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BINARY COMPLETELY REACHABLE AUTOMATA

DAVID CASAS AND MIKHAIL V. VOLKOV

ABSTRACT. A deterministic finite automaton in which every non-empty set of states oc-

curs as the image of the whole state set under the action of a suitable input word is called

completely reachable. We study completely reachable automata with two input letters.

1. INTRODUCTION

Completely reachable automata are complete deterministic finite automata in which

every non-empty subset of the state set occurs as the image of the whole state set under

the action of a suitable input word. Such automata appeared in the study of descriptional

complexity of formal languages [2, 10] and in relation to the Černý conjecture [4]. A

systematic study of completely reachable automata was initiated in [2, 3] and continued

in [1]. In [1, 3] completely reachable automata were characterized in terms of a certain

finite sequence of directed graphs (digraphs): the automaton is completely reachable if and

only if the final digraph in this sequence is strongly connected. In [1, Theorem 11] it was

shown that given an automaton A with n states and m input letters, the k-th digraph in

the sequence assigned to A can be constructed in O(mn2k logn) time. However, this does

not yet ensure a polynomial-time algorithm for recognizing complete reachability: a series

of examples in [1] demonstrates that the length of the digraph sequence for an automaton

with n states may reach n− 1.

Here we study completely reachable automata with two input letters; for brevity, we call

automata with two input letters binary. Our main results provide a new characterization of

binary completely reachable automata, and the characterization leads to a quasilinear time

algorithm for recognizing complete reachability for binary automata.

Our prerequisites are minimal: we only assume the reader’s acquaintance with basic

properties of strongly connected digraphs, subgroups, and cosets.

2. PRELIMINARIES

A complete deterministic finite automaton (DFA) is a triple A = 〈Q,Σ,δ 〉 where Q and

Σ are finite sets called the state set and, resp., the input alphabet of A , and δ : Q×Σ → Q

is a totally defined map called the transition function of A .

The elements of Σ are called input letters and finite sequences of letters are called words

over Σ. The empty sequence is also treated as a word, called the empty word and denoted

ε . The collection of all words over Σ is denoted Σ∗.
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The transition function δ extends to a function Q×Σ∗ → Q (still denoted by δ ) via the

following recursion: for every q ∈ Q, we set δ (q,ε) = q and δ (q,wa) = δ (δ (q,w),a) for

all w ∈ Σ∗ and a ∈ Σ. Thus, every word w ∈ Σ∗ induces the transformation q 7→ δ (q,w)
of the set Q. The set T (A ) of all transformations induced this way is called the transition

monoid of A ; this is the submonoid generated by the transformations q 7→ δ (q,a), a ∈ Σ,

in the monoid of all transformations of Q. A DFA B = 〈Q,Θ,ζ 〉 with the same state set

as A is said to be syntactically equivalent to A if T (B) = T (A ).
The function δ can be further extended to non-empty subsets of the set Q. Namely, for

every non-empty subset P ⊆ Q and every word w ∈ Σ∗, we let δ (P,w) = {δ (q,w) | q ∈ P}.

Whenever there is no risk of confusion, we tend to simplify our notation by suppressing

the sign of the transition function; this means that we write q .w for δ (q,w) and P .w for

δ (P,w) and specify a DFA as a pair 〈Q,Σ〉.
We say that a non-empty subset P ⊆ Q is reachable in A = 〈Q,Σ〉 if P = Q .w for

some word w ∈ Σ∗. A DFA is called completely reachable if every non-empty subset of

its state set is reachable. Observe that complete reachability is actually a property of the

transition monoid of A ; hence, if a DFA A is completely reachable, so is any DFA that is

syntactically equivalent to A .

Given a DFA A = 〈Q,Σ〉 and a word w ∈ Σ∗, the image of w is the set Q .w and the

excluded set excl(w) of w is the complement Q\Q .w of the image. The number |excl(w)|
is called the defect of w. If a word w has defect 1, its excluded set consists of a unique

state called the excluded state for w. Further, for any w ∈ Σ∗, the set {p ∈ Q | p = q1 .w =
q2 .w for some q1 6= q2} is called the duplicate set of w and is denoted by dupl(w). If w

has defect 1, its duplicate set consists of a unique state called the duplicate state for w. We

identify singleton sets with their elements, and therefore, for a word w of defect 1, excl(w)
and dupl(w) stand for its excluded and, resp., duplicate states.

For any v ∈ Σ∗, q ∈ Q, let qv−1 = {p ∈ Q | p .v = q}. Then for all u,v ∈ Σ∗,

excl(uv) = {q ∈ Q | qv−1 ⊆ excl(u)},(1)

dupl(uv) = {q ∈ Q | qv−1 ∩dupl(u) 6=∅ or |qv−1\excl(u)| ≥ 2}.(2)

The equalities (1) and (2) become clear as soon as the definitions of excl( ) and dupl( ) are

deciphered. . Fig. 1 provides a supporting illustration.

u v
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FIGURE 1. An illustration for the equalities (1) and (2)
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Recall that DFAs with two input letters are called binary. The question of our study

is: under which conditions is a binary DFA completely reachable? The rest of the section

presents a series of reductions showing that to answer this question, it suffices to analyze

DFAs of a specific form.

Let A = 〈Q,{a,b}〉 be a binary DFA with n > 1 states. If neither a nor b has defect 1,

no subset of size n− 1 is reachable in A . Therefore, when looking for binary completely

reachable automata, we must focus on DFAs possessing a letter of defect 1. We will always

assume that a has defect 1.

The image of every non-empty word over {a,b} is contained in either Q .a or Q .b. If

the defect of b is greater than or equal to 1, then at most two subsets of size n− 1 are

reachable (namely, Q .a and Q .b), whence A can only be completely reachable provided

that n = 2. The automaton A is then nothing but the classical flip-flop, see Fig. 2.

0 1

b

a

a b

FIGURE 2. The flip-flop. Here and below a DFA 〈Q,Σ〉 is depicted as a

digraph with the vertex set Q and a labeled edge q
a−→ q′ for each triple

(q,a,q′) ∈ Q×Σ×Q such that q .a = q′.

Having isolated this exception, we assume from now on that n ≥ 2 and the letter b has

defect 0, which means that b acts as a permutation of Q. The following fact was first stated

in [2]; for a proof, see, e.g., [1, Sect. 6].

Lemma 1. If A = 〈Q,{a,b}〉 is a completely reachable automaton in which the letter b

acts as a permutation of Q, then b acts as a cyclic permutation.

Taking Lemma 1 into account, we restrict our further considerations to DFAs with

n ≥ 2 states and two input letters a and b such that a has defect 1 and b acts a cyclic

permutation. Without any loss, we will additionally assume that these DFAs have the set

Zn = {0,1, . . . ,n− 1} of all residues modulo n as their state set and the action of b at any

state merely adds 1 modulo n. Let us also agree that whenever we deal with elements

of Zn, the signs + and − mean addition and subtraction modulo n, unless the contrary is

explicitly specified.

Further, we will assume that 0 = excl(a) as it does not matter from which origin the

cyclic count of the states start.

Since b is a permutation, for each k ∈ Zn, the transformations q 7→ q .bka and q 7→
q .b generate the same submonoid in the monoid of all transformations of Zn as do the

transformations q 7→ q .a and q 7→ q .b. This means that if one treats the word bka as a new

letter ak, say, one gets the DFA Ak = 〈Zn,{ak,b}〉 that is syntactically equivalent to A .

Therefore, A is completely reachable if and only if so is Ak for some (and hence for all)

k. Hence we may choose k as we wish and study the DFA Ak for the specified value of k

instead of A .

What can we achieve using this? From (1) we have excl(bka) = excl(a) = 0. Further,

let q1 6= q2 be such that q1 .a = q2 .a = dupl(a). Choosing k = q1 (or k = q2), we get

0 .bka = dupl(a). Thus, we will assume that 0 .a = dupl(a).
Summarizing, we will consider DFAs 〈Zn,{a,b}〉 such that:
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• the letter a has defect 1, excl(a) = 0, and 0 .a = dupl(a);
• q .b = q+ 1 for each q ∈ Zn.

We call such DFAs standardized. For the purpose of complexity considerations at the

end of Sect. 5, observe that given a binary DFA A in which one letter acts as a cyclic

permutation while the other has defect 1, one can ‘standardize’ the automaton, that is,

construct a standardized DFA syntactically equivalent to A , in linear time with respect to

the size of A .

3. A NECESSARY CONDITION

Let 〈Zn,{a,b}〉 be a standardized DFA and w ∈ {a,b}∗. A subset S ⊆ Zn is said to be

w-invariant if S .w ⊆ S.

Proposition 1. If 〈Zn,{a,b}〉 is a completely reachable standardized DFA, then no proper

subgroup of (Zn,+) is a-invariant.

Proof. Arguing by contradiction, assume that H $ Zn is a subgroup such that H .a ⊆ H.

Let d stand for the index of the subgroup H in the group (Zn,+). The set Zn is then

partitioned into the d cosets

H0 = H, H1 = H .b = H + 1, . . . , Hd−1 = H .bd−1 = H + d− 1.

For i = 0,1, . . . ,d − 1, let Ti be the complement of the coset Hi in Zn. Then we have

Ti = ∪ j 6=iH j and Ti .b = Ti+1 (mod d) for each i = 0,1, . . . ,d − 1.

Since A is completely reachable, each subset Ti is reachable. Take a word w of mini-

mum length among words with the image equal to one of the subsets T0,T1, . . . ,Td−1. Write

w as w = w′c for some letter c ∈ {a,b}.

If c = b, then for some i ∈ {0,1, . . . ,d− 1}, we have

Zn .w
′b = Ti = Ti−1 (mod d) .b.

Since bn acts as the identity mapping, applying the word bn−1 to this equality yields

Zn .w
′ = Ti−1 (mod d) whence the image of w′ is also equal to one of the subsets T0,T1, . . . ,Td−1.

This contradicts the choice of w.

Thus, c = a, whence the set Zn .w is contained in Zn .a. The only Ti that is contained

in Zn .a is T0 because each Ti with i 6= 0 contains H0, and H0 = H contains 0, the excluded

state of a. Hence, Zn .w = T0, that is, Zn .w
′a = T0. For each state q ∈ Zn .w

′, we have

q .a ∈ T0, and this implies q ∈ T0 since H0, the complement of T0, is a-invariant. We see

that Zn .w
′ ⊆ T0 and the inclusion cannot be strict because T0 cannot be the image of its

proper subset. However, the equality Zn .w
′ = T0 again contradicts the choice of w. �

We will show that the condition of Proposition 1 is not only necessary but also suffi-

cient for complete reachability of a standardized DFA. The proof of sufficiency requires a

construction that we present in full in Sect. 5, after studying its simplest case in Sect. 4.

4. RYSTSOV’S GRAPH OF A BINARY DFA

Recall a sufficient condition for complete reachability from [2]. Given a (not necessarily

binary) DFA A = 〈Q,Σ〉, let W1(A ) stand for the set of all words in Σ∗ that have defect 1

in A . Consider a digraph with the vertex set Q and the edge set

E = {(excl(w),dupl(w)) | w ∈W1(A )}.
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We denote this digraph by Γ1(A ). The notation comes from [2], but much earlier, though

in a less explicit form, the construction was used by Rystsov [11] for some special species

of DFAs. Taking this into account, we refer to Γ1(A ) as the Rystsov graph of A .

Theorem 1 ([2, Theorem 1]). If a DFA A = 〈Q,Σ〉 is such that the graph Γ1(A ) is strongly

connected, then A is completely reachable.

It was shown in [2] that the condition of Theorem 1 is not necessary for complete reacha-

bility, but it was conjectured that the condition might characterize binary completely reach-

able automata. However, this conjecture has been refuted in [1, Example 2] by exhibiting a

binary completely reachable automaton with 12 states whose Rystsov graph is not strongly

connected. Here we include a similar example which we will use to illustrate some of our

results.

Consider the standardized DFA E ′
12 = 〈Z12,{a,b}〉 where the action of the letter a is

specified as follows:

q 0 1 2 3 4 5 6 7 8 9 10 11

q .a 10 1 2 8 4 5 10 9 3 7 6 11
.

(The DFA E ′
12 only slightly differs from the DFA E12 used in [1, Example 2], hence the

notation.) The DFA E ′
12 is shown in Fig. 3, in which we have replaced edges that should

have been labeled a and b with solid and, resp., dashed edges.

8 5

6

4

3

2

1

0

11

10

79

FIGURE 3. The DFA E ′
12; solid and dashed edges show the action of a

and, resp., b

We postpone the description of the digraph Γ1(E
′
12) and the proof that the DFA E

′
12

is completely reachable until we develop suitable tools that make the description and the

proof easy.

We start with a characterization of Rystsov’s graphs of standardized DFAs. Let A =
〈Zn,{a,b}〉 be such a DFA. It readily follows from (1) and (2) that excl(w) .b = excl(wb)
and dupl(w) .b = dupl(wb) for every word w ∈ W1(A ). Therefore, the edge set E of the

digraph Γ1(A ) is closed under the translation (q, p) 7→ (q .b, p .b) = (q+ 1, p+ 1). As a

consequence, for any edge (q, p) ∈ E and any k, the pair (q+ k, p+ k) also constitutes an

edge in E .
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Denote by D1(A ) the set of ends of edges of Γ1(A ) that start at 0, that is, D1(A ) =
{p ∈ Zn | (0, p) ∈ E}. We call D1(A ) the difference set of A . Our first observation shows

how to recover all edges of Γ1(A ), knowing D1(A ).

Lemma 2. Let A = 〈Zn,{a,b}〉 be a standardized DFA. A pair (q, p) ∈ Zn ×Zn forms an

edge in the digraph Γ1(A ) if and only if p− q ∈ D1(A ).

Proof. If p− q ∈ D1(A ), the pair (0, p− q) is an edge in E , and therefore, so is the pair

(0+ q,(p− q)+ q) = (q, p). Conversely, if (q, p) is an edge in E , then so is (q+(n−
q), p+(n− q)) = (0, p− q), whence p− q ∈ D1(A ). �

By Lemma 2, the presence or absence of an edge in Γ1(A ) depends only on the dif-

ference modulo n of two vertex numbers. This means that Γ1(A ) is a circulant digraph,

that is, the Cayley digraph of the cyclic group (Zn,+) with respect to some subset of Zn.

Recall that if D is a subset in a group G, the Cayley digraph of G with respect to D, de-

noted Cay(G,D), has G as its vertex set and {(g,gd) | g ∈ G, d ∈ D} as its edge set. The

following property of Cayley digraphs of finite groups is folklore1.

Lemma 3. Let G be a finite group, D a subset of G, and H the subgroup of G generated

by D. The strongly connected components of the Cayley digraph Cay(G,D) have the right

cosets Hg, g ∈ G, as their vertex sets, and each strongly connected component is isomor-

phic to Cay(H,D). In particular, the digraph Cay(G,D) is strongly connected if and only

if G is generated by D.

Let H1(A ) stand for the subgroup of the group (Zn,+) generated by the difference set

D1(A ). Specializing Lemma 3, we get the following description for Rystsov’s graphs of

standardized DFAs.

Proposition 2. Let A = 〈Zn,{a,b}〉 be a standardized DFA. The digraph Γ1(A ) is iso-

morphic to the Cayley digraph Cay(Zn,D1(A )). The strongly connected components of

Γ1(A ) have the cosets of the subgroup H1(A ) as their vertex sets, and each strongly

connected component is isomorphic to the Cayley digraph Cay(H1(A ),D1(A )). In par-

ticular, the digraph Γ1(A ) is strongly connected if and only if the set D1(A ) generates

(Zn,+) or, equivalently, if and only if the greatest common divisor of D1(A ) is coprime to

n.

Proposition 2 shows that structure of the Rystsov graph of a standardized DFA A cru-

cially depends on its difference set D1(A ). The definition of the edge set of Γ1(A ) de-

scribes D1(A ) as the set of duplicate states for all words w of defect 1 whose excluded

state is 0, that is, D1(A ) = {dupl(w) | excl(w) = 0}. Thus, understanding of difference

sets amounts to a classification of transformations caused by words of defect 1. It is such

a classification that is behind the following handy description of difference sets.

Proposition 3. Let A = 〈Zn,{a,b}〉 be a standardized DFA. Let r 6= 0 be such that r .a =
dupl(a). Then

(3) D1(A ) = {dupl(a) .v | v ∈ {a,bra}∗}.
Proof. Denote by N the image of the letter a, that is, N = Zn\{0}. If q .a = p for some

q ∈ Zn and p ∈ N, then, clearly, (q− r) .bra = p. Hence the only state in N that has a

preimage of size 2 under the actions of both a and bra is

1In fact, our definition is the semigroup version of the notion of a Cayley digraph, but this makes no difference

since in a finite group, every subsemigroup is a subgroup.
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dupl(a) =

{

0 .a = r .a,

(n− r) .bra = 0 .bra,

and in both cases 0 belongs to the preimage. Thus, the preimage of every p ∈ N under both

a and bra contains a unique state in N, which means that both a and bra act on the set N

as permutations. Hence every word v ∈ {a,bra}∗ acts on N as a permutation. Then the

word av has defect 1 and excl(av) = 0. Applying the equality (2) with a in the role of u,

we derive that dupl(av) = dupl(a) .v. Thus, denoting the right-hand side of (3) by D, we

see that every state in D is the duplicate state of some word whose only excluded state is

0. This means that D1(A )⊇ D.

To verify the converse inclusion, take an arbitrary state p ∈ D1(A ) and let w be a word

of defect 1 such that excl(w) = 0 and dupl(w) = p. Since excl(w) = 0, the word w ends

with the letter a. We prove that p lies in D by induction on the number of occurrences of

a in w. If a occurs in w once, then w = bka for some k ∈ Zn. We have p = dupl(w) =
dupl(bka) = dupl(a) ∈ D.

If a occurs in w at least twice, write w = w′bka where w′ ends with a. Then the word w′

has defect 1 and excl(w′) = 0. As w′ has fewer occurrences of a, the inductive assumption

applies and yields dupl(w′) ∈ D. Denoting dupl(w′) by p′, we have p = p′ .bka. If we

prove that k ∈ {0,r}, we are done since the set D is both a-invariant and bra-invariant by

its definition. Arguing by contradiction, assume k /∈ {0,r}. Let ℓ= k .a; then k is the only

state in ℓa−1. Hence ℓa−1 = excl(w′bk), and the equality (1) (with u = w′bk and v = a)

shows that ℓ ∈ excl(w′bka) = excl(w). Clearly, ℓ 6= 0 as ℓ lies in the image of a. Therefore

the conclusion ℓ ∈ excl(w) contradicts the assumption excl(w) = 0. �

For an illustration, we apply (3) to compute the difference set for the DFA E ′
12 shown in

Fig. 3. In E
′
12, we have r = 6 and dupl(a) = 10. Acting by a and b6a gives 10 .a = 6 and

10 .b6a = (10+6) .a = 4 .a = 4. Thus, 4,6 ∈ D1(E
′
12). Acting by a or b6a at 4 and 6 does

not produce anything new: 4 .a = 4 and 4 .b6a = (4+ 6) .a = 10 .a = 6 while 6 .a = 10

and 6 .b6a = (6 + 6) .a = 0 .a = 10. We conclude that D1(E
′

12) = {4,6,10}. Since 2,

the greatest common divisor of {4,6,10}, divides 12, we see that the digraph Γ1(E
′

12) is

not strongly connected. The subgroup H1(E
′
12) consists of even residues modulo 12 and

has index 2. Hence the digraph Γ1(E
′
12) has two strongly connected components whose

vertex sets are {0,2,4,6,8,10} and {1,3,5,7,9,11}, and for each q ∈ Z12, it has the edges

(q,q+ 4), (q,q+ 6), and (q,q+ 10).

In fact, formula (3) leads to a straightforward algorithm that computes the difference set

of any standardized DFA A in time linear in n. This, together with Proposition 2, gives an

efficient way to compute the Rystsov graph of A .

Let D0
1(A ) = D1(A )∪{0}. It turns out that D0

1(A ) is always a union of cosets of a

nontrivial subgroup.

Proposition 4. Let A = 〈Zn,{a,b}〉 be a standardized DFA. Let r 6= 0 be such that r .a =
dupl(a). Then the set D0

1(A ) is a union of cosets of the subgroup generated by r in the

group H1(A ).

Proof. It is easy to see that the claim is equivalent to the following implication: if d ∈
D0

1(A ), then d+r ∈D0
1(A ). This clearly holds if d+r = 0. Thus, assume that d ∈ D0

1(A )
is such that d+ r 6= 0. Then (d+ r) .a ∈ D1(A ). Indeed, if d = 0, then (d + r) .a = r .a =
dupl(a) ∈ D1(A ). If d 6= 0, then d ∈ D1(A ), whence (d + r) .a = d .bra ∈ D1(A ) as

formula (3) ensures that the set D1(A ) is closed under the action of the word bra.



8 D. CASAS, M. V. VOLKOV

We have observed in the first paragraph of the proof of Proposition 3 that a acts on the

set N = Zn\{0} as a permutation. Hence for some k, the word ak acts on N as the identity

map. Then d+ r = (d + r) .ak = ((d + r) .a) .ak−1 ∈ D1(A ) since we have already shown

that (d+ r) .a ∈ D1(A ) and formula (3) ensures that the set D1(A ) is a-invariant. �

In our running example E ′
12, r = 6 and the set D0

1(E
′
12) = {0,4,6,10} is the union of the

subgroup {0,6} with its coset {4,10} in the group H1(E
′
12).

Let A = 〈Zn,{a,b}〉 be a standardized DFA. Proposition 4 shows that then the set

D0
1(A ) is situated between the subgroup H1(A ) and the subgroup R generated by r 6= 0

such that r .a = dupl(a):

(4) R ⊆ D0
1(A )⊆ H1(A ).

Formula (3) implies that the difference set D1(A ) is a-invariant, and so is the set D0
1(A )

since 0 .a = dupl(a) ∈ D1(A ). By Proposition 1, if the automaton A is completely reach-

able, then either H1(A ) = Zn or H1(A ) is a proper subgroup and both inclusions in (4)

are strict. Recall that by Proposition 2 H1(A ) = Zn if and only if the digraph Γ1(A ) is

strongly connected. In the other case, n must be a product of at least three (not necessarily

distinct) prime numbers. Indeed, the subgroups of (Zn,+) ordered by inclusion are in a

1-1 correspondence to the divisors of n ordered by division, and no product of only two

primes can have two different proper divisors d1 and d2 such that d1 divides d2. We thus

arrive at the following conclusion.

Corollary 1. A binary DFA A with n states where n is a product of two prime numbers

is completely reachable if and only if one of its letters acts as a cyclic permutation of the

state set, the other letter has defect 1, and the digraph Γ1(A ) is strongly connected.

Corollary 1 allows one to show that the number of states in a binary completely reach-

able automata whose Rystsov graph is not strongly connected is at least 12. (Thus, our

examples of such automata (E12 from [1, Example 2] and E ′
12 from the present paper) are

of minimum possible size.) Indeed, Corollary 1 excludes all sizes less than 12 except 8. If

a standardized DFA A has 8 states and the digraph Γ1(A ) is not strongly connected, then

the group H1(A ) has size at most 4 and its subgroup R generated by the non-zero state in

dupl(a)a−1 has size at least 2. By Proposition 4 the set D0
1(A ) is a union of cosets of the

subgroup R in the group H1(A ), whence either D0(A ) = R or D0(A ) = H1(A ). In either

case, we get a proper a-invariant subgroup, and Proposition 1 implies that the DFA A is

not completely reachable.

5. SUBGROUP SEQUENCES FOR STANDARDIZED DFAS

In [1,3] Theorem 1 is generalized in the following way. A sequence of digraphs Γ1(A ),
Γ2(A ), . . . , Γk(A ), . . . is assigned to an arbitrary (not necessarily binary) DFA A , where

Γ1(A ) is the Rystsov graph of A while the ‘higher level’ digraphs Γ2(A ), . . . , Γk(A ), . . .

are defined via words that have defect 2, . . . , k, . . . in A . (We refer the interested reader

to [1, 3] for the precise definitions; here we do not need them.) The length of the sequence

is less than the number of states of A , and A is completely reachable if and only if the

final digraph in the sequence is strongly connected.

For the case when A is a standardized DFA, Proposition 2 shows that the Rystsov

graph Γ1(A ) is completely determined by the difference set D1(A ) and the subgroup

H1(A ) that D1(A ) generates. This suggests that for binary automata, one may substitute

the ‘higher level’ digraphs of [1, 3] by suitably chosen ‘higher level’ difference sets and

their generated subgroups.
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Take a standardized DFA A = 〈Zn,{a,b}〉 and for each k > 1, inductively define the

set Dk(A ) and the subgroup Hk(A ):

Dk(A ) = {p ∈ Zn | p ∈ dupl(w) for some w ∈ {a,b}∗

such that 0 ∈ excl(w) ⊆ Hk−1(A ), |excl(w)| ≤ k},(5)

Hk(A ) is the subgroup of (Zn,+) generated by Dk(A ).

Observe that if we let H0(A ) = {0}, the definition (5) makes sense also for k = 1 and leads

to exactly the same D1(A ) and H1(A ) as defined in Sect. 4.

Using the definition (5), it is easy to prove by induction that Dk(A ) ⊆ Dk+1(A ) and

Hk(A )⊆ Hk+1(A ) for all k.

Proposition 5. If A = 〈Zn,{a,b}〉 is a standardized DFA and Hℓ(A ) = Zn for some ℓ,
then A is a completely reachable automaton.

Proof. As A is fixed, we write Dk and Hk instead of Dk(A ) and, resp., Hk(A ).
Take any non-empty subset S ⊆ Zn. We prove that S is reachable in A by induction on

n−|S|. If n−|S|= 0, there is nothing to prove as S = Zn is reachable via the empty word.

Now let S be a proper subset of Zn. We aim to find a subset T ⊆ Zn such that S = T .v
for some word v ∈ {a,b}∗ and |T |> |S|. Since n−|T |< n−|S|, the induction assumption

applies to the subset T whence T = Zn .u for some word u ∈ {a,b}∗. Then S = Zn .uv is

reachable as required.

Thus, fix a non-empty subset S $ Zn. Since cosets of the trivial subgroup H0 are sin-

gletons, S is a union of cosets of H0. On the other hand, since Hℓ = Zn, the only coset of

Hℓ strictly contains S, and so S is not a union of cosets of Hℓ. Now choose k ≥ 1 to be the

maximal number for which S is a union of cosets of the subgroup Hk−1. The subgroup Hk

already has a coset, say, Hk + t being neither contained in S nor disjoint with S; in other

words, ∅ 6= S∩ (Hk + t)$ Hk + t.

By Lemma 3, the coset Hk+t serves as the vertex set of a strongly connected component

of the Cayley digraph Cay(Zn,Dk). Therefore, some edge of Cay(Zn,Dk) connects (Hk +
t) \ S with S∩ (Hk + t) in this strongly connected component, that is, the head q of this

edge lies in (Hk + t)\S while its tail p belongs to S∩ (Hk+ t). Let p′ = p−q; then p′ ∈ Dk

by the definition of the Cayley digraph. By (5) there exists a word w ∈ {a,b}∗ such that

p′ ∈ dupl(w) and excl(w) ⊆ Hk−1. Then p = p′+ q = p′ .bq ∈ dupl(w) .bq = dupl(wbq)
and excl(wbq) = excl(w) .bq = excl(w)+q ⊆ Hk−1 +q. From p ∈ dupl(wbq) we conclude

that there exist p1, p2 ∈ Zn such that p = p1 .wbq = p2 .wbq. Since S is a union of cosets

of the subgroup Hk−1, the fact that q /∈ S implies that the whole coset Hk−1 + q is disjoint

with S, and the inclusion excl(wbq) ⊆ Hk−1 + q ensures that S is disjoint with excl(wbq).
Therefore, for every s ∈ S \ {p}, there exists a state s′ ∈ Zn such that s′ .wbq = s. Now

letting T = {p1, p2}∪
{

s′ | s ∈ S\{p}
}

, we conclude that S= T .wbq and |T |= |S|+1. �

For an illustration, return one last time to the DFA E
′
12 shown in Fig. 3. We have seen

that the subgroup H1(E
′
12) consists of even residues modulo 12. Inspecting the word ab3a

gives excl(ab3a) = {0,8} ⊆ H1(E
′
12) and 1 ∈ dupl(ab3a), whence 1 ∈ D2(E

′
12). There-

fore the subgroup H2(E
′
12) generated by D2(E

′
12) is equal to Z12, and E ′

12 is a completely

reachable automaton by Proposition 5.

To illustrate the next level of the construction (5), consider the standardized DFA E48 =
〈Z48,{a,b}〉 shown in Fig. 4. We have replaced edges that should have been labeled a

and b with solid and, resp., dashed edges and omitted all loops to lighten the picture. The

action of a in E48 is defined by 0 .a = 24 .a = 18, 13 .a = 14, 14 .a = 13, 18 .a = 24,

30 .a = 32, 32 .a = 30, and k .a = k for all other k ∈ Z48.
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FIGURE 4. The DFA E48 = 〈Z48,{a,b}〉 with H2(E48) 6= Z48. Solid and

dashed edges show the action of a and, resp., b; loops are not shown

One can calculate that D1(E48) = {18,24,42} whence the subgroup H1(E48) consists

of all residues divisible by 6. Computing D2(E48), one sees that this set consists of even

residues and contains 2 (due to the word ab32a that has excl(ab32a) = {0,30} ⊆ H1(E48)
and dupl(ab32a) = {2,18}). Hence the subgroup H2(E48) consists of all even residues. Fi-

nally, the word ab24ab12ab8 has {0,8,20}⊆ H1(E48) as its excluded set while its duplicate

set contains 13. Hence 13 ∈ D3(E48) and the subgroup H3(E48) coincides with Z48. We

conclude that the DFA E48 is completely reachable by Proposition 5.

As mentioned, the subgroups of (Zn,+) ordered by inclusion correspond to the divisors

of n ordered by division whence for any standardized DFA A with n states, the number of

different subgroups of the form Hk(A ) is O(logn). Therefore, if the subgroup sequence

H0(A )⊆ H1(A )⊆ ·· · ⊆ Hk(A )⊆ . . . strictly grows at each step, then it reaches Zn after

at most O(logn) steps, and by Proposition 5 A is a completely reachable automaton. What

happens if the sequence stabilizes earlier? Our next result answers this question.

Proposition 6. If for a standardized DFA A = 〈Zn,{a,b}〉, there exists ℓ such that Hℓ(A )=
Hℓ+1(A )$ Zn, then A is not completely reachable.
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Proof. As in the proof of Proposition 5, we use Dk and Hk instead of Dk(A ) and, resp.,

Hk(A ) in our arguments.

It suffices to prove the following claim:

Claim: the equality Hℓ = Hℓ+1 implies that the subgroup Hℓ is a-invariant.

Indeed, since Hℓ $ Zn, we get a proper a-invariant subgroup, and Proposition 1 then

shows that A is not completely reachable.

Technically, it is more convenient to show that if Hℓ = Hℓ+1, then Hk .a ⊆ Hℓ for every

k = 0,1, . . . , ℓ. We induct on k. The base k = 0 is clear since H0 = {0} and 0 .a= dupl(a)∈
D1 ⊆ H1 ⊆ Hℓ.

Let k < ℓ and assume Hk .a ⊆ Hℓ; we aim to verify that p .a ∈ Hℓ for every p ∈ Hk+1.

Since the subgroup Hk+1 is generated by Dk+1 and contains Hk, we may choose a repre-

sentation of p as the sum

p = q+ d1+ · · ·+ dm, q ∈ Hk, d1, . . . ,dm ∈ Dk+1 \Hk,

with the least number m of summands from Dk+1\Hk. We show that p .a∈ Hℓ by induction

on m. If m = 0, we have p = q ∈ Hk and p .a ∈ Hℓ since Hk .a ⊆ Hℓ.

If m > 0, we write p as p = d1 + s where s = q+ d2 + · · ·+ dm. By (5), there ex-

ists a word w ∈ {a,b}∗ such that d1 ∈ dupl(w), 0 ∈ excl(w) ⊆ Hk and |excl(w)| ≤ k +
1. Consider the word wbsa. We have p .a = (d1 + s) .a = d1 .b

sa, and the equality (2)

gives p .a ∈ dupl(wbsa). From the equality (1), we get excl(wbsa) = (excl(w) + s) .a∪
{0} if dupl(a)a−1 is either contained in or disjoint with excl(w) + s, and excl(wbsa) =
(

(excl(w)+ s)\dupl(a)a−1
)

.a∪{0} if |dupl(a)a−1 ∩ (excl(w)+ s)| = 1. In any case, we

have the inclusion

(6) excl(wbsa)⊆ (excl(w)+ s) .a∪{0}

and the inequality

(7) |excl(wbsa)| ≤ |(excl(w)+ s)) .a|+ 1 ≤ |excl(w))|+ 1 ≤ (k+ 1)+ 1≤ ℓ+ 1.

For any t ∈ excl(w) ⊆ Hk, the number of summands from Dk+1 \Hk in the sum t + s =
t + q+ d2 + · · ·+ dm is less than m. By the induction assumption, we have (t + s) .a ∈ Hℓ.

Hence, (excl(w)+ s) .a ⊆ Hℓ, and since 0 also lies in the subgroup Hℓ, we conclude from

(6) that excl(wbsa) ⊆ Hℓ. From this and the inequality (7), we see that the word wbsa

satisfies the conditions of the definition of Dℓ+1 (cf. (5)) whence every state in dupl(wbsa)
belongs to Dℓ+1. We have observed that p .a ∈ dupl(wbsa). Hence p .a ∈ Dℓ+1 ⊆ Hℓ+1.

Since Hℓ = Hℓ+1, we have p .a ∈ Hℓ, as required. �

Now we deduce a criterion for complete reachability of binary automata.

Theorem 2. A binary DFA A with n states is completely reachable if and only if either n=
2 and A is the flip-flop or one of the letters of A acts as a cyclic permutation of the state

set, the other letter has defect 1, and in the standardized DFA 〈Zn,{a,b}〉 syntactically

equivalent to A , no proper subgroup of (Zn,+) is a-invariant.

Proof. Necessity follows from the reductions in Sect. 2 and Proposition 1.

For sufficiency, we can assume that A = 〈Zn,{a,b}〉 is standardized. If no proper

subgroup of (Zn,+) is a-invariant, then the claim from the proof of Proposition 6 implies

that the sequence H0(A ) ⊆ H1(A ) ⊆ ·· · ⊆ Hk(A ) ⊆ . . . strictly grows as long as the

subgroup Hk(A ) remains proper. Hence, Hℓ(A ) = Zn for some ℓ and A is a completely

reachable automaton by Proposition 5. �
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Remark 1. The proof of Theorem 2 shows that only subgroups that contain H1(A ) matter.

Therefore, one can combine Theorem 1, Proposition 2 and Theorem 2 as follows: a stan-

dardized DFA A = 〈Zn,{a,b}〉 is completely reachable if and only if either H1(A ) = Zn

or no proper subgroup of (Zn,+) containing the subgroup H1(A ) is a-invariant.

The condition of Theorem 2 can be verified in low polynomial time. We sketch the

corresponding algorithm.

Given a binary DFA A with n states, we first check if n = 2 and A is the flip-flop. If

yes, A is completely reachable. If not, we check whether one of the letters of A acts as

a cyclic permutation of the state set while the other letter has defect 1. If not, A is not

completely reachable. If yes, we pass to the standardized DFA 〈Zn,{a,b}〉 syntactically

equivalent to A . As a preprocessing, we compute and store the set {(k,k .a) | k ∈ Zn}.

The rest of the algorithm can be stated in purely arithmetical terms. Call a positive

integer d a nontrivial divisor of n if d divides n and d 6= 1,n. We compute all nontrivial

divisors of n by checking through all integers d = 2, . . . ,⌊√n⌋: if such d divides n, we store

d and n
d

. If for some nontrivial divisor d of n, all numbers (td) .a with t = 0,1, . . . , n
d
− 1

are divisible by d, then d generates a proper a-invariant subgroup in (Zn,+) and A is not

completely reachable. If for every nontrivial divisor d of n, there exists t ∈ {0,1, . . . , n
d
−1}

such that (td) .a is not divisible by d, then no proper subgroup of (Zn,+) is a-invariant and

A is completely reachable.

To estimate the time complexity of the described procedure, observe that one has to

check at most n
d

numbers for each nontrivial divisor d of n. Clearly,

∑
1<d<n

d|n

n

d
= ∑

1<d<n
d|n

d = σ(n)− n− 1,

where σ(n) stands for the sum of all divisors of n, a well-studied function in the theory of

numbers; see, e.g., [8, Chapters XVI–XVIII]. It is known that limsup
σ(n)

n loglogn
= eγ where

γ is the Euler–Mascheroni constant [8, Theorem 323]; this implies that the number of

checks in our procedure is O(n loglogn). The total complexity depends on the time spent

for verifying the divisibility condition. If one uses the transdichotomous model [7] (as

suggested by one of the referees), assuming constant time for division, the whole procedure

can be implemented in O(n log logn) time.

One can speed up the above algorithm, using Remark 1, which implies that only the

divisors d > 1 of the g.c.d. of n and 0 .a have to be checked. However, the improvement

only reduces the constant behind the O( ) notation.

6. CONCLUSION

We have characterized binary completely reachable automata; our characterization leads

to an algorithm that given a binary DFA A , decides whether or not A is completely

reachable in quasilinear time with respect to the size of A . Very recently, after the orig-

inal version of the present paper was submitted, Ferens and Szykuła [6] have devised a

polynomial-time algorithm for recognizing complete reachability of arbitrary DFAs, but

the complexity of their algorithm is higher.

Our results heavily depend on the fact that apart from a single exception, binary com-

pletely reachable automata are circular, that is, have a letter acting as a cyclic permutation

of the state set. In the literature, one can find several situations when a problem that

remains open in general, admits quite a nontrivial solution when restricted to circular au-

tomata. Here we mention only Dubuc’s result [5] on the Černý conjecture and the recent
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paper by Yong He et al [9] on Trahtman’s conjecture. It appears that circular automata

may behave in a similar way with respect to complete reachability, and our follow-up work

aims at extending the results of the present paper to arbitrary (not necessarily binary) cir-

cular automata. We also plan to study an ‘orthogonal’ extension, aiming to characterize

completely reachable automata in which one letter has defect 1 while the other letters act

as permutations and generate a group that transitively acts on the state set.
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DCFS 2016. Lect. Notes Comput. Sci., vol. 9777, pp. 1–17. Springer (2016)

[3] Bondar, E.A., Volkov, M.V.: A characterization of completely reachable automata. In: Hoshi, M., Seki, S.

(eds.) DLT 2018. Lect. Notes Comput. Sci., vol. 11088, pp. 145–155. Springer (2018)
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