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Abstract: The flow of a viscous incompressible fluid outflowing from a uniformly moving point
source is considered. An exact solution to the problem is found in the way that the velocity decreases
inversely with the radial coordinate. It is shown that a spherical volume of fluid is carried away
by the source, the radius of which is inversely proportional with respect to the velocity of motion.
In this case, a cylindrical discontinuity arises in the region of forming a wake behind the body, the
dimensions of which are determined by the magnitude of the external pressure and do not depend
on the velocity of the source. The obtained solutions are governed by hydrodynamical fields of flows
which can be recognized as special invariants at symmetry reduction.
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1. Introduction

The problem for the motion of bodies in a viscous fluid has numerous applications
and has been studied in sufficient detail [1-8]. The greatest attention is traditionally paid
to the description of the fluid flow near a moving body, where the velocity field depends
significantly on the shape and size of the object under study [1-8]. At the same time, at
sufficiently large distances, there must obviously be a universal solution, which will depend
on a certain set of parameters characterizing the properties of the fluid and the specific
mode of motion of the body. Moreover, taking into account the asymptotic nature of the
description of the flow, the real body can be replaced by a source of momentum of zero
size. In this paper, we consider a point source moving at a constant velocity in a viscous
incompressible fluid. The main and only assumption is the hypothesis of a hyperbolic
decrease in velocity with distance from the source, which is a direct consequence of the
momentum flux conservation.

2. Problem Statement

We consider a point source moving uniformly in a viscous incompressible fluid that
fills the surrounding space. It is required to determine the parameters of the flow that
decays (to be uniform or at rest) with sufficient distance from the source. To solve the
problem, let us go to the spherical coordinate system (7,8, ¢) associated with the source.
The coordinate system is non-inertial, and its origin moves together with the source. In this
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case, the stationary distribution of pressure and velocity is described by the Navier-Stokes
equation and the continuity equation:
V,[V,V)] = V(£ + %) 44V, [V, V] 0
V-V=0

Equation (1) is written in an invariant form. Here, V is the fluid flow velocity, P is the
pressure, p is the constant density of the fluid, v is the coefficient of kinematic viscosity, V
is the Hamilton operator, square brackets denote the vector product of vectors, and the dot
denotes the scalar product.

As for boundary conditions to the system of Equation (1), we accept the conditions of
pressure constancy and velocity uniformity at infinity:

P=Py, V=U, r — oo, @)

Py is the external pressure, U is the velocity of the body, which is assumed to be constant
and being directed in the opposite direction with respect to the polar axis, so that at 0 = 0,
the fluid flows onto the body under study. We assume that the velocity and pressure are
periodic functions with respect to the variables 6, ¢, and do not tend to infinity anywhere,
except for the origin and the line 6 = 7, which corresponds to the trace area. The introduced
assumption means that the speed and pressure can be infinite at every point on the line
0 = 7. We assume that the velocity at infinity is equal to U, where U is not equal to zero
(U # 0), since the description of the motion is asymptotic. Thus, we are not considering a
physical infinity, but a mathematical one. It is assumed that the region is finite, but at the
first stage of the study of fluid motion, we formally assume that it is infinite. It is obvious
that the exact solution, which will be announced below, will be valid for U = 0.

3. Exact Solution of Simplified Navier-Stokes Equations

Given the constancy of the momentum flux, we assume that the velocity decreases
inversely proportional with respect to the distance from the source, which, taking into
account the boundary conditions, leads to the following representation of the velocity field:

r

V=U+ [V, Y]+ [V, [V, @ 3)

where ¥ and & are unknown periodic functions with respect to the variables 8 and ¢.
Continuity Equation (1) and boundary conditions (2) are automatically satisfied, and the

velocity components have the following form:

V, = —Ucosd + %AdD,

—_19¥ 1 0&
V(P —  roae 1 rsig‘YG anpl’ . (4)
Vo = Usin® + rsin@ o 1 00"
. 2 . .
Here, A = s11119 % sin 9% + Sinlz 5 aaT;Z is the Laplace operator defined on a sphere of

unit radius.

To solve the problem, we represent the pressure as a series in inverse powers of the
radial coordinate, substitute the resulting expressions together with (4) into the initial
Equation (1) and equate the groups of terms with the same powers to zero. In this case, the
pressure components are found in explicit form, and for unknown functions, we obtain a
system of four partial differential equations.

4. Investigation of Hydrodynamic Fields

Analysis of these equations shows that they are solvable only in the class of potential
flows. Note that the requirement of belonging to the class of potential flows is a direct
consequence of the assumption of a hyperbolic decrease of velocity field with distance from
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the source. Thus, the system of Equation (1) is reduced to the Bernoulli equation and to the
condition that the rotor of velocity should be equal to zero, which altogether, after a simple
integration, leads to the following equations:

P=P+5U-U-V.V), 5)
AY =0, A® =g,

g is an arbitrary constant having the dimension of viscosity v.

Taking into account that, in accordance with the boundary conditions, the components
of the potentials ¥ and ® are periodic, as well as that the features of the velocity and pres-
sure are admissible only in the wake region, we write the general solution of Equation (5)
in the form of a Fourier series [9,10]:

“+o00

Y=Y fu(0)(ansinng + b, cosne),
G ©)
D= f(0)+ +Z fu(0)(aysinne + B, cosne),
1

where f(0) = 2gIn (cos(%) ), fn(0) = tg" (%), are the eigenfunctions of the Laplace
operator, ay, by, oy, B, are arbitrary constants.

To analyze the results to be obtained, we restrict ourselves to the case of an axisymmet-
ric flow (when the azimuthal component of the potential is equal to zero) and, according
to (6), of the assumption of only the first term to be present in the poloidal component
(ap, =by,=0and &, = B, = 0).

We substitute the obtained expressions into (4) and then afterwards introduce the
current function, and we obtain:

_ q_ 1 o

V, = —Ucos0 —I—(l, = e)rz prr i—,e ,aq) %
T q(1—cos@) _

Vo = Usin® — rsin® ~ rsin® or °

Expression (7) determines the dependence of the velocity on the coordinates 7, 8 and at
the same time, they are equations for the stream function 1. After solving these equations
and substituting Formula (7) into the Bernoulli Equation (5), we will determine the pressure
and the stream function, which, for convenience, can be represented as:

2.
% = Sz sin0 — % (1 —cos0),
P—P R R2 ®)
pU2 — 1 12(1+cos0)’

where R = % In the case of a source as the origin of the flow field, the parameter g is
positive, and in the case of a sink, in Formula (8) it is necessary to change the sign in
the terms containing the first powers of R. Then we should obtain expressions for the
hydrodynamic fields.
% = %sinZG + % (1 —cos9),

P—P _ R R? 9)

pU2 = v 2(14cos0)’

Analysis of Formula (8) shows that a spherical volume of radius R of fluid is carried
away by the moving source, inside which the velocity component along the axis of motion
of the body is positive, while the velocity of the external flow is negative (Figures 1-3).
Moreover, the fluid flows out of the trace area, which has zero thickness, and the parameter
g determines the amount of fluid flowing out of a segment of unit length per unit time.
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Figure 2. Plot of the dimensionless stream functions and pressure (r = 2R and q > 0).

The velocity of motion is equal to zero at the point of intersection of the lines on
which the stream function is equal to zero. The pressure, in accordance with the Bernoulli
Equation (5), at a given point takes on a maximum value equal to the sum of the external
pressure and the kinetic energy of the external flow. The area of reduced pressure is
separated from the external flow by a paraboloid of revolution, the center of which is
located at distance & in front of the body. The zone of zero pressure covers all surface of
the moving body and turns to be a cylindrical surface at a distance of sufficiently large
meanings of R, the radius L of which does not depend on the velocity of motion and is
determined by the pressure at infinity and by the density of the fluid:

2p

L=g By
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Figure 3. Plot of the dimensionless stream functions and pressure (r = 10R and g4 > 0).

In the case of a moving sink or drain as a origin of flow (g < 0), the fluid flows into
the wake’s area and, as in case of the aforementioned source motion, a cylindrical space
area of discontinuity of radius L is to be formed behind the body.

We note that the obtained solution corresponds to the problem of flow around a half-
of-infinite thread, on which sources or sinks of fluid are located, and g is the power per unit
length of the thread.

We note that Formulas (8) and (9) actually describe the formation of a cavitation
cushion (cylindrical wake) (Figures 4-6). Fluid flows into this trace, which can be used
to create new pneumatic and hydrotransport devices. For example, this exact solution
of simplified Navier-Stokes equations can help to transport goods over long distances.
A similar experimental approach is presented in article [11], and this article provides a
theoretical justification for a new method of momentum transfer in liquids.
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Figure 4. Plot of the dimensionless stream functions and pressure (R = r and g < 0).

An additional important remark should be mentioned regarding the physical essence
of the suggested class of solutions as follows: as for the negative value of pressure P, we
know physically reasonable cases of flows when pressure is transformed to be negative
(according to the results of profound work by the academician L.I. Sedov regarding the
conditions for boiling in the fluid flows: in the vicinity of or inside the bubbles during
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the boiling in the fluid flows, pressure appears to be negative, but these are very special
conditions for the flow of fluids). Namely, such fluids are incapable of taking tensile
loads (at negative pressure), whereas the abovementioned physical mechanism may be
treated as a phenomenon of boiling a liquid as soon as its pressure is lowered below zero
locally [11-13].
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Figure 5. Plot of the dimensionless stream functions and pressure (r = 2R and q < 0).
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Figure 6. Plot of the dimensionless stream functions and pressure (r = 10R and g4 < 0).

5. Conclusions

In this article, a new exact solution of simplified Navier-Stokes equations is obtained.
It describes the flow of a fluid generated by a point source. This exact solution of simplified
Navier-Stokes equations is similar in its form to the potential flow for an ideal fluid. It
is shown that there are two flow regimes. The assumed size of space of a cylindrical
discontinuity in a fluid is determined. The trace length does not depend on the velocity
of the moving source in the fluid. The obtained new exact solution of simplified Navier—
Stokes equations can become a fundamental basis for the development of new engineering
approaches for the design of pneumatic and hydraulic transport.

The obtained solutions are governed by hydrodynamical fields of flows which can be
recognized as special invariants at symmetry reduction. The final state of such maximal
symmetry reduction can be presented as Hopf bifurcation of zeroth order which can be
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considered to be a prototype for the study of a dynamical chaos for the trajectories of
non-stationary solutions [14-17].
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