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Abstract: Air compressors are widely used in factories to
power automation systems and store energy. Several stu-
dies have been conducted on the performance of recipro-
cating and screw compressors. Advancements in design
and manufacturing techniques, such as generative design
and topology optimization, are leading to improved perfor-
mance and turbomachinery growth. This work presents a
methodology to design and manufacture air compressor
pistons using topology optimization and metal additive
manufacturing. The existing piston is converted to 3D
CAD data and topology optimization is conducted to reduce
material in stress concentration regions. Thermal and
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mechanical loads are considered in boundary conditions.
The results show reduced material and improved efficiency,
which is validated using ANSYS fluent. The optimized 3D
model of the piston is too complex for conventional sub-
tractive manufacturing, so laser sintering 3D printing is
proposed. Honeycomb pattern infill patterns are used in
3D printing. This investigation is a step toward researching
similar methods in other reciprocating compressor compo-
nents such as cylinder, cylinder head, piston pins, crank-
shaft, and connecting rods, which will ultimately lead to
improved compressor efficiency.

Keywords: compressor piston, topology optimization,
metal 3D printing, additive manufacturing, LASER sin-
tering, fusion 360, ANSYS fluent

1 Introduction

Material selection and design optimization play a vital role
in all finished products. The optimization involves weight
reduction and an increase in the performance of the
machines. In industry 4.0, automation industries utilize pneu-
matic devices such as cylinders, direction control valves, reg-
ulators, etc. [1,2]. The primary source of the pneumatic system
is air compressors. The increasing weight of the moving parts
leads to a rise in power consumption. Several types of
research have been carried out on power reduction by weight
optimization and changing the metallurgy of machine com-
ponents [3-5]. Topology optimization is the mathematical
method to optimize the distribution of materials based on
the mechanical and thermal stresses acting on the material.
Software like ANSYS, Abaqus, TOSCA, and Solid works is
equipped with topology optimization [6,7]. Topology optimi-
zation is an algorithmic technique that yields the most effi-
cient design of the components. The method works by
removal of material based on boundary conditions and
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constraints given the object [8-10]. The finite element
method and finite volume computation techniques are
equipped with the topology optimization algorithm for the
reduction of materials to yield the most efficient designs [11].
In refrigerators, a vapor compression system is achieved
using compressors. The component’s temperature increases
in the compression cycle, and the temperature reduction
happens in expansion [12,13]. There are various compressor
piston parts such as spring plates, wafer plates, ported
plates, valve plates, lock nuts, studs, gudgeon pins, and
radius rings [14-16]. The piston is considered a significant
component needed to optimize the structure. Carbon peeks,
peek, and nylon thermoplastic materials are used to manu-
facture piston accessories such as rings and plates [17-19].

The piston is the main component of reciprocating air
compressors and internal combustion engines [20]. This main
reciprocating mass is subjected to inertial and compressive
forces [21,22]. The piston needs to withstand high tempera-
ture, and high pressure for turbochargers. Advanced spark
ignition engines need high compression ratios, for which
component design and optimization are essential to reduce
the size of the machine [23-25]. Power consumption is an
additional factor that attracts the user to the optimized
brands of compressors. In this scenario, aluminum is not
only the best choice but steel alloys for increasing perfor-
mance and fulfilling high thermal and mechanical loads
[26]. The kinematic behavior of the piston assembly and
cranking behavior under different loads need to be consid-
ered. Several types of research have been carried out in
material optimization and design topology optimization of
piston components [27]. Based on the load distribution, the
reduction of material under topology optimization should
balance the weight ratio. The higher density materials lead
to increase the weight of component [28]. In the conventional
subtractive manufacturing process, the complexity of the
component needs to be considered while in the design stage.
The modern industry 4.0 scenario unveils modern ways of
manufacturing through additive manufacturing [29]. The
design obtained after the topology optimization can be easily
manufactured layer by layer. This is a promising technology
for manufacturing complex shape components with fewer
wastages. The significant factors that need to be considered
in additive manufacturing technology are the mesh resolu-
tion, G code arm movements, printing head speed, and metal
powders’ fusion temperature [30].

In additive manufacturing, fusion deposition modeling,
stereolithography liquid additive manufacturing, and metal
additive manufacturing are the major classifications used in
modern manufacturing industries. In general, the fusion
deposition method is used for the materials such as nylon,
polylactic acid, and acro nitrile butadiene styrene. In liquid
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additive manufacturing, liquid resins are used in the
manufacturing process. In metal additive manufacturing,
the conversion of liquid to the solid phase is not equipped
due to the higher melting point of the metal powders. Still,
metal powder is heated to reach the fusion temperature. The
higher temperature of the platform leads to the fuse of the
metal powder layer by layer. Finally, the section of the solid
model is built using metal additive manufacturing.

Conventional manufacturing process involves the use
of traditional machining techniques such as milling, drilling,
and turning to produce parts with a predetermined shape
and size. This process follows a subtractive approach, where
excess material is removed from a block of material to
create the desired shape [31,32]. The process is usually
expensive, time consuming, and generates a lot of waste
material. On the other hand, additive manufacturing pro-
cess utilizes various techniques such as 3D printing, laser
sintering, and electron beam melting to create parts layer-
by-layer [21,22]. This process follows an additive approach,
where material is added to create the desired shape. This
process is often faster, less expensive, and produces less
waste material [23]. Additionally, additive manufacturing
allows for the production of complex shapes and geometries
that are not possible with conventional manufacturing,
allowing for more efficient designs [24,33].

The current state of research on topology optimization
for metal additive manufacturing techniques provides the
valuable insights for the current study. Nigmatullin et al
provided an overview of the use of Fourier analysis to
describe multi-periodic signals generated by complex
systems [27,34]. Plocher and Panesar’s article reviews the
current design and structural optimization in additive
manufacturing [28], while Rosso et al’s article discusses
an optimization workflow in design for additive manufac-
turing [29]. Ibhadode et al’s article focuses on topology opti-
mization for metal additive manufacturing, including cur-
rent trends, challenges, and future outlook [30]. Dal Fabbro
et al’s article examines the analysis of a preliminary design
approach for conformal lattice structures [31], and Helal
et al’s article discusses the dimensional structural mass
optimization of forged steel connecting rods for aircraft
piston engines [32]. The metal additive manufacturing tech-
nique uses fine metal powders to build components from
the CAD data [35,36]. The G codes generated by the slicer
software lead to the movement of the printing head in the X,
Y, and Z axes. The platform movement accomplishes the
depth of the material. Using metal additive manufacturing
techniques, fine metal powders create strong, intricate
shapes of 3D printed components. Metal additive manufac-
turing is used in the aerospace industry to manufacture
guide vanes, jet engine nozzles, diffusers, and fuel injectors.
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Irrespective of the traditional design constraints, metal addi-
tive manufacturing offers the feasibility of manufacturing
intricate shapes. The heat sources such as LASER or electron
beam are used to heat the metal powder. Metal additive
manufacturing works by adding fused metal powder layer
by layer. Three methods are majorly used in metal additive
manufacturing techniques, i.e., powder bed methods, metal
binder heating, and direct energy deposition methods. This
article explores the case study of topology optimization of an
air compressor piston, and metal additive manufacturing
methodology is exhibited.

2 Experimentation: Materials and
methods

One horsepower compressor piston is used for reverse engi-
neering to convert the physical component to CAD data. The
geometry was created in PTC Creo Elements and exported in
Initial Graphics Exchange Specification format. The CAD data
is imported into the ANSYS Workbench. The geometry is
considered an isotropic material. The geometry has meshed
in ANSYS Workbench with the local sizing of 50. Based on the
mesh size, the optimization results will vary. The transfor-
mation of design optimization from the original model to the
optimized model of the compressor piston is illustrated in
the figure. The material removal is based on local residual
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stresses, and the curves are smoothened using geometric
tools in the ANSYS Workbench. The experimental trials in
ANSYS prove that the smoothness of the curve and the
topology-optimized design’s accuracy depend on the mesh
relevance. The more considerable mesh relevance leads to
the poor accuracy of localized stresses. The precise, accurate
local stresses in the piston model lead to the metal removal
area, which gives the optimized model. It reduces the com-
ponent’s weight and reduces friction and inertia. The friction
between the side walls is reduced in this experiment by
decreasing the contact surface. The boundary conditions in
the ANSYS Workbench are exhibited in the figure, which
shows the fixed support, pressure applied in the surface
area, and the sliding contacts. The metal additive manufac-
turing guidelines are illustrated in the literature findings.
The selective laser sintering technique is often used for metal
powders which relate the powder metallurgy to fuse the
metal powders [37,38]. The metal powders’ bonding is mainly
due to the melting temperature [39,40]. The fusion between
the metal powder takes place in four phases: loose powder,
initial stage, intermediate stage, and final stage. In the loose
powder stage, the density of the powder is high and not
sintered. The topology-optimized model is imported in the
preform slicer firmware for slicing the standard triangle
language (STL) model into layers. The pictorial view of the
preform slicer with the topology-optimized piston model is
illustrated in Figure 1. The support made for the optimized
model is given to the STL model, as exhibited in Figure 2.

> JOB INFO
JOB SETUP
>
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Figure 1: Topology-optimized model in preform metal additive manufacturing slicer formware.
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The heating to sinter the metal powder leads to the
shrinking of the 3D printed components. After the critical
temperature limits of the metal powder in the heating
zones, the metal powder fuse with one another [21]. The
intermediate zone is also called as fusion zone [22]. The
temperature of the 3D printed component is reduced after
the intermediate zone. The difference between the selec-
tive laser and conventional sintering processes is mainly
the pressure applied to the 3D printed materials [41,42]. In
the conventional sintering process, the metal powders are
placed in the die, and the pressure is involved with the
binding agents. Whereas in metal additive manufacturing,
a 3D printing head is used to project the LASER source in
the metal powder layer.

The fusion takes place layer by layer after the fusion of
the previous layers. The cross-section of the component is
printed after the consequent layers using STL files. The
standard triangulation language is used in the slicer soft-
ware, and the respective G codes are generated to trace the
cross-section/layers of the component. Several types of
research have been carried out on the material strength
of the metal 3D printed parts. The mechanical properties of
the metal 3D published features are based on the pre-
heating and heating temperature [23]. The fusion of metal
powders leads to bonding between the powder particu-
lates. The powder metallurgy technique is used in selective
laser sintering 3D printing since the intricate shapes can be
manufactured easily in 3D printing techniques with less
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manufacturing cost. The literature on the topology opti-
mization is studied and reverse engineering of the air
compressor piston is done using a 3D scanner application
[43,44].

The transition of existing model piston to topology-
optimized air compressor piston is illustrated in Figure 3
and the methodology is illustrated in Figure 4.

The CAD model is prepared by importing the files into
the CAD environment using Creo Elements, and the dimen-
sions are validated with the physical object (air com-
pressor piston). CAD model of the piston is depicted in
Figure 5. This research selects a reciprocating compressor
range of 2,000 bar, and topology optimization is done in the
ANSYS Workbench, the process flow is illustrated in Figure 6.
The optimization technique and metal additive manufac-
turing guidelines are explained in Section 3.

3 Results and discussion

The experimental values for each mesh relevance in ANSYS
finite element model is observed and validated with the real
time compressor piston. In ANSYS work bench, the mesh
relevance is varied from 0 to 10 and the optimum stress
values are obtained in mesh relevance of 3. The smoothness
of the curve for topology optimization with precise and
accurate results are achieved in this mesh relevance.
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Figure 2: Metal additive manufacturing of topology-optimized piston model.
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Figure 3: Transition of existing model piston to topology-optimized air compressor piston.
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Figure 4: Methodology adopted in topology optimization and metal
additive manufacturing.

The free mesh is selected for all the sides and the local stress
is calculated for metal removal operation. The reduction in
inertia of the piston is due to the reduction in mass which
leads to less power consumption in operation [24]. The mass
of the compressor piston is compared with the topology-
optimized and conventional piston model [45-47]. In the
conventional model, 258 g of piston is weighed using digital
balance and in Creo Elements, mass properties are obtained
at a weight of 255 g. The local stresses are determined and
the material is removed in ANSYS work bench which leads
to the weight of 174 g. In topology-optimized model, 81 g of
weight is reduced which leads to reduction in power con-
sumption. The mass comparison of the conventional air

compressor piston and the topology optimized piston is illu-
strated in Figure 7.

The inertial load of the piston acts on the drive of the
compressor such as motor or engine. The drive consumes
power according to the inertial load, the inertial load is
calculated for the topology-optimized piston and conven-
tional compressor piston and the same is illustrated in
Figure 8 [48-50]. In the conventional air compressor piston,
the inertial load of 2.5N is achieved to drive it. The load
acting on the drive which consumes power to overcome
the gravitational force and frictional forces are taken into
account [51-53]. The inertial load is reduced to 175N in
topology-optimized piston. The inertial load of 0.74N is
reduced.

The torque required in the crank shaft to achieve the
reciprocating motion in the compressor assembly is calcu-
lated for the conventional piston model and topology-opti-
mized model. The diagrammatic representation is shown
in Figure 9 for the torque comparison. The torque of
0.375Nm is required in conventional piston model and
0.361 Nm of torque is required in topology-optimized piston
model. The comparative study of torque reduction, inertial
load reduction, and mass reduction is done using the bore
length ratio, swept volume of the cylinder, and assuming the
air velocity of 500 m/s in to the compressor cylinder.
The assumptions made in the calculations and deriving
the mass, torque, and inertial load are exhibited in the
calculations section [54-56].

Torque calculations:

Piston diameter = 70 mm.

Assumptions:

Average velocity of air = 500 m/s,

and bore/stroke ratio, square stroke is considered.

So, L =D, L =70 mm.

Clearance volume of the cylinder is 10% of swept
volume.

Power = 2 hp,

Speed, N = 1,440 rpm,
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Figure 5: The conventional air compressor CAD model from reverse engineering.
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Figure 6: Transition of conventional air compressor piston to topology-optimized piston in ANSYS work bench environment.
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Figure 7: The mass comparison of conventional air compressor piston
and topology-optimized piston.
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Figure 8: Inertia load comparison between conventional air compressor
piston and topology-optimized piston.

Torque (Nm) = 9.5488 x Power (kW)/Speed (rpm),

Torque = 16.37 Nm.

Cross-sectional area of cylinder = nr? = m(35)% =
3848.45 mm?

Cross-sectional area of cylinder = 3.84 m?,

and flow rate, Q = Area of cylinder x Velocity of air

= 3.84 x 500

0 =1,920 m3/s

Swept volume, Vs = L x (71(35)2)

=75 x (11(35)2)

= 288, 633.75 mm3
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/i Existing model
7777 Topology Optimized model

0.375
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Figure 9: Torque comparison between conventional air compressor
piston and topology-optimized piston.

Vs = 288.6 m®

Assuming clearance volume of the cylinder is 10% of
swept volume,

clearance volume, Vc = 28.8m3.

Total volume of the cylinder = Swept volume + clear-
ance volume

= 288.6 + 28.8.

Thus, total volume of the cylinder = 317.4 m3,

Compression ratio, r = Vs+Ve

= ZBE_r=11.00.

Mass properties for conventional air compressor
piston model:

Mass = 0.255 kg,

Inertia = Mass x Acceleration

= 0.255 x 9.81

Inertia = 2.5N.

Torque, 7 = radius of crankshaft x force (inertia)
=015x%x 2.5

T =0.375Nm

Power = Torque (Nm) x Speed (rpm)/9.5488

= 0.375 x 1,440/9.5488

= 56.55 W

Power = 0.056 kW.

Mass properties for topology-optimized piston model:
Mass = 0.178 kg,

Inertia = Mass x Acceleration

=0.178 x 9.81

Mass = 0.178 kg.

Inertia = Mass x Acceleration

=0.178 x 9.81
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Inertia = 1.74 N.

Torque, 7 = radius of crankshaft x force (inertia)

=0.15x1.74

T = 0.261 Nm

Power = Torque (Nm) x Speed (rpm)/9.5488

= 0.261 x 1,440/9.5488

=3935 W

Power = 0.039 kW.

The power required to operate the compressor piston
is calculated in the real-time environment for the conven-
tional piston model and compared with the numerical solu-
tions [57-59]. The numerical technique yields the power of
0.056 kW required to drive the air compressor to reach the
pressure of 50 PSI as exhibited in Figure 10. The compar-
ison was made between the conventional and topology-
optimized piston models in the same testing conditions of
maximum pressure of 50 PSI. The pressure developed in
the topology-optimized model is compared in a real-time
environment and is increased with less power consump-
tion to drive the compressor unit [25,26].

4 Comparative analysis of the
findings utilizing two distinct
processes

A comparison study between a traditional manufacturing

process and an additive manufacturing process for the
production of an air compressor piston is portrayed in

V//_/ Existing model
m Topology Optimized model

0.03

Power (Kw)

0.02

0.01

0.00

Figure 10: Power comparison between conventional air compressor
piston and topology-optimized piston.
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this section. The two different types of piston models’
required masses, inertia loads, and torques, which are
compared in the study. The mesh relevance of three was
discovered to be optimal when the finite element model
was used in ANSYS Workbench to optimize the topology of
the additive manufacturing process [60-62]. In this mesh
relevance, the curve was achieved with accuracy and
smoothness. The local stress for the metal removal opera-
tion was calculated, and since the mass of the piston was
decreased, its inertia was also decreased, resulting in a
reduction in operating power consumption [27].

By weighing them with a digital balance and obtaining
the mass properties with CREO Elements, the mass of the
topology-optimized piston model and the conventional air
compressor piston model were compared. The weight of
the conventional model was 174 g, while the topology-opti-
mized model weighed only 81 ¢ thanks to the determina-
tion of the local stresses and the removal of material in
ANSYS Workbench. Both models’ inertial loads for the
piston were calculated, and Figure 8 shows the results.
The topology-optimized model’s inertial load was found
to be 1.75N, a reduction of 0.74 N from the conventional
model’s inertial load of 2.5N.

Additionally, the two models’ respective torque require-
ments for the reciprocating motion in the compressor
assembly were contrasted. The topology-optimized piston
model required 0.361 Nm of torque compared to the con-
ventional piston model’s 0.375 Nm. Utilizing the bore
length ratio, the swept volume of the cylinder, and the
assumption that air would enter the compressor cylinder
at a speed of 500 m/s, a comparative study of torque
reduction, inertial load reduction, and mass reduction
was conducted [63-65]. The calculations section lists the
underlying presumptions used to derive the mass, torque,
and inertial load [28,66,67].

The real-time compressor piston was used to observe
and validate the experimental values for each mesh rele-
vance in the ANSYS finite element model. The ideal stress
values were obtained in ANSYS Workbench at a mesh rele-
vance of 3, which was varied from 0 to 10. In this mesh
relevance, the curve’s smoothness was achieved through
topology optimization, producing accurate and precise
results. The topology-optimized and conventional piston
models’ masses of the compressor piston were com-
pared [68,69]. The weight in the conventional model
was greater than that in the topology-optimized model,
which increased power consumption [29,70,71]. The com-
pressor piston’s mass was decreased owing to topology
optimization and metal additive manufacturing techni-
ques, which also resulted in a decrease in power con-
sumption [30,68,72].
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For the purpose of producing an air compressor piston,
the study compared additive manufacturing with traditional
manufacturing methods. Comparing the topology-optimized
piston model to the conventional model, it was found to
have less mass, inertial load, and torque. Finite element
modeling and ANSYS Workbench were used to obtain the
results. The study demonstrates the potential advantages of
using additive manufacturing to lower power consumption
and enhance air compressor piston performance [31,32].

5 Conclusion

The findings from the finite element analysis illustrate that
increasing mesh relevance leads to a decrease in the pre-
cision and accuracy of the topology optimization curves.
The local stress regions will be accurate with the optimized
mesh relevance. The results observed in the conventional
air compressor piston model and topology-optimized piston
model is that 2.04% of mass is reduced in the topology-opti-
mized air compressor model. The power required to drive
the air compressor in the topology-optimized model is
reduced to 0.1%, which reduces the power consumption of
electricity and conventional fossil fuels.
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