov et al. / IFAC PapersOnLine 55-10 (2022) 572-577 573

The well-known shortest k-Vertex-Disjoint Paths Problem
(k-DPP) turns to be another problem close to the PSSPP-
MPN. An instance of the k-DPP is given by an edge-
weighted graph G = (V, E, ¢), where ¢: E — R specifies
the transportation costs, and a collection of ordered pairs
C = {(si,t;) € V?}, i = 1,k, where s; and t; are source
and destination nodes respectively. The goal is to find k
simple node-disjoint paths connecting s; and ¢; such that
its total cost is minimal.

If k belongs to the instance, the DPP is NP-hard (Karp
(1972)). Moreover, the k-DPP is NP-hard for any fixed
k > 2 if the graph G is oriented (Fortune et al. (1980)).
Nevertheless, there are known several efficient algorithms
proposed for the case of planar graphs (Datta et al.
(2018)) and for the class of undirected graphs when k = 2
(Bjorklund and Husfeldt (2014)).

Unlike the aforementioned problems, the PSSPP-MPN
was not intensively researched in terms of algorithmic
design. This problem was firstly introduced in paper
(Gomes et al. (2015)). Later, in papers (Gomes et al.
(2017); Martins et al. (2017)), several heuristics for the
PSSPP-MPN were proposed and evaluated on the data
from SNDLib library (SNDLib (2022)). Although, the
mentioned heuristics perform quite well on this dataset,
sizes of the testing instances (at most 300 nodes in a graph)
are still far from the practice. In this paper, in attempt to
bridge this gap, we propose two more efficient branch-and-
bound algorithms.

Our contribution is two-fold. First, we prove that
PSSPP-MPN is NP-hard even for any fixed positive num-
ber of must-pass nodes. Second, we describe a novel
problem-specific branch-and-bound algorithm that can be
applied to sufficiently large instances of the PSSPP-MPN;,
and prove its high performance on a real-life dataset taken
from the 9th DIMACS Implementation Challenge - Short-
est Paths (DIMACS (2006)) in comparison with the state-
of-the-art MIP-optimizer Gurobi.

The rest of our paper is structured as follows. In Section 2,
we recall mathematical formulation of the PSSPP-MPN
and the corresponding MILP-model, which is used in the
subsequent numerical experiments as a baseline. Further,
in section 3, we establish complexity status of the PSSPP-
MPN. In Section 4, we describe two versions of the
proposed branch-and-bound algorithm.

Section 5 is dedicated for the numerical evaluation carried
out on the dataset 'Rome99’ DIMACS (2006). Finally,
in Section 6, we summarize our results and discuss open
questions.

2. PROBLEM STATEMENT

An arbitrary instance of the Protected Shortest Simple
Path Problem with Must Pass Nodes (PSSPP-MPN) can
be given by an edge-weighted directed graph G = (V, A, ¢),
where ¢ : A — R, specifies transportation costs, an
ordered pair (s,t) called source and destination, and a
subset F' C V of must pass nodes that can be visited in an
arbitrary order. The goal is to construct a pair of s-t-paths
(3, p3), such that

- pj is simple and visits all the nodes from F;

- p} and p5 are node-disjoint;
- p} has mininum cost.

In the sequel, we refer to pj and p5 as main and backup
paths, respectively. Furthermore, without loss of general-
ity, we assume that the node s has no incoming and the
node ¢ has no outgoing arcs.

In (Gomes et al. (2017)), a compact MILP-model for
the problem in question, based on dual variables and
Big-M penalty parameters was proposed. Unfortunately,
this model appears to be insufficiently robust to small
distortions in the input data. Therefore, for the subsequent
numerical evaluations, we employ another model, which is
our adaptation of the model @4 from (Andrade, 2016).

(M) : min Z cijTij1 St)
(i,5)eA
-1, i=1
R ieV),
Z Zij,p — Z ZTjip = 1, i =s, (i) ()
0. oth . (pefl,2})
(4,5)€A (ji)EA , otherwise
Z Tij,1 = Z Tji1 =1 (ieF) (3)
(i,5)€A (ji)EA

|F|+1,i=s
Z fij1 — Z fji1 = —-1,i€e FU{t} (ieV) (4)

0, otherwise

(i,j)€A (j,i)EA
zij1 < fij1 S (Fl+1) 210 ((3,5) € 4) (5)
Z (zij1+xi52) <1, (GE€V\{st}) (6)
(i,j)€EA
zijp €{0,1}, (4,5 €V) (p€{1,2}). (7

Here, the variable z;; indicates whether the arc (¢, j) € A
belongs or not to the path pi. We introduce flow variables
fij1 to ensure connectivity of the subgraph induced by
the arcs (¢,j), for which z;;1 > 0. Meantime, we skip
the variables f;; 2, since the similar subgraph defined by
the values x;; 2, besides a backup path, may contain some
number of circulations.

As it follows from the problem statement, the objective
function specified in (1) represents the cost of a main path.
Then, equation (2) specifies the degree constraints for the
both paths, while (3) forces the main path to to visit each
the node from F' (at once). Equations (4) and (5) allows us
to avoid subtours in the constructed solution and to link
flow fi;1 and arc z;; 1 indicator variables. Finally, equation
(6) guarantees that each node can be visited at most one
time.

It is easy to see that the size of the proposed model
depends polynomially on the size of the input graph G.
More exactly, the number of variables and constraints is
O(IV] +1AD.

In the sequel, we will consider a special case of the PSSPP-
MPN, where |F| = k, for some fixed number k. To the sake
of clarity, we call this problem PSSPP-k-MPN.

3. COMPUTATIONAL COMPLEXITY

The problem PSSPP-k-MPN seems to be extremely close
to the classic polynomially solvable Shortest Path Prob-
lem. Nevertheless, we show that PSSPP-k-MPN remains
NP-hard for any natural k.

Theorem 1. For any fixed k > 1, the PSSPP-E-MPN on
digraphs is strongly NP-hard.

574 Yuri Ogorodnikov et al. / IFAC PapersOnLine 55-10 (2022) 572-577

Theorem 1 follows from the fact that the Simple Shortest
Path Problem with & Must-Pass Nodes (SSPP-k-MPN) is
polynomially reducible to the problem in question. Indeed,
suppose we are given by an instance of the SSPP-k-
MPN specified by an edge-weighted digraph G, source and
destination nodes s and ¢, and a subset of must-pass nodes
F. In the case, when s and t are adjacent, any simple
s-t-path visiting all the nodes from F can evidently be
augmented with the backup path that consists of the single
arc (s,t).

Otherwise, we can assign to the initial instance of the
SSPP-k-MPN an auxiliary instance of the PSSPP-k-MPN
as follows. Consider an extension of the graph G obtained
by inclusion an additional node w and two arcs (s, w) and
(w, t). Since both instances have the same family of simple
s-t-paths visiting all the must-pass nodes from the subset
F ans each such a path can be augmented with the backup
path s-w-t, the desired reduction follows.

To be fair, we should notice that the PSSPP-k-MPN be-
come polynomially solvable any time, when transportation
costs fulfills the triangle inequality.

4. PROBLEM SPECIFIC BRANCH-AND-BOUND
ALGORITHM

In this section we describe the proposed algorithm. In fact,
we propose two versions of this algorithm. We call the
former one basic, since its structure seems to be a little bit
simpler. On the other hand, the more advanced version
performed slightly better in numerical tests (see results in
Section 5).

4.1 Basic version

Our proposed algorithm is essentially based on the Branch-
and-Bound method proposed recently in paper (Kudriavt-
sev et al. (2021)). Its main components are preprocessing,
greedy start heuristic, branching, and asynchronous local
search. Consider each of them in detail.

Preprocessing. For a given input graph we iteratively cut
off all its leaves. Any time, when an arbitrary must-pass
node becomes a leaf, we stop our algorithm and conclude
that the given PSSPP-£-MPN instance is infeasible.

After the ending of this leaves-elimination procedure, we
added to the obtained graph an extra node w, whose
incoming and outgoing arcs are the same as for the s and
t, respectively (see Fig. 1). Denote the obtained auxiliary
graph as (. Notice, that an arbitrary s-w-path in G
corresponds to some feasible main path pj in the initial
graph G, while a w-t-path corresponds to some backup
one.

Greedy start heuristic. For a given value of parameter
o, consider exactly o random permutations of the set
F = {my,...,my}. For a permutation =, consider the
ordered sequence §,Mg(1y,---,Mx(k), W, t, extend F as
follows: my o) = 8, Mrr1) = w, and My(x42) = t, and
set H = G. Then, for each i € {0,...,k + 1}, we try to
connect M ;y with my;11) by a simple path segment in
the graph H.

If such a segment does not exist, we break the loop and
proceed with another permutation. Otherwise, we exclude

Fig. 1. An additional vertex w has incoming arcs the same
as for s and outgoing arcs as for ¢. In this example,
my and msy are must-pass nodes

all the nodes of this segment (except my(;41)) from the
graph H and pass to the next iteration.

If we are managed to construct all the m(;-mz(;41)-path
segments, we obtain a feasible solution of our problem,
where the main path is induced by a concatenation of the
first k41 of them and the last segment produces a backup
path.

Branching. At any node (including root spawned by
the initial graph G) we construct an auxiliary weighted
digraph G’ = (Z, A’) of shortest paths, such that

- Z = FU{s,w,t}, where w is the aforementioned extra
node

- for any nodes 2’ and 2z in G’ there is the arc (2/,2")
if and only if in the digraph G, for some r, there exists
a path P(r) = 2/ v, ..., 0;,, 2", st {vig,...,v, } N
=0

- if 2/ = w and 2" = t, we weight the arc (2/,2") € A’
by the minimum r in such a path P(r), otherwise the
weight of (2/,2") is defined by the minimum cost of
such paths P(r).

Next, we find the shortest Hamiltonian s-t-path P’ in G'.
It can be done in a constant time, since |F| is fixed. Then,
we transform P’ to the corresponding path P in the graph
G and check whether P is simple or not. In the first case,
P is a feasible solution, we update the UB record and cut
off the current branch.

Otherwise, we perform the following actions:

- update the lower bound in the current node (also
called local lower bound (LB)) with the cost of the
found non-simple path P;

- recursively check the parent node and update its own
local LB choosing the minimum among the local LBs
of its child nodes;

- proceed with the branching by removing from the
graph G each arc incident to a node of P visited more
than once.

A branch is pruned any time, when one of the following
criteria is met:

- feasible solution found

- the auxiliary graph G’ has no Hamiltonian paths

- the weight of the obtained non-simple path P is
greater than the current UB.

Local search. To improve the quality of the main branch-
ing procedure, we use the following asynchronous local
search primal heuristic. Taking as input a non-simple path
P and a node v visited by P more than once, our heuristic

Yuri Ogorodnikov et al. / IFAC PapersOnLine 55-10 (2022) 572-577 575

try to replace some segment of P containing ¢ twice with
another the shortest feasible segment containing this node
with exactly ones. Notice, that if the initial segment visits
some must-pass nodes, its replacement should visit these
nodes as well. Any time, when the heuristic are managed
to obtain a feasible solution, the UB record is also updated.

4.2 Improved version

In this section we describe a slightly more advanced version
of the proposed Branch-and-Bound algorithm.

Instead of introducing an extra node w, in this version we
find a desired pair of paths (pf,p3) directly. In addition,
we introduce some supplementary heuristics, which lead
to increasing of the overall performance. In the sequel,
we restrict ourselves only on the updated features of the
algorithm.

Greedy start heuristic. For any permutation 7 and a
sequence § = Mgy, M (1) Ma(k)s T = My(kt1), any time,
when we are managed to find a simple M. (;)-Mmy(;41)-path
segment, we verify whether there exists a s-t-path avoiding
all the nodes form the constructed partial path connecting
s and My (;41)- In the case, where such a path is absent,
we break the loop and proceed with another permutation.

If this greedy heuristic completes successfully, it provides
both main and backup paths, i.e. a feasible solution of the
given instance.

Branching. As the basic version, the branching is based
on arc exclusion for any vertex of the graph G visited
by the appropriate relaxed solution more than once. But,
unlike the basic version of BnB Algorithm considered at
the previous subsection, we start the processing of an
arbitrary node of the search tree (including the root) with
the following preliminary steps.

(i) we iteratively cut all leaves in the graph G associated
with the current node (for the root, G = G);

(ii) for the obtained graph, we verify the existence of a
backup path from s to t that avoids all the must-pass
nodes.

If we observe that some of must-pass nodes become a leaf
at step (i) or there is no backup path at step (ii), we prune
the considered branch.

On the other hand, if the steps (i) and (ii) are successfully
passed, we construct an auxiliary weighted digraph G’ =
(Z, A") by the similar way with the only difference: in this
case, we need not to include an extra node w and set
Z = FU/{s,t}.

As for the basic version, we proceed with finding a shortest
Hamiltonian path. After that, we transform it to the main
path p; in the initial graph G. By construction, there exist
another s-t-path ps that avoids all the nodes from F. If
the paths p; and ps are node-disjoint (except s and t),
and p; is simple, we update record UB and cut off the
current branch. Otherwise, we proceeding with branching
by removing edges incident to nodes (p; Np2) \ {s,t}.

Local search. At this stage, we added to the local graph

copy G an additional node w, whose incoming arcs are the
same as for ¢ and outgoing are as for the node s. After

that, we concatenate our paths p1 = s,v;,,.

P2 = S, ’Ujl, .
follows:

.., 0;,.,t and
., vj,,t, to produce the auxiliary path p as
D=5,V ,..
and feed the obtained not necessarily simple path as an
input to our local search heuristic. If local search are
managed to transform this path to a simple one, we obtain
once more feasible solution and update the UB record.

-7viraw7vj17'-~7vjq7t

We implemented both algorithms on Python 3.8 using
NetworkX and multiprocessing packages with no other non-
standard dependencies.

5. NUMERICAL EVALUATION

In this section, we describe how we carried out the nu-
merical experiment and evaluated the performance of the
proposed algorithms.

Table 1. Evaluation summary: best values are

highlighted.
feas. sol. (%) [avg. gap (%) [avg. time (sec)

k 2
Ay 99.8 3.4 421.7
Ag 99.8 2.2 585.5
M 100.0 3.9 1526.9
Myrrps 100.0 2.8 1228.7

k 4
Aq 100.0 4.9 739.2
Ay 100.0 3.2 916.8
M 100.0 12.8 3018.0
Mairps 100.0 7.4 2704.5

k 6
Ap 99.4 5.6 924.2
Ao 99.8 5.3 1459.1
M 99.6 15.2 3470.0
Murps 100.0 8.2 3191.4

k 8
Aq 99.6 6.4 1606.7
Ao 99.8 4.2 1175.1
M 97.4 16.4 3526.4
Myrrps 100.0 8.8 3337.8

Experimental setup. All experiments were made using
‘Rome99’ dataset from the 9th Implementation Challenge
— Shortest Paths (DIMACS (2006)). The used data is the
directed road network around the city of Rome, Italy, and
is represented by a weighted digraph G of 3353 vertices
and 8870 arcs.

16 Al I

14 Az]:

12 M :[
E N Muips
§. I 1
" I

i

I
2 &= L]

MPN2 MPN4 MPN6 MPN8

Fig. 2. Average gap with 95% confidence bounds.

For every k € {2,4,6,8}, we generated 500 instances on
the same graph G with exactly £ must-pass nodes. Source,

576

Yuri Ogorodnikov et al. / I[FAC PapersOnLine 55-10 (2022) 572-577

Computational platform is Intel(R) CPU 4 x 2.60 Ghz 8

w0 — Gb RAM with Centos 9 Linux OS.
" e ;; . Results. Table 1 and Fig. 2 represent the obtained results.
o i We denote basic version of our agorithm as A; while the
o — LI improved version is referred to as As. The first column
. Ao represents the ratio of found feasible solution for each
—— Mus method. The second column contains the average gaps for
" R ! L W all competitive methods, where UB is the value of the best
o found feasible solution while LB is the best lower bound.
(@) Finally, the third column reflects the average computation
time for all proposed methods.
N A A Table 2. Probability distributions of random
os A — A gaps for MPN values 2 and 4
—— Muips b — Muips
o gow gap percentiles (%)
04 B s # of must-pass nodes
. 2 4
Ll « level (%) A1 AQ Myrrps Ay Az Myrrps
" e om0 -l , > — 10 0.0 0.0 0.0 0.2 0.0 0.3
20 0.1 0.0 0.0 0.8 0.3 0.9
(b) 30 0.5 0.2 0.0 1.4 0.7 1.0
40 1.0 0.5 0.6 2.3 0.9 4.4
50 1.6 0.8 0.8 3.3 1.6 6.4
w0 — A 60 2.6 1.0 0.9 1.4 2.6 8.8
o — A5 70 4.1 2.1 1.0 5.9 3.9 11.3
— Mues 80 5.8 3.6 5.1 8.0 5.6 13.5
h . 90 9.1 5.8 104 | 112 | 85 16.3
1 — A o 100 46.4 22.8 25.0 31.5 31.5 29.0
0z As
. — Muips Table 3. Probability distributions of random
3) ST e e w e gaps for MPN values 6 and 8
() gap percentiles (%)
of must-pass nodes
6 8
e 010 — A a level (%) Ay A2 Myrrps Ay A2 Myrrps
os — A 10 0.6 0.2 0.9 0.8 0.5 1.0
— Mups 20 1.0 0.7 2.1 1.7 1.0 3.7
h g 30 1.9 1.0 14 2.7 1.7 5.5
o — A 00a 40 2.6 1.5 6.2 3.6 2.7 7.0
02 A . 50 3.7 2.2 8.0 4.6 3.7 8.4
" —— Muips 60 5.0 3.5 9.4 5.8 4.8 9.9
3 = N 5 @ A SR eI 70 6.3 4.7 11.3 7.9 6.5 11.7
. } 80 8.5 6.6 13.4 10.11 8.5 13.7
(d) 90 12.3 9.9 15.6 12.6 11.6 16.4
Fig. 3. Empirical distribution functions and densities of 100 p44 | 448 | 280 | 617 | 580 | 330

random gap obtained by BnB algorithms and Gurobi
for: (a) two, (b) four, (c) six, and (d) eight must-pass
nodes

destination, and must pass nodes are sampled at random.
For any generated instance, we ensure that no must-pass
node become a leaf in the graph G.

As baselines, for each instance, we use two runs of the
state-of-the-art Gurobi MIP-optimizer (Gurobi Optimiza-
tion (2021)) equipped with model (1)-(7). In the first run,
we call it M, Gurobi is leaved to find a start soluion in its
own while, in the second run called My;;ps, we supply the
solver by the MIP-start solution provided with our start
heuristic.

We establish 1% gap tolerance for all the algorithms, where
gap stands for an upper bound for the standard relative
error gap = (UB — LB)/LB > . Time limits are 1800 sec
for our algorithms and 3600 sec for Gurobi, respectively.

As can be seen from Table 1, both proposed algorithms
find a feasible solution more than in 99% instances. These
presented results also show that our methods have a
notably better approximation ratio compared to Gurobi,
even if it is provided by a MIP start solution.

To perform the more accurate analysis, we estimate em-
pirical distributions and densities for random gaps pro-
vided by all the competitive algorithms. For the sake of
brevity, we report these results only for best performers.
The results are summarised in Table 2-3 and illustrated in
Figures 3a-3d. In particular, these data helps us, for any
algorithm, to establish guaranteed accuracy by the formula

P (gap < threshold) > «.

For instance, with confidence level o = 80% for 4 must-
pass nodes, algorithm A; finds an approximate solution
with guaranteed gap at most 8.0%, algorithm A; — 5.6%,
while Gurobi with MIP-start solution — only 13.5%.

Yuri Ogorodnikov et al. / IFAC PapersOnLine 55-10 (2022) 572-577 577

6. CONCLUSION

In this paper, we present two versions of novel Branch-
and-Bound algorithm for the Protected Shortest Simple
Path Problem with a fixed number of Must-Pass Nodes.
The numerical experiments show that the proposed algo-
rithms notably outperform the state-of-the-art MIP-solver
Gurobi, even in the case, when it is supplied with the same
MIP-start solution. In future work, we plan to apply the
proposed methods to a significantly larger network and to
extend our BnB approach to similar problems.

ACKNOWLEDGEMENTS

Yuri Ogorodnikov, Roman Rudakov, and Michael Khachay
were supported by Ural Mathematical Center and the
Ministry of Science and Higher Education of the Russian
Federation (Agreement no. 075-02-2022-874).

REFERENCES

Andrade, R.C.d. (2016). New formulations for the elemen-
tary shortest-path problem visiting a given set of nodes.
European Journal of Operational Research, 254(3), 755—
768. doi:10.1016/j.ejor.2016.05.008.

Bjorklund, A. and Husfeldt, T. (2014). Shortest two dis-
joint paths in polynomial time. In J. Esparza, P. Fraigni-
aud, T. Husfeldt, and E. Koutsoupias (eds.), Automata,
Languages, and Programming, 211-222. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Cholda, P., Mykkeltveit, A., Helvik, B., Wittner, O., and
Jajszezyk, A. (2008). A survey of resilience differentia-
tion frameworks in communication networks. Commu-
nications Surveys & Tutorials, IEEFE, 9, 32 — 55. doi:
10.1109/COMST.2007.4444749.

Cholda, P., Tapolcai, J., Cinkler, T., Wajda, K., and
Jajszezyk, A. (2009). Quality of resilience as a network
reliability characterization tool. IEEE Network, 23, 11—
19. doi:10.1109/MNET.2009.4804331.

Datta, S., Iyer, S., Kulkarni, R., and Mukherjee, A.
(2018). Shortest k-disjoint paths via determinants. In
FSTTCS 2018s, volume 122 of Leibniz International
Proceedings in Informatics (LIPIcs), 19:1-19:21. doi:
10.4230/LIPIcs. FSTTCS.2018.19.

Dijkstra, E.W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1), 269—
271. doi:10.1007/BF01386390.

DIMACS (2006). 9th DIMACS
tation Challenge — Shortest Paths.
http://users.diag.uniromal.it/challenge9.

Last accessed on Jan. 14, 2022.

Dreyfus, S. (1969). An appraisal of some shortest
path algorithm. Oper. Res., 17, 395-412. doi:
10.1287/opre.17.3.395.

Fortune, S., Hopcroft, J., and Wyllie, J. (1980). The di-
rected subgraph homeomorphism problem. Theoretical
Computer Science, 10(2), 111 — 121. doi:10.1016/0304-
3975(80)90009-2.

Gomes, T., Marques, S., Martins, L., Pascoal, M., and
Tipper, D. (2015). Protected shortest path visiting
specified nodes. doi:10.1109/RNDM.2015.7325218.

Gomes, T., Martins, L., Ferreira, S., Pascoal, M.,
and Tipper, D. (2017). Algorithms for deter-
mining a node-disjoint path pair visiting specified

Implemen-

URL

nodes. Optical Switching and Networking, 23. doi:
10.1016/j.0s1n.2016.05.002.

Gurobi Optimization, L. (2021). Gurobi optimizer ref-
erence manual. URL https://www.gurobi.com/docu-
mentation/9.5/refman/index.html.

Gutin, G. and Punnen, A.P. (2007). The Traveling Sales-
man Problem and Its Variations. Springer US, Boston,
MA.

Ibaraki, T. (1973). Algorithms for obtaining shortest paths
visiting specified nodes. SIAM Review, 15(2), 309-317.
URL http://wuw. jstor.org/stable/2028603.

Karp, R. (1972). Reducibility among combinatorial prob-
lems. Complezity of Computer Computations, 40, 85—
103. doi:10.1007,/978-3-540-68279-0_8.

Khachai, M.Y. and Dubinin, R.D. (2017). Approx-
imability of the vehicle routing problem in finite-
dimensional euclidean spaces. Proceedings of the
Steklov Institute of Mathematics, 297(1), 117-128. doi:
10.1134/50081543817050133.

Khachay, M. and Neznakhina, K. (2018). Towards
Tractability of the FEuclidean Generalized Traveling
Salesman Problem in Grid Clusters Defined by a Grid
of Bounded Height, volume 871 of Communications in
Computer and Information Science, 68-77. Springer
International Publishing, Cham. doi:10.1007,/978-3-319-
93800-4_6.

Khachay, M. and Neznakhina, K. (2020). Complexity and
approximability of the Euclidean Generalized Traveling
Salesman Problem in grid clusters. Annals of Math-
ematics and Artificial Intelligence, 88(1), 53-69. doi:
10.1007/s10472-019-09626-w.

Khachay, M., Ogorodnikov, Y., and Khachay, D. (2021).
Efficient approximation of the metric CVRP in spaces of
fixed doubling dimension. Journal of Global Optimiza-
tion, 80, 679-710. doi:10.1007/s10898-020-00990-0.

Kudriavtsev, A., Khachay, D., Ogorodnikov, Y., Ren, J.,
Shao, S.C., Zhang, D., and Khachay, M. (2021). The
Shortest Simple Path Problem with a Fixed Number of
Must-Pass Nodes: a problem-specific branch-and-bound
algorithm. volume 12931 of Lecture Notes in Computer
Science, 198-210. doi:10.1007/978-3-030-92121-7_17.

Martins, L., Gomes, T., and Tipper, D. (2017). Efficient
heuristics for determining node-disjoint path pairs vis-
iting specified nodes. Networks, 70(4), 292-307. doi:
10.1002/net.21778.

Pessoa, A., Sadykov, R., Uchoa, E., and Vanderbeck, F.
(2020). A generic exact solver for vehicle routing and
related problems. Mathematical Programming, 183, 483—
523. d0i:10.1007/s10107-020-01523-z.

Rak, J. (2015). Resilient Routing in Communication
Networks. Computer Communications and Networks.
Springer. doi:10.1007/978-3-319-22333-9.

Saksena, J.P. and Kumar, S. (1966). The routing problem
with 'k’ specified nodes. Operations Research, 14(5),
909-913.

SNDLib (2022). Sndlib: the data source for all people
working on optimization of telecommunications net-
works. URL http://sndlib.zib.de/home.action.

Su, Z., Zhang, J., and Lu, Z. (2019). A multi-stage meta-
heuristic algorithm for shortest simple path problem
with must-pass nodes. IEEFE Access, PP, 1-1. doi:
10.1109/ACCESS.2019.2908011.

