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Abstract: The temperature dependences of the kinematic viscosity during heating and cooling have
been investigated in Co-B melts with a boron content of up to 30.8 at. A liquid–liquid structural
transition was found, which is accompanied by an increase in the activation energy and cluster size,
as well as a significant decrease in the density of the melt. The liquid–liquid structural transition
was associated with the formation of clusters with a short-range order of Co23B6 in the intermediate
temperature region. At low and high temperatures, clusters of the order of an atomic size are active
participants in the viscous flow. It was shown that with an increase in the cluster size, the activation
energy increases and the viscosity of melts decreases. The formation of large Co23B6 clusters during
the cooling of melt with low boron content leads to undercooling and the appearance of the transition
temperature region with high activation energy, although this region does not exist during the
heating stage.

Keywords: activation energy; liquid–liquid structure transition; viscosity; clusters

1. Introduction

The activation of atoms (molecules and clusters) in a liquid is associated with the
transfer of energy sufficient to overcome the energy barrier by the atoms. The activation
theory of a viscous fluid represents the temperature dependence of the kinematic viscos-
ity in the form of an Arrhenius equation, which includes the activation energy. Liquid
multicomponent alloys have a microheterogeneous structure [1]. The difference in the
energy of interatomic bonds is the reason for the formation of clusters of different compo-
sition, structure, and size that have different stability. The composition and cluster size
change with temperature. Most often, in liquid metals, the cluster size decreases with
increasing temperature.

A liquid can have several thermodynamic states, the transition between which is
a liquid–liquid transition [2]. Liquid–liquid structure transition (LLST) is accompanied
by structural transformations [3]. LLST is revealed as anomalies in the temperature de-
pendence of structurally sensitive properties such as density [4], viscosity [5], electrical
resistivity [6], internal friction [7], and magnetization [8]. The discontinuous change in the
structure during the heating of the melt is accompanied by an endothermic peak [9] as well
as a decrease in the coordination number [10].

Co-B alloys are the subject of numerous studies. These alloys served as the basis for
the creation of amorphous soft magnetic materials with high permeability, in which boron
contributes to the formation of an amorphous structure [11,12]. Co-B alloys are used as
hydrogen storage materials [13] and as transducers to detect acoustic propagation and
heat transport at the interface [14]. During the manufacturing process, most materials
go through a melting stage. In ref. [15], the temperature dependences of the kinematic
viscosity and density of Co-B melts with different boron contents were studied. Upon
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cooling, a stable Co2B phase [16] or metastable phases Co3B and Co23B6 [17] are formed
in an alloy with a boron content of less than 35 at.%. The phase composition of the alloy
after solidification strongly depends on the overheating temperature of the melt [18] and
solidification pathways [19,20].

In this work, we studied the activation energy of viscous flow and LLST in Co-B melts
with a boron content of up to 30.8 at.%.

2. Materials and Methods

Master alloy Co61B39 was melted in a vacuum arc furnace from a pressed briquette
of electrolytic cobalt and amorphous boron. Alloy samples were obtained by melting
the master alloy with cobalt. The chemical composition was determined using a DFS-
500 Optical Emission Spectrometer, OKB Spectr, Saint-Petersburg, Russia. We studied
Co100−xBx alloys with a boron content of x = 4.4, 8.7, 18.6, 25.6, and 30.8 at.%. The Co81.4B18.6
alloy is eutectic, while the Co74.4B25.6 alloy corresponds to the metastable Co3B compound.
The kinematic viscosity was measured using oscillating cup viscometer in an atmosphere
of pure helium at a pressure of 105 Pa [21]. The samples were placed in a beryllium oxide
cup suspended by a torsion wire. The oscillation of the cup was dampened by the frictional
force between the layers of the liquid. The melt was kept at a predetermined temperature
for 5 min to stabilize the structural state. During heating and cooling, the temperature of
the melt was changed by a step of 30 K. The kinematic viscosity was calculated from the
results of measuring the decrement based on the Shvidkovskiy algorithm. The activation
energy Ea was calculated from the temperature dependence of the viscosity in the linear
sections of the Arrhenius plot. The error in measuring the kinematic viscosity was 3%. The
melt density was measured by the sessile drop method in a helium atmosphere. The error
in measuring the density did not exceed 3%.

3. Results

The temperature dependence of the kinematic viscosity can be represented by the
Arrhenius equation:

ν = ν0e
Ea
RT , (1)

where ν is the kinematic viscosity (m2·s−1), ν0 is a pre-exponential factor with the dimen-
sion of the kinematic viscosity, Ea is the activation energy of the viscous flow (J·mol−1),
R is the gas constant (J·K−1·mol−1), and T is the absolute temperature (K). After taking the
logarithm of Equation (1), we obtain the Arrhenius plot:

lnν = lnν0 +
Ea

RT
, (2)

where Ea·(RT)−1 is the reduced activation energy, which compares the activation energy
Ea with the thermal energy RT. At constants ν0 and Ea, the logarithm of the kinematic
viscosity is a linear function of the inverse absolute temperature.

Figure 1 shows Arrhenius plots as the dependences of the natural logarithm of the
kinematic viscosity lnν on the reciprocal temperature T−1 when Co100−xBx alloys are heated
to a temperature of 1914 K. The vertical dashed lines show the liquidus temperature Tliq,
the value of which is taken from [16]. The color of the dashed lines matches the color of
the temperature curves for alloys with the same boron content. At a temperature above
Tliq, the alloy is in a liquid state, and the viscosity of the melt naturally decreases with
increasing temperature. Points below the liquidus temperature are highlighted in gray.
In an oscillating cup viscometer, the decrement is related to the mass of fluid that is in
contact with the solid surface of the oscillating body. Therefore, the steep rise of gray dots
during heating in this temperature range indicates an increase in the fraction of the liquid
phase in the solid–liquid state upon melting. From Figure 1, it follows that in alloys with
high boron content, when heated, Arrhenius plots have linear sections at low and high
temperatures. At intermediate temperatures, there is a transition region in which the slope
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of the Arrhenius plots is noticeably greater. In alloys with low boron content, there is
no transition temperature region. In addition, viscosity increases with increasing boron
content. A minor exception is alloys with boron content between 8.7 and 4.4 at.%.
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Figure 1. Dependences of the natural logarithm of the kinematic viscosity lnν on the reciprocal
temperature T−1 during heating of Co100−xBx alloys. The vertical dashed lines show the liquidus
temperatures Tliq. The gray dots refer to the solid–liquid state.

Figure 2 shows Arrhenius plots as the dependences of the natural logarithm of the
kinematic viscosity lnν on the reciprocal temperature T−1 during cooling of Co100−xBx
alloys at a temperature of 1914 K. At cooling, some alloys remain in the liquid state below
the liquidus temperature and pass into the undercooled state. In the undercooling state, a
transition temperature region appears in alloys with low boron content.
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In general, from Figures 1 and 2, it follows that the kinematic viscosity increases with
increasing boron content. Linear segments can be distinguished by the dependence of lnν
on T−1. In the intermediate temperature range from 1650 to 1850 K, the slope of the linear
segments is noticeably greater. During heating (Figure 1) in alloys with a low boron content
of 4.4 and 8.7 at.%, there is no transition temperature region. With an increase in the boron
content, the transition region shifts towards a high temperature. On cooling (Figure 2), the
intermediate region shrinks with increasing boron content.

Figure 3 shows the effect of the boron content on the liquidus temperature Tliq [16],
as well as on the temperatures Theat and Tcool. The quantities Theat and Tcool indicate the
temperature below which the calculated viscosities drop steeply upon heating and cooling,
respectively, and the difference between these temperatures, ∆T = Theat − Tcool can be taken
as the undercooling temperature. It can be seen that alloys with a low boron content have
the highest undercooling.
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Figure 4 shows the effect of the activation energy Ea on the boron content during
heating and cooling near a temperature of 1900 K. It can be seen that the activation energy
increases with increasing boron content, although in the alloy with the lowest boron content,
Co95.6B4.4, there is a trend towards an increase in the activation energy.

Figure 5 shows Arrhenius plots of the dependence of the natural logarithm of the
kinematic viscosity lnν on the reciprocal temperature T−1 during heating and cooling of the
eutectic Co81.4B18.6 alloy. The numbers next to the curves represent the activation energy
Ea in the corresponding temperature interval. It can be seen that the activation energy is
minimal in the high-temperature region and slightly higher in the low-temperature region,
and the highest activation energy falls in the intermediate region. If, at high and low
temperatures, the heating and cooling curves are combined, then there is a discrepancy
in forming a hysteresis loop in the intermediate region. The constancy of the activation
energy in a certain temperature interval allows us to assume that the structure of the melt
in this interval is almost unchanged.
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Figure 5. Dependences of the natural logarithm of the kinematic viscosity lnν on the reciprocal
temperature T−1 during heating and cooling of the eutectic Co81.4B18.6 alloy. The vertical dashed
lines show the liquidus temperature for Co81.4B18.6 and the melting points for Co2B and Co3B
compounds. The numbers next to the curves represent the activation energy Ea in the corresponding
temperature interval.

Figure 6 shows the dependence of the melt density ρ on the reciprocal temperature T−1

at the cooling stage of the eutectic Co81.4B18.6 alloy. Here, for comparison, the corresponding
dependence of the kinematic viscosity is plotted. It follows from Figure 6 that in the
intermediate region, along with an increase in the activation energy, the density of the melt
sharply decreases.
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4. Discussion

Equation (1) can be written as:

Ea

RT
= ln

ν

ν0
. (3)

In the hole model [22], the space available for the motion of atoms and clusters is a free
volume. The motion of one liquid layer relative to another is associated with the transition
of atoms or clusters from an equilibrium state to a free hole. This mechanism of particle
motion in the theory of transition states gives the pre-exponential factor ν0 as [5,22]:

ν0 =

(
2πkBT

aρ

)1/2(Vf

V

)1/3

, (4)

where Vf/V is the relative free volume, V is the specific volume (m−3·kg), ρ is the density
(kg·m−3), a is the atom or cluster size (m), and kB is the Boltzmann constant (J·K−1). Then,
at a fixed temperature, Equation (3) can be represented as:

Ea

RT
= ln

[
C(T)a0.5

]
, (5)

where C(T) is the constant that depends on the temperature. Thus, at a constant temperature,
the activation energy increases with an increase in the size of the clusters involved in the
viscous flow. An increase in the activation energy with an increase in the cluster size is
typical not only for viscous flow but also for other transport phenomena [23,24].

From Equation (4), it is possible to estimate the size of the particles involved in the
viscous flow:

a =
2πkBT
ρ v2

0

(Vf

V

)2/3

. (6)

Density ρ and pre-exponential factor v0 will be found from experimental data. The
relative free volume Vf/V was determined from the Batschinski equation [25,26]:

ν =
cV

V −ω , (7)
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which demonstrates that the kinematic viscosity is inversely proportional to the relative
free volume:

Vf

V
=

V −ω
V

= 1 −ωρ. (8)

In Equations (7) and (8), the specific volume V = ρ−1, c is the constant with the dimen-
sion of kinematic viscosity, the valueω corresponds to the specific volume of liquid with
infinitely high viscosity, and the difference (V − ω) represents the specific free volume Vf.
From Equations (7) and (8), it follows that the inverse kinematic viscosity is a linear function
of the density:

1
ν
=

1
c
− ω

c
ρ. (9)

The valueω = 1.25 × 10−7 m3·kg−1 for the Co81.4B18.6 melt was found from Equation (9)
in the low-temperature region. The relative free volume Vf/V can now be determined
using formula (8).

Table 1 shows the calculated parameters of the liquid eutectic Co81.4B18.6 alloy and
cluster sizes involved in viscous flow at the cooling stage. At low and high temperatures,
the clusters have a size close to the atomic size of 0.1 nm, and the cluster size is larger in the
low-temperature region. In the intermediate region, the size of the clusters is much larger.
It can be assumed that, at low temperatures, the melt viscosity is mainly associated with
the movement of individual atoms or small clusters. With an increase in temperature, large
clusters are involved in the flow, which then break up into atoms.

Table 1. Design parameters of the liquid eutectic Co81.4B18.6 alloy and cluster sizes involved in
viscous flow at the cooling stage.

Temperature
T/K

Density
ρ/kg·m−3

Activation Energy
Ea/kJ·mol−1

Reduced Activation
Energy Ea·(RT)−1

Pre-Exponential Factor
ν0/10−8·m2 s−1

Relative Free
Volume Vf/V

Cluster Size
a/nm

1500 7500 28 2.2 13 0.061 0.15
1720 7300 66 4.6 0.92 0.088 48
1850 7300 19 1.2 23 0.088 0.09

Table 1 also shows the reduced activation energy Ea·(RT)−1, which compares the
activation energy Ea with the thermal energy RT. Thermal energy is a source that accelerates
the movement of clusters and lowers the energy barrier. An increase in the reduced
activation energy to 4.6 at 1720 K indicates a decrease in the number of moved clusters. But
the movement of one cluster is accompanied by the displacement of a significant number
of atoms, and the number of atoms in a cluster grows non-linearly with an increase in
its size [27]. Thus, large clusters move a larger number of atoms, and this will lead to a
decrease in the melt viscosity. Previously, it was shown [28] that the viscosity decreases
with increasing cluster size. A similar dependence takes place in a nanofluid [29].

Electronegativities on the Luo–Benson scale for Co and B are 1.83 and 3.66, respec-
tively [30]. Boron atoms are most strongly associated with cobalt atoms since this pair of
elements has distinct electronegativity. In the Co50B50 alloy, all cobalt atoms are bonded to
boron atoms, and the stable CoB compound has the highest liquidus temperature (Table 2).
With an increase in boron content, when excess cobalt atoms appear, they will still tend
to move closer to the boron atoms. An increase in temperature increases the mobility of
atoms, and this simultaneously weakens the Co-B bond but increases the probability that
free cobalt atoms will approach boron atoms. At a sufficiently high temperature, borides
begin to accumulate free cobalt atoms, forming short-range order Co2B. When the ratio of
the number of cobalt atoms to boron atoms is 2:1, a stable Co2B compound with a high
local liquidus temperature is formed. With a further increase in the cobalt content, the same
mechanism should lead to the formation of a short-range order, first Co3B and then Co23B6.
In the series of compounds CoB, Co2B, Co3B, and Co23B6, the fraction of cobalt bound to
boron increases successively. It follows from Table 2 that an increase in the fraction of cobalt
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in the compound leads to a decrease in formation energy, liquidus temperature, and an
increase in mole volume, which indicates a weakening of the bond between atoms.

Table 2. Design parameters of the compounds.

Compound Crystal System Lattice
Volume/nm3 [31]

Formation
Energy/eV·atom−1 [31]

Mole Volume/10−6 ×
m3·mole−1

Liquidus
Temperature Tliq/K

Co23B6 Cubic 1.116 −0.089 5.795 1348 [18]
Co3B Orthorhombic 0.15028 −0.133 5.658 1431 [16]
Co2B Tetragonal 0.10443 −0.175 5.246 1544 [16]
CoB Orthorhombic 0.06052 −0.298 4.558 1626 [16]

The as-cast Co81.4B18.6 eutectic alloy consists of Co and the orthogonal Co3B phase,
with a small amount of the tetragonal Co2B phase [18]. Therefore, when melting the
Co81.4B18.6 alloy, the clusters in the low-temperature region have mostly a short-range
order of Co3B. The structure of the low-temperature melt is dominated by small clusters
and free atoms, which confirms the small cluster size (Table 1) and low activation energy
(Figure 5). In the low-temperature region, it is quite expected that the size of the particles
that participate in viscous flow is close to the atom size. In the region just below the melting
point, most atoms vibrate around equilibrium positions in the crystal lattice. In the liquid
state, just above the melting point, there are more free atoms that can move a considerable
distance. As the temperature increases, the number of free atoms increases, but they are
not isolated from each other and continue to interact, gathering into clusters.

In Figure 5, the heating and cooling Arrhenius plots form a hysteresis loop. The
nature of hysteresis is always associated with the presence of a large number of metastable
states in the material. As a result, the trajectory of changes in the melt structure with
temperature can vary greatly. Thus, a supercooled alloy can have a different structure
during cyclic heating and cooling (see [17,19]). We thermally cycled our melts. In general,
the characteristic temperatures on the viscosity curves are repeated, but the paths through
the heating–cooling cycles are somewhat different. In magnetic hysteresis, it is necessary to
make at least 10 cycles to reach a stable loop trajectory.

As the temperature rises, the bond between atoms weakens, and this can facilitate
the transition to the short-range order of Co23B6. The stimulus for LLST in the eutectic
Co81.4B18.6 melt is the desire to have a uniform distribution of cobalt and boron atoms at
high temperatures. A uniform distribution can be obtained in the Co79.4B20.6 alloy, in which
the ratio of cobalt and boron atoms exactly corresponds to the Co23B6 compound. The
transition to a short-range order of Co23B6 confirms the large cluster size (Table 1) and high
activation energy (Figure 5), as well as a sharp decrease in melt density (Figure 6). Table 2
shows that the Co23B6 compound has a high molar volume. It was previously noted that
when the eutectic melt is heated above 1650 K, the undercooling ∆T increases significantly,
and the metastable Co23B6 phase is formed [18,20]. The boundary temperature of 1650 K
just coincides with the onset temperature of LLST in the eutectic alloy in Figure 5.

In the high-temperature region, the reduced activation energy is close to 1 (Table 1), so
the energy barrier for cluster movement is very low. An estimate of the cluster size (Table 2)
shows that at high temperatures, the viscous flow is associated with individual atoms.

The low-boron as-cast alloys consist of Co and the orthogonal Co3B phase [32], with a
significant proportion of free cobalt. Therefore, during the heating of the Co91.3B8.7 melt,
the movement of individual atoms and small clusters dominates, which corresponds to a
low activation energy (Figure 7). An excess of cobalt in this melt prevents the formation of
large Co23B6 clusters, and upon heating, a transition region with a high activation energy
is not observed in Figure 7. Upon reaching a high temperature of 1914 K, the activation
energy decreases to 14 kJ/mol. Thus, the cooling of the melt begins in the state in which
individual atoms predominate. The Co91.3B8.7 alloy has a significant undercooling ∆T.
Undercooling is associated with the formation of clusters with icosahedral short-range
order [33], which have fivefold symmetry and inhibit the growth of the nuclei of regular
crystals. Experimentally, the icosahedral short-range order was found in undercooled
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Co melts [34]. Fe23B6-type quasicrystal-like structures were found in Fe-based metallic
glass [35]. Undercooling of the Co91.3B8.7 melt expands the temperature range of the liquid
state, and an intermediate region appears at the cooling stage. Thus, the formation of
large Co23B6 clusters leads to the undercooling of the alloy. In the intermediate region, the
activation energy of 47 kJ/mol is lower than in the eutectic melt, which can be explained
by an increase in the fraction of unbound cobalt atoms.
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Figure 7. Dependences of the natural logarithm of the kinematic viscosity lnν on the reciprocal
temperature T−1 during heating and cooling of the Co91.3B8.7 alloy. The vertical dashed lines show the
liquidus temperature for Co91.3B8.7 and the melting points for Co2B and Co3B compounds. The num-
bers next to the curves represent the activation energy Ea in the corresponding temperature interval.

In the Co79.4B20.6 melt, the ratio of cobalt and boron atoms corresponds to the Co23B6
compound. In alloys with a boron content of less than 20.6 at%, that is, with an excess cobalt
content compared to Co23B6, the kinematic viscosity during cooling is higher than during
heating. The hysteresis loop in Figure 5 shows the premature LLST during heating and
cooling. Premature LLST indicates that the short-range order of Co23B6 is more preferable
in low-boron alloys.

In the as-cast alloys with a high boron content, the tetragonal Co2B phase predomi-
nates [32]. Figure 8 shows the dependence of the natural logarithm of the kinematic viscos-
ity lnν on the reciprocal temperature T−1 during heating and cooling of the Co69.2B30.8 alloy.
This alloy has an excess boron content compared to Co23B6, and the kinematic viscosity
when cooled is lower than when heated. High boron content in the melt promotes the
preservation of a stable short-range order of Co2B and inhibits the formation of a short-
range order of Co23B6. The wide hysteresis loop in Figure 8 shows the delay in the onset of
LLST, which occurs in a narrow temperature range. The onset temperature of LLST at the
stage of heating and cooling differs by 100 K.
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5. Conclusions

Temperature dependences of the kinematic viscosity during heating and cooling have
been investigated in Co-B melts with a boron content of up to 30.8 at.%. The activation
energy of the viscous flow Ea and the reduced activation energy, which compares the
activation energy with the thermal energy RT, were calculated from the experimental
results. To estimate the size of moving clusters, we used the transition state theory and
the Batschinski equation, which relate viscosity to relative free volume. As the cluster
size increases, the activation energy of the viscous flow increases, and the viscosity of
the melt decreases. At low and high temperatures, clusters of the order of an atomic
size are active participants in the viscous flow. In the intermediate temperature region,
the activation energy and cluster size increase, and the melt density sharply decreases.
Corresponding changes were associated with the liquid–liquid structure transition, in
which large clusters with a short-range order of Co23B6 are formed. The mechanism of
the liquid–liquid structure transition is proposed, which confirms the characteristic shape
of hysteresis loops on the temperature dependence of kinematic viscosity at the stage of
heating and cooling. When a melt with a low boron content is heated, an intermediate-
temperature region with high activation energy for viscous flow does not form on the
Arrhenius plot. The formation of large Co23B6 clusters at the cooling stage after heating
melts to a high temperature leads to undercooling and the appearance of the high activation
energy region.
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