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Abstract. A hierarchical game with a random second player is considered, optimal strategies are defined on the base of Stackelberg
equilibrium. The random second player is understood as a randomly selected person from a homogeneous set of decision-makers.
The proposed model can be used in various problems. First of all, it is may be used for optimal price choosing for a new product.
In the article the model is applied to the problem of setting the optimal fare to a new route. A carrier acts as a first player, a
randomly selected passenger acts as a second player. It is assumed that the function of passenger’s preferences depends on a
random parameter. The price for the hierarchical game is an optimal payoff of the first player, this price is compared with the price
of a game in which the strategies of both players depend on a random parameter. A model example is considered.

INTRODUCTION

The choice of an optimal strategy for a significant number of applied problems can be formalized as a game theory
problem, including under conditions of incomplete information and risk, which are usually modeled using random
variables. Games with a random payoff matrix were investigated in [1], matrix games with probability-distribution-
valued payoff were studied in [2], where the authors construct a total ordering on a subset of the space of payoff
probability distributions and transfer Nash equilibrium concept of solution to these games. Hierarchical models of
game theory with asymmetric information conditions for players are often used in mathematical modeling of the
behavior of market participants [3, 4]. In this case, the strategies of the players that ensure the Stackelberg equilibrium
are considered optimal.

We deal with a hierarchical game with a random second player, in which the first player chooses a deterministic
solution, and the second player is represented by a set of decision makers. The strategy of the second player is for-
malized as a probabilistic solution to an optimization problem with an objective function depending on a continuously
distributed random parameter.

PROBABILISTIC SOLUTION TO STOCHASTIC OPTIMIZATION PROBLEM

In many situations, optimal strategies are chosen for optimization problems with many decision makers, each of them
chooses a decision based on his (her) criterion. The mathematical formalization of such problems leads to the study
of probabilistic solutions to stochastic optimization problems.

Let us consider the optimization problem with an objective function depending on a random parameter

min
y∈Y

f (y,ξ ), (1)

here Y ⊂ Rn is a compact set, ξ = ξ (ω) is a random vector defined on a probability space (Ω,F ,P) with values in
B⊆ Rm. Denote by

Y ∗(z) = Arg min{ f (y,z)|y ∈ Y}.

the set of solutions to the optimization problem

min
y∈Y

f (y,z), (2)
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for a fixed value of parameter z.
Definition 1. [5] The random compact set Y ∗(ξ ) = Y ∗(ξ (ω)) is called a probabilistic solution to stochastic opti-

mization problem (1).
Theorem 1. [6] Let the following conditions hold

1. the function f (y,z) is strictly convex in y and continuous in the aggregate of variables on Y ×Z,

2. Y ⊂ Rn is a convex compact set, Z ⊆ Rm is an open connected set;

3. ξ = ξ (ω) is a random vector taking values from the set Z with probability 1.

Then the solution y∗(z) of the problem (2) exists and is unique for all z ∈ Z, the function Y ∗(z) = y∗(z) is a continuous
vector function of the parameter z and y∗(ξ ) = y∗(ξ (ω)) is a random vector.

The theorem follows from Berge’s maximum theorem and measurability of continuous mappings [7].

HIERARCHICAL GAME WITH A RANDOM SECOND PLAYER

Definition 2. [8] Hierarchical game with a random second player

G(Pξ ) = 〈X ,Y, f1(x,y), f2(x,y,ξ ),Pξ 〉,

is defined, if there are given

1. the sets X and Y of possible strategies of the first and second players;

2. objective functions f1(x,y), f2(x,y,ξ ) of the first and second players, where function f1(x,y,ξ ) depends on the
variables x,y, function f2(x,y,ξ ) depends on the random parameter ξ too;

3. a distribution Pξ of the random parameter ξ .

We assume further that the function f2(x,y,ξ ) for every x ∈ X , the set Y and the distribution Pξ satisfy the condi-
tions of Theorem 1. In this case, the probabilistic solution to the problem

min
y∈Y

f2(x,y,ξ ), (3)

is a random vector denoted by y∗(x,ξ ).
A feature of the game is the number of possible states of nature and the number of possible strategies of players are

not finite as a rule.
Definition 3. [8] A couple of first and second player strategies {x∗,y∗(x∗,ξ )} is called Stackelberg equilibrium in

the hierarchical game with a random second player G(Pξ ) = 〈X ,Y, f1(x,y), f2(x,y,ξ ),Pξ 〉, if

1. y∗(x∗,ξ ) is the probabilistic solution to the problem (3) for x = x∗,

2. the vector x∗ ∈ X is the solution of the mean value optimization problem

max
x∈X

E ( f1(x,y∗(x,ξ )) . (4)

The strategies x∗ ∈ X and y∗(x∗,ξ ) are called optimal strategies of the first and second players, the value

c(G) = max
x∈X

E f1 (x,y∗(x,ξ )) , (5)

is called the optimal second player’s payoff or the price of the hierarchical game G(Pξ ) .
Theorem 2. Let the following conditions hold

1. the function f2(x,y,z) is strictly convex in y and continuous in the aggregate of variables on X ×Y ×Z, where
Z ⊆ Rm is an open connected set;

2. ξ = ξ (ω) is a random vector taking values from the set Z with probability 1.
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3. the function f1(x,y) is continuous in the aggregate of variables on X×Y ,

4. X ⊂ Rk is compact set, Y ⊂ Rn is a convex compact set.

Then optimal strategies of the first and second players x∗,y∗(x,ξ ) exist, and the price c(G) of the hierarchical game
G=G(Pξ ) with the random second player is defined.

Proof. For every fixed x ∈ X the function f2(x,y,z) and the sets Y and Z satisfy the conditions of Theorem 1, so the
optimal solution y∗(x,ξ ) of the stochastic optimization problem (3) is a random vector.

Let us consider the mean value of the function f1(x,y∗(x,ξ )). The continuity of this function and boundedness of
the set Y imply the existence of its mean value F1(x) = E f1(x,y∗(x,ξ )) for every x ∈ X [9].

The continuity f1(x,y) in x results in the continuity of its mean value function F1(x). A continuous function on a
compact set reaches its maximum, so a vector

x∗ = argmax
x∈X

F1(x)

exists and it is the optimal strategy of the first player.
Remark. In the condition of Theorem 2 the optimal strategy of the first player may be not unique.

COMPARISON WITH OTHER FORMALIZATIONS OF GAMES WITH RANDOM
PARAMETERS

Let us consider other games related to the considered game G(Pξ ) with a random second player, fist of all, study a
parametrical hierarchical game G1(z) = 〈X ,Y, f1(x,y), f2(x,y,z)〉 depending on a parameter z.

Definition 4. A couple of first and second player strategies {x∗1(z),y∗(x∗(z),z)} is called Stackelberg equilibrium
in the parametrical hierarchical game G1(z), if for every z ∈ Z

1. y∗ = y∗(x∗1(z),z) is a solution to the problem

f2(x,y,z)→min
y∈Y

(6)

for x = x∗1(z),

2. the vector x∗1(z) ∈ X is a solution to the parametrical optimization problem

max
x∈X

f1(x,y∗(x,z)). (7)

The strategies x∗1(z) : Z 7→ X and y∗(x∗1(z),z) : Z 7→ X are called optimal strategies of the first and second players for
the game G1(z), the function

c1(z) = max
x∈X

f1 (x,y∗(x,z)) = f1(x∗1(z),y
∗(x∗(z),z) (8)

is called a price of the parametrical game.
In the conditions of Theorem 2 for every z ∈ Z there are optimal strategies x∗1(z) and y∗(z) and the price c1(z).
If z = ξ is random, for example, it could be an external macroeconomic factor, that affects to the choice of a

consumer (the second player), and the first player (the seller) can take this factor into account and choose a strategy
depending on ξ .

In this case the optimal price c1(ξ ) is a random value and depends on the random parameter ξ . Let us compare the
mean value of the random optimal price with the price in the hierarchical game.

Theorem 4. The optimal price for the hierarchical game G(Pξ ) with a random second player is not grater than
the mean value of the probabilistic price c1(ξ ) for the random game G1(ξ ), i.e.,

c≤ c̄1 = Ec1(ξ ). (9)

Theorem 4 results from the property of the mathematical expectation of a random function η(ω,x):

max
x

Eη(ω,x)≤ E max
x

η(ω,x).
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Theorem 5. If the conditions of Theorem 2 hold and the function f1(x,y) is convex in x, then the optimal price in
the hierarchical game G satisfy the inequality

c≥ c2, c2 = max
x∈X

f1 (x,Ey∗(x,ξ )) . (10)

This statement results from the property of the mathematical expectation of a convex function. For any convex function
f (x) : Rn 7→ R1 and random vector η with mean value Eη it holds f (Eη) ≥ E f (η) [9]. Thus, E f1(x,y∗(x,ξ )) ≥
f1(x,Ey∗(x,ξ )) and c2 ≤ c.

OPTIMAL FARE CHOICE

Let us consider the problem of optimal fare choice for a new route. Our approach bases on the probabilistic model
of passenger preferences [10]. The carrier that sets the fare is treated as the first player and the set of passengers is
treated as the second player. The second player’s strategy is formalized as the probabilistic solution to the optimization
problem with a random objective function.

Let a passenger have a choice between n possible alternatives (routes). The set of alternatives is denoted by Y0 =
{e1, . . . ,en}, where ei are basis vectors in Rn. The vector y ∈ Y0 denotes the indicator of route selection (element of
the set of alternatives), that is y = ei means the passenger chooses the ith route.

Let ai are known trip costs and bi are trip times, i = 1,n.
In our consideration other conditions of travel (such as the convenience of timetables, etc.) are not taken into

account, so a passenger has two criteria for choosing between alternatives {e1, . . . ,en}:

A(y) = aT y, B(y) = bT y, (11)

where a = {a1, . . . ,an}, b = {b1, . . . ,bn}.
We use a generalized trip cost f (A,B,ξ ) as the criterion of passengers’ choice. In the simplest case it is the sum of

two criteria

f (y;ξ ) = A(y)+ξ B(y), (12)

where ξ ≥ 0 is «an individual price» of the time spent by a passenger. This parameter depends on a randomly chosen
passenger and is treated as random.

Thus, the choice of a random decision maker (passenger) is described as a probabilistic solution to the optimization
problem depending on the random parameter ξ

f (y;ξ ) = aT y+ξ bT y→min
y∈Y0

. (13)

The probabilistic solution to this problem is denoted by y∗(ξ ).
It is assumed that the random value ξ has a continuous distribution Pξ on the interval [t1, t2]⊆ [0,+∞). In this case

the solution y∗(ξ ) to the problem (13) consists of a single point with probability 1 [11]. The random vector y∗(ξ ) has
a discrete distribution that depends on the distribution of the random parameter ξ and the parameters of all routes a
and b.

Consider the problem of the setting a price for a newly introduced route. Let us denote the new route by en+1, and
an expanded set of alternatives by Y1 = Y0 ∪ en+1. The passenger’s choice of the newly entered route is indicated by
y∗(ξ ) = en+1.

Let us consider a game G(P). The first player is a carrier of a new type of transport (or a new route), his task is to
choose the fare x = an+1 for the new route to optimize the income from ticket sales.

The proposed model is simplified:

• as a rule, there are several tariffs (first and other classes, for frequently traveling passengers, etc.) for each type
of transport (route),

• travel time, generally speaking, is not a deterministic value, but has a dispersion,

• other conditions of travel (such as the convenience of timetables, etc.) are not taken into account,
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• the increase in customers flow due to the provision of more convenient travel is not taken into account in this
formalization.

The expected number of passengers on the new route is Nn+1 = N ·qn+1(x), here N is the total number of passengers
using this direction, qn+1(x) is probability of choosing a new route by a random passenger. This probability can be
written as

qn+1(x) = Pr{y∗(ξ ,x) = en+1}= E
(
eT

n+1y∗(ξ ,x)
)
,

where y∗(ξ ,x) is the probabilistic solution to the problem

f2(x,y,ξ ) = a(x)T y+ξ bT y→min
y∈Y1

, (14)

with a(x) = {a1, . . . ,an,x}, b = {b1, . . . ,bn+1}.
Let us denote the cost of servicing one passenger on a new route by a0. The carrier’s income on the new route

received from the travel of an individual passenger along a route y ∈ Y1 is denoted by f1(x,y), where

f1(x,y) = (x−a0)eT
n+1y. (15)

Choosing the price x = an+1 ∈ X = [a0;A0], the carrier (the first player) solves the problem of maximizing the
mathematical expectation of his income

E f1(x,y∗(ξ ,x))→max
x∈X

. (16)

Since the function f1(x,y) is linear in y, then

E f1(x,y∗(ξ ,x)) = f1(x,Ey∗(ξ ,x)) = (x−a0)
(
eT

n+1Ey∗(x,ξ )
)
= (x−a0)qn+1(x), (17)

and c = c2, where c2 is defined by equation (10).
The obtained hierarchical game can be written in the form

G(Pξ ) = 〈X ,Y1, f1(x,y), f2(x,y,ξ ),Pξ 〉, (18)

where functions f1(x,y) and f2(x,y,ξ ) are defined by relations (15) and (14). It is assumed that the random value ξ

has a given continuous distribution Pξ .
Generally speaking, the game (18) with criteria (15), (14) does not satisfy the conditions of Theorem 2, as the set

Y1 = {e1, . . . ,en+1} is nonconvex. This set may be replaced by its convex hull

Ŷ1 = {y ∈ Rn+1 : y1 + . . .+ yn+1 = 1, yi ≥ 1}.

The optimal solution ŷ∗(x,ξ ) to the problem

f2(x,y,ξ ) = a(x)T y+ξ bT y→min
y∈Ŷ1

,

coincides with the solution to problem (14) with probability 1 (see [11]).
The game Ĝ(Pξ ) = 〈X ,Ŷ1, f1(x,y), f2(x,y,ξ ),Pξ 〉 satisfy the conditions of Theorem 2, and optimal strategies in

the game Ĝ(Pξ ) are optimal strategies in the game G(Pξ ). Thus, the optimal strategies in the game G(Pξ ) exit.
Theorem 3. [10] The probability qn+1(x) of choosing (n+1)-th route equals

qn+1(x) = Pr{ξ ∈ [L(x),R(x)]}, (19)

where L(x) and R(x) are defined by relations

L(x) = max
b j>bn+1, j=1,n

{
0,

x−a j

b j−bn+1

}
, R(x) = min

b j<bn+1, j=1,n

{
x−a j

b j−bn+1
,+∞

}
. (20)

If (n+ 1)-th route is dominated by criteria {ai,bi}, then qn+1(x) = 0. In this case L(x) > R(x) and the segment
[L(x),R(x)] is the empty set.

The solution to the problem of choosing the optimal price consists of two stages:

• finding the value â by formula

â = max
j:b j<bn+1

a j,

• calculation of the optimal value x ∈ [a0; â] as a solution to the problem (16), (19) using numerical methods.
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Example

Let there be 3 possible routes (modes of transport) with given values of transportation prices and time {ai,bi}, i =
1,2,3 and one more route (mode of transport) with a given travel time b4 has been added. The problem of the first
player is to choose the optimal transportation price x = a4 to obtain the maximal profit under the assumption that the
second player (a randomly chosen passenger) chooses the route that is optimal according to the criterion of generalized
cost (12).

The calculations were carried out for the following data for 3 existing routes

{a1,b1}= {10;4}, {a2,b2}= {20;3}, {a3,b3}= {40;2}.

It is assumed that the random parameter ξ has a lognormal distribution with parameters µ = 2, σ = 1. The problem
of determining the optimal price for a route with travel time b4 = 3.5 and a0 = 5 is considered.

For the data in question â = 4. The third route is obviously preferable to the newly introduced one if x≥ 4 and the
probability that a passenger chooses a new route equals 0.

In this case the optimal price for the new route is x∗ = 10.12, the game price (the first player’s profit) is c = 4.96
(see Figure 1).

FIGURE 1. Dependence of the first player’s profit on the ticket price (along the horizontal axis)

The price c1(z) for parametric game G(z) has been calculated too. The dependence of c1(z) on z is shown on Figure
2. If z is the random parameter z = ξ having the lognormal distribution with µ = 2, σ = 1, then

Ec1(ξ ) = c̄1 = 6.54, c̄1 > c.

FIGURE 2. Dependence of the price c1(z) for parametric game on the parameter z

CONCLUSION

The hierarchical game with a random second player, in which the first player chooses a deterministic solution and
the second player is represented by a set of decision makers, have been proposed. The strategy of the second player
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is formalized as the probabilistic solution to the optimization problem with the objective function depending on a
continuously distributed random parameter. Some properties of the game price have been obtained.

The problem of optimal fare choice for a new route based on the probabilistic model of passenger preferences is
studied as a hierarchical game with a random second player.
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