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Abstract: In this paper, a thermokinetic model forced by colored noise is studied. We analyze the
mechanisms of stochastic excitement of equilibrium modes under variation of correlation time and
noise intensity. It is shown that the phenomenon of colored-noise-induced excitement is accompanied
by stochastic P-bifurcations. The region of the correlation parameter in which resonance occurs is lo-
calized. To study the phenomenon of colored-noise-induced excitement, we develop the probabilistic
analysis based on the confidence domains method.

Keywords: colored noise; stochastic bifurcation; excitement; resonance; stochastic sensitivity;
confidence ellipses

MSC: 37H10; 37H20

1. Introduction

The constructive role of noise in processes related to various branches of natural
science attracts the attention of many researchers. In mathematical models with strong
nonlinearity, even small noise can cause qualitative changes in dynamic behavior [1]. Here,
one can note such phenomena as noise-induced transitions [2,3], stochastic bifurcations [4],
noise-induced order-chaos transformations [5,6], stochastic complexity [7], stochastic and
coherence resonance [8–10]. Among such phenomena, stochastic excitability [11] occupies
a special place. This phenomenon is associated with a sharp increase in the amplitude of
deviation from the equilibrium when a certain threshold level of noise intensity is reached.
Stochastic excitability has been actively studied in models of neural activity, electronic
generators, population and climate dynamics [9,11–14]. This article is devoted to the study
of this phenomenon in the processes of thermochemical kinetics.

The case when random disturbances are modeled by Gaussian white noise has been
the subject of many investigations. Thermokinetic processes, where the Gaussian white
noise models random fluctuations of temperature and concentration of reagents in the
reactor, were studied in [15,16]. However, it is known that uncorrelated white noise
being an idealization of real disturbances is not always realistic. To take into account
temporal correlation of random forcing, one should use a model of colored noise where
the characteristic time defines the decay of the correlation function [17]. It should be noted
that specific stochastic effects caused by colored noise have been found and investigated in
different branches of natural science (see, e.g., [18–23]). This paper aims to study a specific
role of colored noise for stochastic excitement in thermochemical processes. The novelty
of this paper is related to the study of how the phenomenon of stochastic excitement is
associated with the correlation time parameter of colored noise. To find resonances, we use
the new mathematical tool associated with the technique of stochastic sensitivity and the
geometric apparatus of confidence domains [24].

In Section 2, we briefly discuss bifurcations and variety of dynamic regimes in the
initial deterministic model. In Section 3, we study a stochastic variant of this model with
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colored parametric noise in the temperature of the reactor. Here, the phenomenon of noise-
induced excitement is studied by means of stochastic bifurcations, interspike intervals, and
exit probability. Possible resonances under variation of correlation time are discussed. To
analyze the colored-noise-induced excitement, we apply stochastic sensitivity technique
in Section 4.

2. Deterministic Model

In this paper, as an initial deterministic skeleton, we consider a dimensionless model
of the first-order thermochemical reaction in a continuous stirred tank reactor [25]:

ẋ = −lx + Dϕ(x, y),

ẏ = −ly + DBϕ(x, y)− βy.
(1)

Here, x and y are dimensionless reactant concentration and reactor temperature. In
Model (1), function

ϕ(x, y) = (1− x) exp(y)

characterizes the nonlinear interaction of system variables. Positive parameters of the
model define recycling (l), heat of reaction (B), and heat transfer (β). In (1), parameter D is
the Damköhler number. Following [25,26], we fix l = 0.5, B = 14, D = 0.044 and consider
β as the bifurcation parameter.

Even small variation of β causes qualitative changes in System (1) dynamic behavior.
These changes are well seen in the bifurcation diagram (see Figure 1a) where extrema of
x- and y-coordinates of System (1) attractors are plotted. Here, bifurcation values arBe
β1 = 0.816, β2 = 0.864. In the bifurcation diagram, attractors with the higher temperature
(hot attractors) are shown in red and attractors with the lower temperature (cold attractors)
are plotted in blue.
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Figure 1. Deterministic model (1): (a) Bifurcation diagram. Here, bifurcation points are
β1 = 0.816, β2 = 0.864. Extrema of x- and y-coordinates of the hot attractors are shown in red,
and for cold attractors they are shown in blue. (b) Phase portrait for β = 0.8. Here, all solutions tend
to the hot equilibrium H.

For β < β2, the hot attractor is a stable equilibrium, and for β > β2 this is a stable
limit cycle. The cold attractor exists only in the equilibrium form for β > β1. Therefore,
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for β < β1, the system exhibits the hot equilibrium only. An example of the phase portrait
for β = 0.8 < β1 is shown in Figure 1b. Here, two types of transient processes are
observed. Indeed, if the trajectory starts in the subthreshold zone, the solution of System (1)
immediately tends to equilibrium. The superthreshold zone in the phase plane corresponds
to the initial data of solutions with large-amplitude outbreaks: the trajectory first moves
away from the stable equilibrium and, before approaching it, shows a fragment of the
phase trajectory that is very far from the equilibrium.

From the deterministic point of view, oscillatory modes, associated with limit cycles,
exist only for β > β2. It is well known that oscillations induced by noise can be observed in
the bistability zone β1 < β < β2 where the deterministic system possesses two coexisting
stable equilibria. Such large-amplitude stochastic oscillations are caused by noise-induced
transitions between basins of these equilibria. However, in the monostability zone β < β1,
where System (1) possesses the only stable equilibrium H, noise-induced large-amplitude
oscillations also can occur. This paper aims to study this effect of stochastic excitement and
elucidate its underlying mechanisms.

3. Noise-Induced Excitement, Stochastic Bifurcations, and Resonance

As a stochastic version of Model (1), we consider the following system:

ẋ = −lx + Dϕ(x, y),

ẏ = −ly + DBϕ(x, y)− (β + εs)y.
(2)

Here, we study an impact of random fluctuations in parameter β. The stochastic
forcing η(t) = εs(t) of intensity ε is modeled by colored noise s(t) with characteristics

E [s(t)] = 0, E [s(t)s(t′)] = exp
(
−a|t− t′|

)
,

where parameter a = 1/τ is defined by the correlation time τ. Here and further, E [·]
denotes a mean value.

In our paper, we model such colored noise s(t) by the following stochastic equation:

ṡ = −as +
√

2aξ(t), (3)

where ξ(t) is the standard uncorrelated Gaussian white noise with parameters E [ξ(t)] = 0,
E [ξ(t)ξ(t′)] = δ(t − t′) (here, δ is the δ-function). Therefore, the stochastic term η(t)
in System (2) has the stationary variation E [η2(t)] = ε2. As a result, the study of two-
dimensional System (2) with colored noise η(t) comes down to the investigation of extended
three-dimensional Systems (2), (3) with Gaussian white noise ξ(t).

We consider how the colored noise can change the equilibrium regime of the thermo-
chemical system under consideration. In our study, we investigate the stochastic response
of Systems (2), (3) on the variation of noise intensity ε and parameter a of colored noise. In
numerical simulations of System (2), (3) solutions, we use the Euler–Maruyama scheme
with time step 0.001.

First, let us fix β = 0.8, a = 1 and change parameter ε. In Figure 2, phase trajectories
and time series of System (2) solutions starting at the stable equilibrium H are plotted. For
weak noise ε = 0.03, these solutions (blue) reside in the small vicinity of equilibrium H. For
larger noise, dispersion of random solutions grows, and System (2) begins to demonstrate
large-amplitude stochastic oscillations (see green curves in Figure 2 for ε = 0.1). We note
that these oscillations have a spike shape: concentration x of the reagent sharply falls
down, and temperature y deviates both up and down. These spikes alternate with the
small-amplitude fluctuations near H. Therefore, the system demonstrates mixed-mode
stochastic oscillations.

Details of the transformation of random states dispersion with increase in noise
intensity ε are shown in Figure 3. Here, an abrupt transition from small- to large-amplitude
oscillations is well seen. Such a transition can be explained by geometrical peculiarities of
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the phase portrait of deterministic Model (1) (see Figure 1b). Indeed, for small deviation
of the initial state from equilibrium H (the subthreshold zone in the phase plane), a
deterministic solution immediately tends to H. If the deviation exceeds some threshold, the
solution falls into the superthreshold zone, demonstrates a large-amplitude loop far from
H, and only after this excursion approaches equilibrium H. The abrupt jump in dispersion
mentioned above can be explained by the fact that the stochastic solutions transit from
the sub- to the superthreshold zone. Therefore, here, with increase in noise intensity ε, a
phenomenon of the noise-induced excitement is observed.
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Figure 2. Noise-induced excitement: random trajectories and time series of stochastic System (2) with
β = 0.8, a = 1 for two values of noise intensity: for ε = 0.03 (blue) and ε = 0.1 (green).
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Figure 3. Random states of stochastic System (2) with β = 0.8, a = 1 starting at equilibrium H.

We consider now how this stochastic phenomenon depends on the correlation proper-
ties of the colored noise defined by parameter a. Let us fix β = 0.8, ε = 0.2 and change the
correlation parameter a of the colored noise.

In Figure 4, we plot phase trajectories and time series of System (2) solutions starting
at stable equilibrium H for two values of parameter a. For a = 1, the noise-induced
excitement of large-amplitude stochastic oscillations is observed (see green curves). For
a = 100, colored noise with the same intensity ε = 0.2 does not cause large-amplitude
spikes, and solutions (blue) are located near equilibrium H.

Details of the dependence of the random state dispersion on parameter a are shown in
Figure 5. In Figure 5a, random states of solutions starting at equilibrium H are plotted for
ε = 0.07 in the range 10−4 < a < 102. Here, the a-zone of the stochastic excitement with
large-amplitude oscillations is well localized. This a-parameter zone can be interpreted as
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a resonance zone. It should be noted that with the change in a, the transition from small-
amplitude noisy oscillations near equilibrium H to large-amplitude oscillations similar to
stochastic cycle is rather sharp.

With increasing noise, the parametric zone of colored-noise-excitement is expanded
(compare Figure 5a for ε = 0.07 and Figure 5b for ε = 0.2).
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Figure 4. Noise-induced excitement: random trajectories and time series of stochastic System (2) with
β = 0.8, ε = 0.2 for two values of parameter a: for a = 1 (green) and a = 100 (blue).
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Figure 5. Stochastic System (2) with β = 0.8: random states of solutions starting at equilibrium
H for (a) ε = 0.07, (b) ε = 0.2 versus parameter a; (c) mean values of x-coordinates for different
noise intensities.

Results of the statistical analysis of the changes in the random state dispersion are
presented in Figure 5c where plots of mean values 〈x〉 of reagent concentration x are shown
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versus correlation parameter a for three values of noise intensity. It should be noted that
the minima of 〈x〉 correspond to the a values at which the thermokinetic system is the most
sensitive to colored noise.

Additional useful statistical information about the strong dependence of the phe-
nomenon of stochastic excitation on correlation parameter a and noise intensity ε can be
extracted from Figures 6 and 7. In Figure 6a, for solutions starting at equilibrium H, we
show plots of function p(a) which determines the exit probability from the subcritical zone
during time T = 500. As a threshold, we use x = 0.5. As can be seen, for considered values
of noise intensity ε, there are a-zones where this exit probability is not zero. Moreover, with
increase of ε, peaks of function p(a) grow, and for ε = 0.2 become close to one.
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Figure 6. Stochastic system with β = 0.8: (a) exit probability; (b) mean values of interspike intervals.

As one can see, the phenomenon of noise-induced excitement is accompanied by the
formation of large-amplitude oscillations of a spike type. In the analysis of spiking, statistics
on interspike intervals τISI are key characteristics. Results of the frequency analysis of spike
oscillations are shown in Figure 6b. Here, mean values 〈τISI〉 of interspike intervals τISI are
plotted versus parameter a for different noise intensities. For quite small and large a, spikes
are extremely rare, but there exists an active a-zone where spikes appear and interspike
time becomes rather small.
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Figure 7. Probability density functions ρ(x) for x-coordinates of intersection points with
line y = ȳ = 5.00256 for stochastic System (2) with β = 0.8, ε = 0.2.

Along with the frequency characteristics of noise-induced excitement, it is interesting
to consider spatial deformations of amplitudes of mixed-mode oscillations. As seen in
Figures 2 and 4, in the mode without excitement, random trajectories are concentrated
near the equilibrium, while in the excitement mode an additional zone of concentration of
trajectories appears. This zone corresponds to the spike oscillations of large amplitudes.

Let us fix β = 0.8, ε = 0.2 and consider intersection points of stochastic System (2)
solutions with line y = ȳ = 5.00256. Here, ȳ is the coordinate of deterministic equilibrium



Mathematics 2023, 11, 4676 7 of 11

H(x̄, ȳ). We let ρ(x) be the probability density of distribution of x-coordinates of these
random points. Details of the qualitative transformation of density ρ(x) with a change
in parameter a are shown in Figure 7. Here, plots ρ(x) are shown for values a = 0.0001,
a = 0.001, a = 1, and a = 100 of the parameter of correlation time. For a = 0.0001, function
ρ(x) has a narrow and high peak localized near the stable equilibrium (no excitement).
For a = 0.001, an additional small peak is seen. This new peak reflects the appearance of
large-amplitude loops. These two peaks are clearly seen at a = 1. At a = 100, the left peak
disappears, leaving only the high right peak above the stable equilibrium.

Thus, with increase in a, randomly forced System (2) undergoes stochastic
P-bifurcations [4] with the qualitative transformation of the shape of ρ(x): one-peak→two-
peak→one-peak. It should be noted that these results of the analysis of stochastic bi-
furcations well complement the statistical description of the excitement phenomenon
in Figures 5 and 6.

In the next Section, we show how the phenomenon of colored-noise-induced excite-
ment can be studied by the analytical stochastic sensitivity function technique and the
confidence domain method. Mathematical details of this approach are briefly presented
in Appendix A.

4. Stochastic Sensitivity Analysis

Let us consider how the stochastic sensitivity of equilibrium H depends on parameter
a. In Figure 8, eigenvalues λ1, λ2 (λ1 > λ2) of the stochastic sensitivity matrix W of
equilibrium H in System (2) are shown versus parameter a for several values of β. As
can be seen, λ1 is significantly larger than λ2. In the behavior of λ1, λ2, one important
feature should be underlined. The stochastic sensitivity essentially depends on a: there is
an a-zone where values λ1, λ2, characterizing sensitivity, are high. With further increase in
a, stochastic sensitivity of equilibrium H sharply decreases.
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Figure 8. Eigenvalues λ1 > λ2 > 0 of the stochastic sensitivity matrix W of the equilibrium H for
System (2) with β = 0.815 (red), β = 0.8 (blue), β = 0.75 (green) versus parameter a.

Variation in the stochastic sensitivity implies changes in the dispersion of random
states. To describe the dispersion, we use the method of confidence ellipses. Eigenvalues λ1
and λ2 of the stochastic sensitivity matrix W are key parameters of the confidence ellipse
(see Formula (A5)).

In Figure 9, for fixed values of β = 0.8 and ε = 0.001, random states of System (2)
solutions are plotted by grey dots for different a. Corresponding confidence ellipses are
shown by blue dashed curves. As can be seen, these ellipses well describe the geometrical
arrangement of the random states with the change in parameter a. We note that the large
eccentricity of the ellipses is explained by the significant difference in the values of λ1 and
λ2, which determine the size of their main axes.

We consider now how the confidence ellipses can be used in the parametric analysis
of the phenomenon of noise-induced excitement. In Figure 10, by grey, we show phase
trajectories of deterministic System (1) with β = 0.8, and confidence ellipses for stochastic
System (2) with ε = 0.2 and two values of a: for a = 1 (green) and a = 100 (blue). Such
a difference in the size of ellipses is explained by the difference in stochastic sensitivity.



Mathematics 2023, 11, 4676 8 of 11

Value a = 1 lies in a parameter zone of high sensitivity, and a = 100 corresponds to the low
sensitivity (see eigenvalues in Figure 8).
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Figure 9. Confidence ellipses and random states of System (2) with β = 0.8, ε = 0.001: (a) for a = 0.1,
(b) for a = 1, (c) for a = 10, (d) for a = 100. Here, fiducial probability P = 0.995.
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Figure 10. Confidence ellipses for System (2) with β = 0.8, ε = 0.2 for a = 1 (green), a = 100 (blue).
Here, phase trajectories of deterministic System (1) are shown in dark grey.

For a = 100, the small confidence ellipse lies entirely in the subthreshold zone, where
deterministic solutions immediately tend to the equilibrium. Such an arrangement of
the ellipse predicts the small-amplitude oscillations near equilibrium H. For a = 1, the
large confidence ellipse partially occupies the superthreshold zone corresponding to the
large-amplitude outbreaks of the deterministic trajectories. For the stochastic system, this
location means the onset of noise-induced excitement.

We note that such a prognosis extracted from the confidence ellipses method well
agrees with the results of direct numerical simulation (see Figure 4). Thus, using this
method in combination with the analysis of arrangement of sub- and superthreshold zones
in the phase plane, one can estimate the critical values of noise intensity ε and correlation
parameter a corresponding to onset of stochastic excitement.

5. Conclusions

In this paper, a problem of analyzing mechanisms of stochastic excitement of equi-
librium modes in the thermochemical processes due to the impact of colored noise is
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considered. Our study shoes that the determining factors in the phenomenon of stochastic
excitement are not only noise intensity, but also the correlation time of colored noise. A
change in the values of the correlation parameter can significantly affect the generation of
large-amplitude spike oscillations, causing related stochastic P-bifurcations. It was found
that the correlation parameter impacts the stochastic sensitivity of equilibrium. Correspond-
ing resonance zones are described. An efficiency of the stochastic sensitivity technique
and the confidence domains method in the parametric analysis of colored-noise-induced
excitement is demonstrated.

Thus, the study sheds light on the dependence of the physicochemical processes
occurring in the continuous stirred tank reactor on the nature of the inevitably present
random disturbances. The work shows the important role of the correlation characteristics
of the operating noise. The zone of the correlation parameter is localized, in which the
equilibrium mode of the continuous stirred tank reactor is destroyed, and the temperature
and concentration of the reagent begin to exhibit large-amplitude spike oscillations. Such
excitation caused by colored noise can lead to undesirable consequences from an engineering
point of view and must be taken into account when designing stable operating reactors.

Funding: The work was supported by Russian Science Foundation (N 23-21-00042).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

The stochastic sensitivity function technique was initially elaborated for systems
driven by Gaussian white noise (see, e.g., [27,28]). For the case of colored noise, this
technique is briefly described as follows.

We consider a general n-dimensional nonlinear dynamical system

ẋ = f (x, η) (A1)

with scalar parameter η of colored random disturbances. Colored noise η(t) = εs(t) of
noise intensity ε is modeled by stochastic Equation (3).

We let equilibrium x̄ of the unforced deterministic system be exponentially stable. For
asymptotics z(t) = limε→0

xε(t)−x̄
ε of deviations of solution xε(t) of stochastic System (A1),

(3) from equilibrium x̄, we can write the closed stochastic linear system:

ż = Fz + gs, ṡ = −as +
√

2aξ(t), F =
∂ f
∂x

(x̄, 0), g =
∂ f
∂η

(x̄, 0).

For matrix V = E [vv>] of second moments for the extended (n + 1)-dimensional

vector v =

[
z
s

]
, we can write the following system [24]:

V̇ = ΦV + VΦ> + G, Φ =

[
F g
O −a

]
, G =

[
O O
O 2a

]
. (A2)

Here, symbol O denotes the matrices of the corresponding dimensions with zero
elements.

For stable x̄ and positive a, System (A2) has a unique stable stationary solution Z
satisfying the following matrix equation:

ΦZ + ZΦ> + G = 0.
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For blocks W = E [zz>], m = E [zs], b = E [s2] of matrix Z =

[
W m
m> b

]
, we can

write the following system:

FW + WF> + gm> + mg> = 0

Fm + bg− am = 0

−2ab + 2a = 0.

(A3)

Excluding b = 1 and m = −[F− aI]−1g, we have the following equation:

FW + WF> = gg>[F> − aI]−1 + [F− aI]−1gg>. (A4)

Matrix W characterizes the stochastic sensitivity of equilibrium x̄:

cov(xε(t), xε(t)) ≈ ε2W.

Using eigenvalues λ1, λ2 and normalized eigenvectors w1, w2 of stochastic sensitivity
matrix W, we can describe a distribution of the random states around equilibrium x̄ in a
form of confidence ellipse

α2
1

λ1
+

α2
2

λ2
= −2ε2 ln(1−P). (A5)

Here, α1 = (x − x̄, w1), α2 = (x − x̄, w2) are coordinates of the ellipse in the basis
of w1, w2 and P is a fiducial probability. Therefore, eigenvalues λ1 and λ2 of stochastic
sensitivity matrix W define a size of the confidence ellipse in the directions of eigenvectors,
w1, w2.
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26. Holodniok, M.; Klíč, A.; Kubíček, M.; Marek, M. Metody Analýzy Nelineárních Dynamických Modelů; Academia: Praha,
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