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This paper is concerned with the fast state observer for a class of continuous-time linear systems with unknown bounded
parameters and sufficiently slowly time varying which satisfy the usual assumptions of conventional state observer for time-
invariant plants. A less conservative approach based on hyperstability analysis is proposed to deal with the tracking error
involved in Popov’s inequality. Sufficient conditions that ensure the asymptotic stability of the closed-loop system are
established and formulated in term of a nonlinear part which is designed with appropriate proportional and derivative gains.
This observer included the derivative of the estimation error. The results obtained are satisfactory and less conservative than
the Lyapunov stability analysis for the estimation error dynamic system. Also, it is showed that with a good choice of
Proportional-Derivative (PD) gains, it is possible to reduce in this case to zero, the estimation error on the one hand, and on
the other hand to reduce it to small residues in an asymptotic way. Finally, a numerical example of a lateral motion of
CESSNA 182 aircraft system is presented to reconstruct the sideslip angle and the roll angle, respectively, and to highlight the
efficiency of the approach that has been developed.

1. Introduction

The theory of state observer design has been one of the most
active research areas over the past decades and has become
matured through extensive studies. The problem of designing
a state observer that leads the estimation error converge asymp-
totically to zero plays a fundamental role in system engineering,
since state observers can be used in adaptive control, system
supervision, and fault diagnosis. Also, in some practical appli-
cations, we are interested to havemore information on the state
variables of the system at any time. In [1], Nussbaum type func-
tions and Lyapunov’s theorem are used to design an efficient
controller to handle pure-feedback switched nonlinear systems.
The Lyapunov stability theory is used in [2] to estimate the
unmeasured system state using an observer-based adaptive

fuzzy hierarchical sliding mode control (HSMC). An adaptive
neural finite-time control strategy is proposed [3] to solve sto-
chastic nonlinear systems with time-varying full-state con-
straints and asymmetric input saturation by constructing the
time-varying barrier Lyapunov function. A resilient filter for
nonlinear network systems with a dynamic mechanism trig-
gered by an event and a hybrid cyberattack is proposed in [4]
through the Takagi-Sugeno (T-S) fuzzy technique to deal with
nonlinearity in network systems.

These observers are an alternative way to solving sto-
chastic problems in complex systems [5] that require evolu-
tionary algorithms [6]. This can be done by building another
dynamic system which is called the observer or estimator,
whose role is to estimate the true state variable system. The
well-known observers can be given by Luenberger observers
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for deterministic cases [7], and Kalman filters for stochastic
noise. Various approaches, such as transfer function, geomet-
ric, algebraic, and singular value decomposition, have been pro-
posed [8].

In the context of descriptor systems, the problem of design-
ing observers has also received considerable attention. In [9],
the design of reduced-order observers is considered by using
the singular value decomposition and the generalized Sylvester
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Figure 1: A structure of the Luenberger state observer.
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Figure 2: A structure of the Hyperstable system.

u (t) y (t)

y (t)x (t)z (t)

ye (t)

Ae

∫B

L

C

α

β

+

+
+

+

+

+

–

d
dt

x = Ax + B u

y = Cx 

x

Figure 3: A structure of state observer with PD gains.
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equation [10]. In [11], a geometric technique for observer design
in descriptor systems is used [12]. The unknown input observer
for descriptor systems is developed in [13]. The Proportional-
Integral (PI) observers and Proportional-Derivative (PD)
observers for descriptor linear systems have attracted the atten-
tion of many researchers [14]. The PD observer, which includes
the derivative of the estimation error, has been investigated in
[15], and a generalized PI observer for linear systems is devel-
oped in [16].

Recently, the design of observers is still utilized for vari-
ous engineering applications [17]. However, the unknown
input observer-based active fault-tolerant control for induc-
tion machine is developed in [18], which can make system
outputs to track their desired reference signal in finite time,
and the closed-loop stability is established based on the Lya-
punov function [19]. Also, the observer-based fuzzy fixed
time terminal sliding mode controller is proposed in [20]
for a nonlinear dynamic of vehicle model, where the conver-
gence of tracking error to zero achieves in finite time [21].
Furthermore, an experimental study on a nonlinear observer
application for a flexible parallel robot is presented in [22].

In this paper, a fast state observer based on hyperstability
criteria for a class of continuous-time linear systems with
unknown bounded parameters and sufficiently slowly time

varying [23], which satisfies the usual assumptions of conven-
tional state observer for time invariant plants, is proposed. The
method consists to design a matrix gain such that the state
observer error dynamic is asymptotically stable. However, this
observer includes the derivative of the estimation error. A suf-
ficient condition that ensures the asymptotic stability of the
closed-loop system is established and formulated in terms of
a nonlinear part that varies with time which is designed with
appropriate proportional and derivative gains. This system is
asymptotic and hyperstable in the case where the nonlinear
phase of the system corresponds to Popov’s inequality.

The remainder of the paper is organized as follows. In
Section 2, we begin by some definitions which are useful
for the state observer design. System modeling and state
observer design is presented in Section 3. In Section 4, we
present the main results of fast observers based on hyperst-
ability criteria for a class of continuous linear systems, which
is followed by simulation Results and Discussion. Conclu-
sions and suggestions are also provided.

2. Preliminaries and Definitions

In this section, we give some definitions which are useful in
this paper:
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Figure 4: Simulations of state observer with: α = 10I2×2β = 0:1I2×2.
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2.1. Hurwitz Matrix. A square real matrix A ∈ℜn×n is Hur-
witz if all of its eigenvalues have negative real parts.

2.2. Asymptotic Stability. A time-invariant system is asymp-
totically stable if all the eigenvalues of the state matrix sys-
tem have strictly negative real parts.

2.3. Positive Definite Matrix. Positive semidefinite and definite
matrix: a matrix P is called positive semidefinite if P is sym-
metric and xT Px ≥ 0 for all x ∈ V . If the matrix is symmetric
and xTPx > 0 and ∀x ∈ V , then it is called positive definite.

2.4. Controllability. A linear continuous system (A, B, and C)
is called controllable if and only if the matrix Co has full
rank, and we write, rank ðCoÞ = rank f½BABK An−1B�g = n.

2.5. Observability. A linear continuous system (A, B, and C)
is called observable if and only if the matrix Ob has full rank,
and we write, rank ðObÞ = rank f½C CAK CAn−1�Tg = n.

3. Luenberger State Observer

Let us consider a linear plant model described by the follow-
ing state space equations:

x̂ tð Þ = Ax tð Þ + Bu tð Þ, ð1Þ

x t0ð Þ = x0, ð2Þ
y tð Þ = Cx tð Þ, ð3Þ

where A ∈ℜn×n is the state matrix, B ∈ℜn×m is the input
matrix, C ∈ℜp×n and xðtÞ ∈ℜn are the state vector, and uðtÞ
∈ℜm is the control input signal, yðtÞ ∈ℜp is the measurable
output signal. Correspondingly, we construct a new system
defined as

x̂ tð Þ = Ax̂ tð Þ + Bu tð Þ + L y tð Þ − Cx̂ tð Þð Þ, ð4Þ

x̂ toð Þ = 0, ð5Þ
ŷ tð Þ = Cx̂ tð Þ, ð6Þ

where L ∈ℜn×p is an observer gain to be chosen by the
designer. We define the state in case of error as

e ψð Þ = x ψð Þ − x̂ ψð Þ, forψ = t, the time ð7Þ

so that, observer difference is given by

_e ψð Þ = A − LCð Þe ψð Þ, e ψ0ð Þ = x0, ð8Þ

ye tð Þ = Ce tð Þ, ð9Þ
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Figure 5: Simulations of state observer with α = 10I2×2β = 1I2×2.
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where x0 ∈ℜn is an arbitrary initial condition. Then rearran-
ging to obtain

_e tð Þ = Ace tð Þ, ð10Þ

e t0ð Þ = x0: ð11Þ

With Ac = A − LC:
If the observer gain L is chosen such that the feedback

matrix Ac = A − LC is asymptotically stable, then the estima-
tion error will decay to zero for any initial condition eðt0Þ
= x0.This stabilization requirement can be achieved if the
pair (A and C) is observable. By taking the transpose of the
estimation error feedback matrix, that is AT − CTLT , it can
be seen that the pair (AT and CT) must be controllable in
order to place the observer eigenvalues in the left half of
the complex plane and make it asymptotically stable. The
structure of the Luenberger state observer is presented in
Figure 1.

Lemma 1. If there exists L ∈ℜn×p such that system (8) is
asymptotically stable, then system (4) represents an observer
for system (1), and the state error eðtÞ converge to zero, pro-
vided that Ac = A − LC is a Hurwitz matrix.

4. New Design of Fast State Observers

In this section, we present our main contribution. The key
idea is to transform the equivalent feedback system into
hyperstable systems such that the state observer error is
asymptotically stable. In addition, consider an invariant time
observer model which has two input vectors, zðtÞ and yðtÞ,
in order to obtain a better dynamic response given by

x̂ tð Þ = Acx̂ tð Þ + L y tð Þ + z tð Þ, x̂ toð Þ = 0, ð12Þ

ŷ tð Þ = Cx̂ tð Þ, ð13Þ
where Ac is a Hurwitz matrix. Recall to equation (7), the
dynamics of the state estimation error is given by

Ac e tð Þ + Bu tð Þ − z tð Þ, e t0ð Þ = x0, ð14Þ

_e tð Þ = Ac e tð Þ − B B+z tð Þ − u tð Þ½ �, ð15Þ
e t0ð Þ = x0, ð16Þ

where B+ = ðBTBÞ−1BT is the pseudoinverse left of Penrose.
Thanks to (14) with (10), it is exact as

_e tð Þ = Ac e tð Þ − BΦ, ð17Þ

1.5

1

0.5

0
0 2 4 6 8 10

A
m

pl
itu

de

Time (sec.)

Step responses

State system (𝛽)

Conventional state observer (𝛽)

PD-state observer (𝛽)

0 2 4 6 8 10
Time (sec.)

State system (𝜙)

Conventional state observer (𝜙)

PD-state observer (𝜙)

1

0.5

0

–0.5

A
m

pl
itu

de

Figure 6: Simulations of state observer with α = 50I2×2β = 10I2×2.
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Figure 7: Simulations of state observer error with α = 10I2×2β = 0:1I2×2.
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Figure 8: Simulations of state observer error with α = 10I2×2β = 1I2×2.
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e t0ð Þ = x0, ð18Þ
ye tð Þ = Ce tð Þ, ð19Þ

with

Φ = B+z tð Þ − u tð Þ½ �: ð20Þ

Equations (15) and (17) lead immediately to equation
(19).

As shown in Figure 2, using Popov’s criteria, the system
is asymptotically hyperstable if the nonlinear part satisfies
the following conditions:

η t0, t1ð Þ =
ðt1
t0

yTe ψð ÞΦdψ ≥ −γ2: ð21Þ

Where γ0
2 is a finite positive constant, and the transfer

matrix of a linear part must be strictly positive real.
So, a simple choice is Φ = 0 which leads to the Popov

parameters, where zðψÞ = BuðψÞ. However, we deduce the
Luenberger state observer equations given in (9) and (10),
but the described equation (21) is immediately a solution
to Popov’s inequality:

Φ = αye ψð Þ + β
dye ψð Þ
dψ

: ð22Þ

Where α and β are two strictly positive matrices and also

called Proportional-Derivative (PD) gains. In conclusion,
the Proportional-Derivative (PD) observer can be summa-
rized in Figure 3.

Lemma 2. Consider the state observers scheme shown in
Figure 3. There exists gains α and β such that the state error
(7) is asymptotically stable if and only if the inequality of
Popov is satisfied.

Proof. From the above equations (8) and (12), the complete
dynamics of the state observer system can be written as

_̂x tð Þ = Ac x̂ tð Þ + L y tð Þ + z tð Þ, ð23Þ

x̂ toð Þ = 0, ð24Þ

ŷ tð Þ = Cx̂ tð Þ, ð25Þ

where

z tð Þ = B u tð Þ + αye tð Þ + β _ye tð Þ½ �, ð26Þ

and the observer error dynamic is

_e tð Þ = I + BβCð Þ − 1 Ac − BαCð Þe tð Þ: ð27Þ
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Figure 9: Simulations of state observer error with α = 50I2×2β = 10I2×2.
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Replacing equations (25) and (26) in (22), we obtain

_̂x tð Þ = Ax̂ tð Þ + Bu tð Þ + BαC + LC + BβC I + BβCð Þ−1 Ac − BαCð Þe tð Þ,Â
x̂ t0ð Þ = 0:

ð28Þ

The easiest way to analyze the coupled dynamic equa-
tions (26) and (27) is to construct a single equivalent state
space model with states x̂ and ê given by

_̂x tð Þ
_e tð Þ

" #
=

A BαC + LC + BβC I + BβCð Þ−1 Ac − BαCð
0 I + BβCð Þ−1 Ac − BαCð Þ

" #
_x tð Þ
e tð Þ

" #
+

B

0

" #
u tð Þ,

ye tð Þ = 0C½ �
_x tð Þ
e tð Þ

" #
+ 0½ �u tð Þ:

ð29Þ

If β = β0 In×n where In×n is a matrix identity, then

_e tð Þ = Ac − α

1 + β0

� �
e tð Þ: ð30Þ

Let us denote,

�Ac =
Ac − α

1 + β0

� �
e: ð31Þ

That leads to

_e tð Þ = �Ac e tð Þ: ð32Þ

So that, the error converges n times faster, it is necessary
that �Ac = ηAc, and then,

α = ½1 − ð1 + β0Þη�Ac, where Ac is located in the left-half
of the complex plane. Therefore, using Lemma 1, the result
is well justified.

5. Simulations and Results

Consider a lateral motion of an aircraft system described in
[15], where

xðψÞ = ½βðψÞ, pðψÞ, rðψÞ, φðψÞ�T is the position and uðψÞ
= ½δr ðψÞ, δa ðψÞ�T is the input parameters position:

_x ψð Þ =

−0:7 0
0 −11

−1 0
0 −10

9 0
0 1

−0:7 0
0 0

0
BBBB@

1
CCCCAx ψð Þ +

0 0
9 1

−9:5 0
0 0

0
BBBB@

1
CCCCAu ψð Þ,

y ψð Þ =
1 0 0 0
0 0 0 1

 !
x ψð Þ,

L =
1:60 0
0 80

8:61 0
0 −8

 !
:

ð33Þ

We have to specify also the initial condition of state system.
For example, nonzero initial conditions are considered as xð
ψ0Þ = x0 = ½0:2 0 0 0:1�T , considering t = ψ the time vector.

6. Results and Discussion

The simulations given by Figures 4–6show the time history of
the conventional state observer and PD state observer with
several values of α and β. Also, we can clearly note that in
Figures 7 and 8 a PD state observer often implies large state
errors in the transient, and based on the values obtained, the
proposed model is susceptible to have stable states with a
dynamically asymmetric convergence with a difference eðψÞ
for the large values of α and β. Consequently, this possibility
confirms the results obtained by the concept of hyperstability
criteria. In addition, it can be seen in Figure 9 that the PD state
observer error converge asymptotically to zero n times faster
than the conventional state observer.

7. Conclusions

The proposed state observer design for a class of continuous
linear systems is presented. And if the observer gain is chosen
so that the eigenvalues of the system are strictly in the left half
of the complex plane, then the state error is asymptotically sta-
ble. Also, the asymptotic stability is assured with the PD state
observer design based on hyperstability criteria. Furthermore,
the simulations showed that with good choice of Proportional-
Derivative gains, the state error can be driven asymptotically
to zero. Finally, it is shown that the proposed PD observer
has a fast convergence property which is an essential feature
in the design of observers. Among the perspectives of this
research work is to incorporate an integral action in the close
loop observer system to eliminate the steady-state error. How-
ever, the design is known as PI observer or PID observer based
on hyperstability criteria. The analysis and design of fuzzy
observers, using unknown bound for uncertainties, and find-
ing the controller parameters based on metaheuristic are the
challenges head on and can be considered for the future work.

Data Availability

Data will be made available on request from the correspond-
ing author.
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