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The role of incoming flow 
on crystallization of undercooled 
liquids with a two‑phase layer
Dmitri V. Alexandrov1,4 & Liubov V. Toropova2,3,4*

Motivated by important applications of crystallization phenomena, we consider a directional 
solidification process for a binary melt with a two‑phase (mushy) layer in the presence of weak melt 
flow. We consider the steady‑state solidification scenario, so that the two‑phase layer filled with 
solid and liquid material keeps its thickness. In addition, we consider that the melt flows onto the 
two‑phase layer slowly in the opposite direction to directional crystallization and solidifies there. A 
complete analytical solution to non‑linear two‑phase layer equations is constructed in a parametric 
form, where the solid phase fraction represents a decision variable. The temperature and solute 
concentration distributions, mushy layer permeability and average interdendritic spacing as well 
as solidification velocity and mushy layer thickness are analytically determined. We show that 
incoming melt flow plays a decisive role on mushy layer parameters and internal structures. The solid 
phase fraction within the two‑phase layer and its thickness essentially grow while the mushy layer 
permeability and average interdendritic spacing decrease with increasing intensity of incoming melt 
flow.

It is well known that a flat interface between the solid and liquid phases in the crystallisation processes of 
undercooled melts and supersaturated solutions can be morphologically unstable. The physical cause of such 
instability is thermal/concentration undercooling, anisotropy, fluid currents, melt convection as well as fluctua-
tions of external parameters governing the crystallization process (e.g. atmospheric temperature or under-ice 
friction velocity)1–11. The evolution of morphological instability leads to the growth of patterns and dendrite-like 
structures ahead of the crystallisation front. These growth formations form a two-phase (mushy) layer ahead 
of the front, filled with solid and liquid phases. In other words, the phase transformation from the undercooled 
liquid state takes place within this two-phase layer, which moves towards the melt due to the cooling of the solid 
material. Note that this layer completely changes the crystallization scenario. So, for example, the temperature 
at each point of this layer is lower than the crystallisation temperature and the growing patterns and dendrites 
release the latent heat of phase transformation and thus partially compensate for the undercooling. In addition, 
the growing solid phase displaces the dissolved impurity in front of it which lowers the crystallisation temperature 
according to the phase diagram. These processes lead to the formation of complex branching structures of the 
solid phase, the gaps between which are filled by a liquid with a higher impurity concentration. Gravity is usu-
ally present in experimental facilities and natural processes and can be the cause of natural  convection12–14. In 
addition, fluid currents in electromagnetic levitation apparatuses and natural processes can also lead to convec-
tion (see, among others,15,16). Convection is therefore one of the most important factors affecting the structure 
of the two-phase layer and the crystallisation process as a whole. Since the equations for convective heat and 
mass transfer are considerably more complex than similar equations in its absence, convective flows are usually 
analysed  numerically17–19.

In this study, we develop the analytical theory of a weakly flowing liquid (melt) into a two-phase region where 
freezing (solidification) of this liquid occurs. This approximation allows us to construct an analytical solution to 
the nonlinear problem with moving boundaries taking into account (i) the quasi-equilibrium structure of the 
two-phase layer (when undercooling is fully compensated by the latent heat of crystallization) and (ii) a constant 
crystallization rate. For solving the problem with two moving boundaries, we used the method of transition to 
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a new independent variable, the solid phase fraction, which was previously developed in Refs.20,21. The resulting 
solution establishes the effect of the fluid flow rate on the two-phase region and the characteristics of the solid 
phase. This article is organised as follows. The model of convective heat and mass transfer in all the phases is 
formulated in Section "The model". Its complete analytical solution is constructed in Section "Analytical solu-
tions". Behaviour of these solutions is discussed in Section "Behaviour of solutions". The main outcomes of the 
present theory are summarized in Section “Conclusion”.

The model
Consider a directional crystallisation process with constant velocity v along the spatial coordinate z, schemati-
cally illustrated in Fig. 1. Here the spatial axis z corresponds to the laboratory coordinate system while axis ξ 
moves together with a mushy layer ( ξ = v(z − vt)/Dl , t is time and Dl is the diffusion coefficient of solute). The 
two-phase layer of length δ = εv/Dl lies between purely solid ( ξ < 0 ) and liquid ( ξ > ε ) phases ( ε is the dimen-
sionless two-phase layer thickness). As this takes place, there is a weak flow of undercooled liquid in the opposite 
direction. For simplicity, we consider the case when this liquid is completely frozen in the two-phase layer.

The convective heat and mass transfer equations are as follows

where T and C stand for the temperature and solute concentration, ψ is the solid phase fraction ( ψ = 1 in solid, 
0 ≤ ψ ≤ 1 in the two-phase layer, and ψ = 0 in liquid), QV is the latent heat parameter, ke is the equilibrium 
partition coefficient, W is the volume flow of interdendritic liquid so that W = (1− ψ)w7,22,23 (barring dendrite 
erosion and breakage in the two-phase layer), w is the local velocity of liquid. Note that W satisfies the continuity 
law ∇ ·W = 0 . The density ρ , specific heat c, thermal conductivity k and diffusion coefficient D are dependent 
of ψ and defined, for simplicity, through the following linear  functions24

where subscripts s and l designate the solid and liquid phases, respectively. Here we traditionally neglect diffusion 
in solid. Note that these expressions give exact results for a laminated medium when there is no component of 
the heat flux normal to the planes of the laminates. Since it is found experimentally that the primary dendrites 
are aligned with the mean thermal gradient, these expressions are likely to give reasonable approximations for 
the description of a two-phase layer. Also, we describe here vertically oriented dendrites in the mushy layer found 
experimentally and simulated  numerically25,26.

Considering the model of quasiequilibrium two-phase layer, we relate temperature and solute concentration 
from the phase diagram as

where T∗ is the phase transition temperature for the pure system (for C = 0 ) and f(C) is the concentration-
dependent function. For example, dealind with the linear phase diagram, we have T = T∗ −meC , where 
f (C) = meC , and me is the equilibrium slope of liquidus line. If the liquidus equation deviates slightly from the 

(1)ρ(ψ)c(ψ)
∂T

∂t
+ ρlclW · ∇T =∇ · (k(ψ)∇T)+ QV

∂ψ

∂t
,

(2)
∂

∂t
((1− ψ)C)+W · ∇C =∇ · (D(ψ)∇C)− keC

∂ψ

∂t
,

(3)ρ(ψ)c(ψ) = ρscsψ + ρlcl(1− ψ), k(ψ) = ksψ + kl(1− ψ), D(ψ) = Dl(1− ψ),

(4)T = T∗ − f (C),

Figure 1.  A scheme of directional steady-state crystallization with a mushy layer in the presence of incoming 
flow. The origin of moving coordinate system is at the boundary solid phase—two-phase layer.
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linear relationship, a quadratic function should be  used27. In the more general case, Eq. (4) defines the experi-
mentally known relationship between crystallisation temperature and solute concentration.

The volume flux W of interdendritic liquid is connected with the permeability �(ψ) of two-phase layer and 
pressure p by means of Darcy’s  law7,23,28

Here g is the gravitational acceleration, η is the dynamic viscosity and ρc is a characteristic density of liquid.
An important feature of the problem at hand is the fact that variations in the temperature field lead to vari-

ations in the liquid density, which is responsible for natural  convection29. To account for this important effect, 
we will use a linear relationship between liquid density and temperature

where Eq. (4) was taken into account. In the case of linear liquidus line, we get ρl − ρc = ρcbC , where 
b = b0 + a0me.

The model Eqs. (1)–(6) should be supplemented with boundary conditions at the phase transition interfaces 
ξ = 0 and ξ = ε (see Fig. 1)

Here [·] indicates a jump in a physical value when crossing the boundary, and n is the normal vector. It is signifi-
cant to note that ψ = ψ∗ at the solid phase – two-phase layer boundary and ψ = 0 at the two-phase layer – liquid 
phase boundary ( ψ∗ should be found through solving the problem).

Analytical solutions
So, we consider the steady-state solidification process with established velocity v and two-phase layer thickness 
δ (Fig. 1). As this takes place, an incoming flow of undercooled liquid freezes in the phase interface ξ = 0 as 
well as a solid phase matrix within the mushy layer 0 < ξ < ε . Let us designate the velocity of this flow at ξ = 0 
through wl . In this case W = wl at ψ = 0 (at the two-phase layer - liquid phase boundary).

Using the dimensionless variable ξ = v(z − vt)/Dl and keeping in mind that ∂/∂z = (v/Dl)∂/∂ξ and 
∂/∂t = −(v2/Dl)∂/∂ξ , we rewrite the model (1)–(6) in the form

where C∞ is a constant solute concentration in liquid far from the two-phase layer (at ξ → ∞ ), and �0 is a ref-
erence value of mushy layer permeability � . The following dimensionless functions and parameters were used 
in deriving Eqs. (8)–(11)

Here � , � and p1 mean the dimensionless temperature, solute concentration and pressure, Ra stands 
for the Rayleigh number, and j characterizes the influence of incoming flow. Note that f1(�) = b and 
j = −Ra (�/�0)(dp1/dξ +�) in the case of linear liquidus slope. Let us especially emphasize that Eqs. (8) 
and (9) are dimensionless heat and mass transfer equations in the two-phase layer, while Eqs. (10) and (11) are 
dimensionless liquidus and Darcy’s equations.

The boundary conditions (7) at mushy layer interfaces read as

(5)
ηW

�(ψ)
= (ρl − ρc)g −∇p.

(6)ρl − ρc = ρc[b0C − a0(T − T∗)] = ρc
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,
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where �l = Tl/(meC∞) and �l = Cl/C∞ designate dimensionless temperature and solute concentration in 
liquid ( Tl and Cl represent their dimensional analogs), Gs = Dlgs/(meC∞v) , and gs represents the constant tem-
perature gradient in solid. It means that the temperature �s in the solid material at a certain distance ξ = −ξo 
from the two-phase layer is known, i.e. �s = �so at ξ = −ξo . Note that this condition ensures the steady-state 
crystallisation velocity v.

It is significant to note that

for dilute binary undercooled  melts21. Taking this into account we integrate Eq. (8) with allowance for Eq. (10) 
and arrive at

where A is constant.
Now substituting d�/dξ from (15) into the mass balance equation (9) and multiplying the result by dξ/dψ , 

we get

where �ε is the solute concentration at the boundary between the two-phase layer and liquid, and

Note that Eq. (16) represents the one-point Cauchy problem defining the solute concentration � as a function 
of solid phase fraction ψ in the case of arbitrary phase diagram (4) (arbitrary function f(C)).

Since the linear phase diagram is a very common case, we consider it below, which allows us to simplify the 
analytical solution considerably. So, we have f = meC∞� , F = � , F ′ = 1 , and Eq. (16) becomes

Integrating this equation, we come to the solute concentration �(ψ) in the two-phase layer (at 0 ≤ ξ ≤ ε):

Expression (18) defines the solute concentration in the two-phase layer 0 ≤ ξ ≤ vδ/Dl (or 0 ≤ ψ < ψ∗ ). Now 
substituting (18) into (4), we obtain the temperature profile in this layer.

A constant temperature gradient d�s/dξ = Gs in solid leads to the linear temperature profile in solidified 
material

where �s = Ts/(meC∞) , and �s and Ts represent dimensionless and dimensional temperatures in solid.
Equations governing temperature Tl and solute concentration Cl in liquid follow from Eqs. (1) and (2) at 

ψ = 0 and have the form

where jl = Wl/v is the ratio of fluid velocity Wl in the liquid phase and the solidification velocity v, and 
Le = kl/(Dlρlcl) is the Lewis number.

The heat and mass balances at the two-phase layer – liquid boundary ξ = δv/Dl (or ψ = 0 ) follow from 
conditions (14), Eq. (10) written out for linear liquidus � = �∗ −� , concentration derivative (15) at ψ = 0 , 
and j = jl at ξ = δv/Dl:

The dimensionless solute concentration far from the two-phase layer is also known, i.e. �l → 1 at ξ → ∞.
Integrating Eq. (20) and taking the boundary conditions (21) into account, we obtain the temperature ( �l(ξ) ) 

and solute concentration ( �l(ξ) ) in liquid as well as the boundary concentration ( �ε):
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Now equating temperatures (10) and (19) at the two-phase layer – solid phase boundary ξ = 0 ( ψ = ψ∗ ), we get 
a transcendental equation for the solid phase fraction ψ∗

Here �(ψ∗) is given by expression (18). Next substituting d�/dξ at ξ = 0 ( ψ = ψ∗ ) from (15) into the second 
condition (13), we find the constant A:

Eliminating d�/dξ from the boundary conditions (13), we obtain the velocity v of crystallization

Expression (18) shows that the solute concentration is dependent of variable ψ only. Its derivative d�/dξ also 
depends only on ψ as is seen from Eq. (15). Thus, d�/dξ = (d�/dψ)(dψ/dξ) , or y1(ψ) = y2(ψ)(dψ/dξ) , 
where y1(ψ) = d�/dξ and y2(ψ) = d�/dψ . Taking this into account, we obtain the solid-phase fraction ψ(ξ) 
in the form of its inverse function ξ(ψ) as

Here y1(ψ) and y2(ψ) should be substituted from expressions (15) and (18), respectively.
The mushy layer thickness δ follows from (28) with allowance for the boundary condition ξ = ε = δv/Dl 

at ψ = 0:

Thus, expressions (15), (18), (19) and (22)–(29) determine the analytical solution of mushy layer model in the 
presence of incoming flow.

The analytical solution obtained enables us to describe some parameters of the mushy layer internal structure. 
One of them is the two-phase layer permeability, which depends on the evolution of dendrites and the phase 
composition of solidified materials. The two-phase layer permeability � at all points where the solid phase grow 
is determined by the solid phase fraction ψ . Following the  works17,18,30, we use here the following dependence

where �0 is a reference value of permeability. Now combining expressions (28) and (30), we obtain the perme-
ability as an inverse function of spatial coordinate ξ in the two-phase layer

Another important parameter characterizing the two-phase layer is the average interdendritic spacing �1 , which 
reads  as31

where ρdt is the dendrite tip diameter, and da = 1 and da = 0.86 for cubic and hexagonal dendritic arrays. To 
find ρdt we use the selection theory of stable dendritic  growth16,32, which leads to
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where d0 is the capillary constant, al = kl/(ρl cl) is the temperature diffusivity, σ0 is the selection constant, β is the 
strength of surface energy anisotropy, and �ds is the solute concentration at the dendre surface. This concentra-
tion can be estimated as a mean solute concentration in the two-phase layer, i.e.

Thus, the average interdendritic spacing can be estimated using the analytical solutions of mushy layer equations 
with a weak incoming melt flow.

Behaviour of solutions
Figures 2, 3 and 4 illustrate our analytical solution (15), (18), (19) and (22)–(29) for the undercooled Fe-Ni melt 
solidifying with a mushy layer. First of all, the solid phase fraction ψ∗ at the solid phase – two-phase layer interface 
is essentially dependent on the melt flux incoming to the two-phase layer. It can be seen that the greater the flux 

�ds = ψ−1
∗

ψ∗
∫

0

�(ψ)dψ .

Figure 2.  The solid phase fraction ψ∗ at the boundary ξ = 0 and two-phase layer thickness δ versus 
dimensionless melt flux j. Physical parameters used for calculations correspond to the Fe-Ni  melt21: ke = 0.68 , 
me = 2.65 K wt%−1 , QV = 1.587 · 1010 J m −3 , Dl = 5 · 10−9 m 2 s −1 , ρl = 7 · 103 kg m −3 , ρs = 7.8 · 103 kg m −3 , 
cl = 427.4 J kg−1 K −1 , cs = 238.8 J kg−1 K −1 , kl = 41.9 J s −1 K −1 m −1 , ks = 74.2 J s −1 K −1 m −1 , T∗ = 1803 K, 
C∞ = 1 wt% , gs = 400 K m −1.

Figure 3.  The solid phase fraction ψ as a function of spatial coordinate ξ in the two-phase layer for various melt 
fluxes j. Vertical lines show dimensionless thicknesses of the two-phase layer for various j.
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(higher the absolute value of j), the greater the boundary value of the solid phase fraction ψ∗ . This is because a 
weak melt flow contributes to a more intense solidification of the melt and consequently increases the proportion 
of the solid phase in the two-phase layer. This is seen in Fig. 3 where the solid phase fraction profiles within the 
mushy layer are shown for various j. It is also easily seen that an increase in the solid phase fraction with increas-
ing |j| implies an increase in the two-phase layer thickness (see the vertical lines demonstrating the dimensionless 
two-phase layer thickness ε in Fig. 3 and dashed line in Fig. 2 showing the dimensional thickness δ).

Figure 4 shows the distribution of solute concentration in the mushy layer for different melt fluxes. As the 
thickness, ε increases with increasing |j| the solute concentration profile in a mush becomes wider. As this takes 
place, the boundary value of concentration at ξ = ε decreases as |j| increases. A greater extent of the two-phase 
layer means that the solid phase grows longer within this layer when the melt flux is higher. Figure 5 illustrates 
the mushy layer permeability plotted accordingly to expression (31). As is easily seen, the permeability becomes 
lower with increasing the melt flux |j| due to an increase in the solid phase fraction within the mushy layer. The 
same behaviour is found for the average interdendritic spacing �1 described by expressions (32) and (33). Namely, 
�1 decreases with increasing |j| (Table 1). This is because the mushy layer thickness becomes larger.

Figure 4.  The solute concentration � as a function of spatial coordinate ξ in the two-phase layer for various 
melt fluxes j. Vertical lines show dimensionless thicknesses of the two-phase layer for various j.

Figure 5.  The two-phase layer permeability �/�0 as a function of spatial coordinate ξ for various melt fluxes j. 
Vertical lines show dimensionless thicknesses of the two-phase layer for various j.
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Conclusion
In summary, the problem of steady-state directional solidification with a two-phase layer is considered with 
allowance for a weak melt flow. To find analytical solutions, we assume that forced convection is one-dimensional 
and the process is established, i.e. nothing depends on time in the reference frame moving with a constant veloc-
ity together with a mushy layer. In the framework of a one-dimensional convective model under consideration, 
the flowing melt solidifies in the two-phase region and changes its internal structure. These model assumptions 
enable us to construct an analytical solution introducing a new independent variable - the solid phase fraction 
ψ . We show that the temperature and solute concentration as well as spatial coordinate in a mush are dependent 
only on ψ in steady-state conditions. As this takes place, solidification velocity, two-phase layer thickness, perme-
ability, and average interdendritic spacing are defined by the boundary value of solid fraction ψ∗ . An important 
point is that the melt flow has a significant influence on all of these solutions. For example, the solid phase frac-
tion, which decreases in the mushy layer from the solid phase boundary to the liquid phase boundary, increases 
as the flow rate |j| grows. As a consequence, the mushy layer permeability and average interdendritic spacing 
decrease with increasing the melt flow. Physically it means that incoming melt solidifies more intensively in a 
mush with increasing |j| . This in turn leads to several times the greater thickness of the two-phase layer (phase 
transformation region).

The weak flow of the melt onto the two-phase layer leads to the formation of a new regime of directional 
crystallization and the analytical solution found here extends the theory of crystallization in a motionless  melt21. 
Note that the one-dimensional convective theory developed takes place only at sufficiently low flow velocities 
of the melt, when |j| ≪ 1 (when the melt flow velocity |W | is much smaller than the crystallisation velocity v). 
As the melt velocity increases, the condition of complete solidification in a two-phase layer will be violated and 
two-dimensional hydrodynamic flow cells will form in the  system17,18. A detailed study of this phenomenon 
requires investigation of the morphological stability of the two-phase layer equations taking into account the 
viscous fluid hydrodynamic equations and represents an important task for future research.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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