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Abstract. Map-based nonlinear neuron model proposed by Chialvo is considered under the influence of random disturbances. In
the deterministic case, the model possesses both mono- and bistability regimes with the coexistence of equilibrium and oscillatory
modes in a form of quasiperiodic closed invariant curves. Variability of noise-induced transformations in dynamics of this model is
demonstrated. Phenomena of noise-induced excitement, stochastic generation of mixed-mode oscillations, and transitions between
order and chaos are discussed.

INTRODUCTION

Nowadays, a study of neuronal activity is an attractive research domain for biologists, physicists and mathematicians.
The first biologically motivated electrophysiological model has been proposed by Hodgkin and Huxley [1]. This four-
dimensional model exhibits a diversity of complex oscillatory regimes that are difficult to study mathematically. So,
models of a smaller dimension were developed to catch key phenomena of neuron activity [2, 3, 4].

Along with continuous-time models determined by differential equations, discrete-time map-based models are ac-
tively used by researchers [5, 6]. Among others, the map-based Rulkov model and its modifications are widely studied
in context of neural networks, synchronization, dynamics of coupled systems, chimeras, etc. Stochastic effects in
Rulkov-type models were analysed in [7, 8, 9, 10].

It should be noted that one of the first discrete neuron model was the map-based model suggested by Chialvo [11].
It was found [12, 13] that even in deterministic case, this rather simple two-dimensional model reproduces such key
regimes of neuron activity as spiking, bursting, and chaos [14]. However, a behavior of this model in presence of
inevitable random disturbances remains without attention. In the present paper, we study how random disturbances
deform dynamical regimes of the Chialvo model.

First, we give a brief description of bifurcation scenaria and key regimes of the initial deterministic Chialvo model.
Further, we study the noise-induced deformations of equilibrium and oscillatory modes. A phenomenon of the

stochastic excitement is analysed. Two-stage transformations of oscillatory activity is demonstrated. We also discuss
the phenomenon of stochastic generation of mixed-mode oscillations.

DETERMINISTIC DYNAMICS

As a deterministic skeleton we use the neuron discrete-time model suggested in [11]:

xt+1 = x2
t exp(yt − xt)+ I,

yt+1 = ayt −bxt + c.
(1)

Here, variables x and y characterize the activation and recovery of neuron, respectively. The key parameter I is the
ion current injection, the parameter a stands for the time of recovery (a < 1). The parameter b define the activation-
dependence of the recovery process (b < 1) with the offset value c.

The system (1) models various regimes of neuronal dynamics [11]. Following [11], we fix a = 0.89, b = 0.6, c =
0.28 and study variability of the system (1) dynamics in dependence on the bifurcation parameter I.

In Figure 1, we show extreme values of x-coordinates of attractors of the system (1) versus parameter I. Here,
changes of dynamical regimes of the system (1) are connected with the following bifurcations: I1 = 0.02992 and
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FIGURE 1. Deterministic system (1): a) bifurcation diagram where extreme values of x-coordinates of attractors are shown; b) an
enlarged fragment with the bistability zone (I1, I2), where I1 = 0.02992, I2 = 0.03025

I2 = 0.03025 mark saddle-node bifurcations, and I3 = 0.11457 marks the Neimark-Sacker bifurcation. An enlarged
fragment is shown in Figure 1b.

a)
0 1

0

1

2

 

 

I = 0.1146
I = 0.114
I = 0.1
I = 0.05

x

y

b)
0 1

0

1

2

0.05 0.1
2

2.2

x

y

I = 0.03

FIGURE 2. Attractors of the deterministic system (1): a) equilibrium and closed invariant curves for various I; b) equilibrium and
closed invariant curve for I = 0.03

For any I > I3, the system exhibits the stable equilibrium as a single attractor. As the parameter I passes I3 from the
right to left, this equilibrium loses its stability and the new attractor in the form of closed invariant curve is born. The
closed invariant curve determines the quasiperiodic oscillatory activity of the neuron. At the bifurcation point I = I1,
this closed invariant curve disappears.

In the parameter zone 0 < I < I2, the system possesses the stable equilibrium (red). It should be noted that the
system has the bistability zone I1 < I < I3 where this equilibrium coexists with the stable closed invariant curve.

In Figure 2, attractors of the system (1) are shown for several values of the parameter I. Figure 2a illustrates
attractors in the monostability zone. Here, for I = 0.1146, one can see the stable equilibrium (black dot). It is also
shown how the form and size of the closed invariant curve changes with the variation of the parameter I.

The Figure 2b illustrates the attractors in bistability zone for I = 0.03. Here, the stable equilibrium is shown by
black dot, the stable closed invariant curve is shown by blue. The unstable closed invariant curve separated basins of
these two coexisting attractors is shown by red.

In Figure 3 we show how the oscillatory behavior changes with the variation of the parameter I. As can be seen,
with the decrease of I, small-amplitude quasi-harmonic oscillations of the variables x (blue) and y (red) transform into
large-amplitude spiking.
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FIGURE 3. Variability of oscillatory regimes in the deterministic system (1)

FIGURE 4. Stochastic excitement. Random states of solutions starting from the stable equilibrium for a) I = 0.03, b) I = 0.0302
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FIGURE 5. Random states of solutions starting from the stable closed invariant curve for a) I = 0.03, b) I = 0.0302

STOCHASTIC DYNAMICS

Consider the following stochastic version of the Chialvo model

xt+1 = x2
t exp(yt − xt)+ I + εξt ,

yt+1 = ayt −bxt + c,
(2)

where random disturbances model the noise in the parameter I of the acting ion current. Here, ξt is the uncorrelated
white Gaussian noise with parameters 〈ξt〉= 0, 〈ξ 2

t 〉= 1 , and ε is the noise intensity.
Consider stochastic effects in the bistability zone I1 < I < I2 where the stable equilibrium coexists with the stable

closed invariant curve. In Figure 4 for the system (2) the x- and y-coordinates of solutions starting from the deter-
ministic equilibrium are plotted versus increasing noise intensity ε for I = 0.03 and I = 0.0302. For small ε , random
solutions are concentrated near the initial stable equilibrium, and the dispersion remains almost unchanged.

However, when ε passes a certain threshold value, the dispersion of random states abruptly increases. Such phe-
nomenon of the stochastic excitement can be explained by noise-induced transition from the equilibrium to the vicinity
of the large-amplitude closed invariant curve. It should be noted that even small increase of I (from 0.03 to 0.0302)
causes sharp decrease of the corresponding threshold noise intensity.

Consider now how under increasing noise the behavior of random solutions starting from the closed invariant curve
changes. Here, in Figure 5, one can see that this behavior differs for I = 0.03 and I = 0.0302. For I = 0.03 (see
Figure 5a), the stochastic system undergoes two-stage transformation. Indeed, for weak noise, randomly solutions
slightly oscillate near the closed invariant curve. Corresponding noisy oscillatory time series are shown in Figure 6a
for ε = 0.0001.

With the further increase in noise, this regime is destroyed, large-amplitude oscillations are suppressed, and small-
amplitude oscillations near the equilibrium begin to be observed (see Figure 6b for ε = 0.0002). With the further
increase in noise, the system transits to the new regime of the intermittency of small- and large-amplitude stochastic
oscillations (see Figure 6c for ε = 0.001).

More detailed statistical analysis of the parametric dependence of this phenomenon on ε is shown in Figure 7. Here,
mean values 〈x〉 and 〈y〉 of the system (2) solutions starting from the equilibrium and closed invariant curve are shown
by red and green, correspondingly. For small ε , red and green curves are well separated. Under increase of noise, one
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FIGURE 6. Time series of solutions starting from the stable cycle for I = 0.03 and a) ε = 0.0001, b) ε = 0.0002, c) ε = 0.001
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FIGURE 7. Mean values of random states of solutions of the system (2) with I = 0.03 starting from the stable cycle (green) and
stable equilibrium (red)

can see how green curve approaches and merges with the red one. This merging marks the threshold noise intensity at
which the large-amplitude oscillations transform into the noisy oscillations near the equilibrium. If the noise intensity
exceeds this threshold, the stochastic dynamics becomes independent of the starting point.
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FIGURE 8. Largest Lyapunov exponent for I = 0.03 versus noise intensity ε

Consider now how noise changes internal dynamics of the stochastic system (2) solutions. In Figure 8, the largest
Lyapunov exponent Λ for the system (1) with I = 0.03 is plotted versus noise intensity. As one can see, under
increasing noise, the function Λ(ε) changes its sign from minus to plus, and then from plus to minus. Commonly,
such changes are interpreted as transitions "order→chaos→order".

050002-5

 22 April 2024 10:39:58



CONCLUSION

A problem of the mathematical modeling of neuron activity in presence of random disturbances was considered. As
a conceptual model we used two-dimensional map-based system suggested by Chialvo. In the paper, we considered
a parametric zone where this model exhibits mono- and bistability regimes with coexistence of attractors in the form
of equilibria and closed invariant curves. It was shown that the increasing random noise can significantly deform
the initial deterministic dynamics. Phenomena of noise-induced excitement, stochastic generation of mixed-mode
oscillations, and transitions to chaos were studied.
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