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A B S T R A C T

Fe3GeTe2 attracts significant attention due to technological perspectives of realizing room temperature
ferromagnetism in two-dimensional materials. Here we show that due to structural peculiarities of the Fe3GeTe2
monolayer, short distance between the neighboring iron atoms induces a strong exchange coupling. This
strong coupling allows us to consider them as an effective cluster with a magnetic moment ∼ 5𝜇𝐵 , giving
rise to a simplified spin model on a bipartite honeycomb lattice with the reduced number of long-range
interactions. The simplified model perfectly reproduces the results of the conventional spin model, but allows
for a more tractable description of the magnetic properties of Fe3GeTe2, which is important, e.g., for large-
scale simulations. Also, we discuss the role of biaxial strain in the stabilization of ferromagnetic ordering in
Fe3GeTe2.
1. Introduction

The discovery of graphene in 2004 by Novoselov et al. [1] attracted
enormous attention to the two-dimensional (2D) materials due to their
unique properties and possibility to control them by means of gate
voltage, chemical doping, or strain [2–4]. Since then the search and
description of novel 2D materials is an actively developing research
direction in material science. The discovery of 2D magnetic materi-
als [5–8] has further enhanced the interest to the field of 2D materials,
opening new ways to control magnetism in two dimensions, which is
prospective for applications.

One of the prominent example among 2D magnets is CrI3, which
was successfully exfoliated from the bulk crystal [8] demonstrating the
great advantage to control magnetic properties by electrostatic dop-
ing [9] or hydrostatic pressure [10]. The measured Curie temperature
of this material is about 45 K, slightly lower than in the bulk crystal.
The other typical representative of the 2D magnet family is Fe3GeTe2
(FGT) [11]. The Curie temperature of FGT in the bulk phase is consider-
ably higher 𝑇C ∼ 220 K [11–14], making this material more perspective
from the practical point of view. Despite a decrease of the Curie
temperature down to 𝑇C ∼ 130 K [15] in the monolayer limit, the cor-
responding value is still three times larger compared to CrI3. Moreover,
the gate control of FGT allows one to enhance 𝑇C giving the opportunity
to realize room-temperature ferromagnetism in 2D [11]. Other studies
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report large anomalous Hall effect [16], anomalous Nernst effect [17]
and magnetic stability [18] making FGT a promising candidate for
spintronics, caloritronics and other applications [11,19].

Another interesting aspect of FGT is the absence of inversion sym-
metry [20], which gives rise to nontrivial physics and complex spin tex-
tures such as magnetic skyrmions and spin-spirals [21–23], presumably
emerging due to the Dzyaloshinskii–Moriya interaction (DMI) [24].
On the other hand, some authors introduced four-spin interaction to
explain the stabilization of complex magnetic patterns [25,26]. There-
fore, previously proposed conventional magnetic models need to be
treated carefully, considering peculiarities of the crystal structure. In
particular, there are two valence types of Fe atoms in FGT: Fe2+II and
Fe3+I , where FeI atoms with comparably short distance (∼2.47 Å) form
a dimer-like structure (Fig. 1). The formation of such dimers is inherent
for some insulating systems [27–29], which challenges the description
of their magnetic properties. For instance, the short distance between
the iron atoms in the dimer increases the overlap of wave functions,
enhancing the hybridization and exchange interactions between the
magnetic atoms. At the same time, strong interaction between the
atoms leads to an ambiguity in the definition of local magnetic mo-
ments, challenging the description of magnetic properties within the
spin models.

In this paper, we propose an alternative description for the magnetic
properties of Fe3GeTe2 monolayer, taking advantage of its structural
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Fig. 1. (Top) Crystal structure of Fe3GeTe2 monolayer: Side and top views. FeI and
FeII denote two inequivalent iron atoms. (Bottom) Panels (a) and (b) demonstrate the
conventional and alternative magnetic models.

peculiarities. We demonstrate that the iron dimer can be considered
as an effective cluster, such that the spin model of FGT reduces to a
bipartite honeycomb lattice (Fig. 1). The proposed model is further
justified by means of the Monte Carlo and spin dynamics simulations,
which perfectly reproduce the results of the conventional spin model in
the relevant energy region at low computational cost. Additionally, we
discuss the role of in-plane biaxial strain in the stabilization of magnetic
order.

The rest of this paper is organized as follows. Section 2 briefly
describes numerical methods used in this paper. In Section 3, we
present our main results, including the alternative magnetic model, and
thermodynamics of FGT. The effect of biaxial strain is also discussed.
In Section 4, we summarize our results and conclude the paper.

2. Methods

To study the magnetic properties of monolayer Fe3GeTe2, we con-
sider the following spin model:

 =
∑

𝑖>𝑗
𝐽𝑖𝑗𝐒𝑖𝐒𝑗 − 𝐴

∑

𝑖
𝑆2
𝑧 𝑖. (1)

Here, 𝐽𝑖𝑗 stands for the isotropic exchange interactions between iron
ions, and 𝐴 is the single-ion anisotropy. If 𝐴 > 0, Eq. (1) describes an
easy-axis magnet with the ground-state magnetization perpendicular to
the 2D plane. For simplicity, we map our model to the unified spin
𝑆 = 1.

Magnetic exchange interactions were calculated using the local
force theorem approach [30,31]

𝐽𝑖𝑗 =
1

2𝜋𝑆2
×

× ∫

𝐸𝐹

−∞
𝑑𝜖 Im

(

∑

𝑚,𝑚′ ,𝑛,𝑛′
𝛥𝑚𝑚′
𝑖 𝐺𝑚′𝑛

𝑖𝑗↓ (𝜖)𝛥
𝑛𝑛′
𝑗 𝐺𝑛′𝑚

𝑗𝑖↑ (𝜖)

)

,
(2)

where 𝑚,𝑚′, 𝑛, 𝑛′ are orbital indices, 𝛥𝑚𝑚′
𝑖 = 𝐻𝑚𝑚′

𝑖𝑖↑ − 𝐻𝑚𝑚′
𝑖𝑖↓ is the intra-

orbital spin-splitting energy and 𝐺̂(𝜖) = 1∕(𝜖 − 𝐻̂) is the single-particle
Green’s function determined by the tight-binding Hamiltonian 𝐻̂ . In
case of the conventional model, orbital indices run over the orbitals of
a single iron atom, while for the alternative model they run over the
2

orbitals of two atoms (cluster). In contrast to the mapping procedure
based on the total energies of collinear spin configurations [32,33],
this approach allows one to estimate long-range exchange couplings
without using large unit cells. We do not consider DMI in the present
study, as we are mostly interested in the thermodynamic properties of
FGT as well as in stability of the FM order, where intersite anisotropic
interactions play a minor role.

Density-functional (DFT) band-structure calculations were
performed within the Perdew–Burke–Ernzerhof (PBE) exchange–
correlation functional [34] as implemented in Vienna ab initio sim-
ulation package (vasp) [35,36]. Additionally, for comparison we also
performed DFT+𝑈 calculations within a simplified rotationally invari-
ant scheme [37] using the effective parameter 𝑈 = 4 eV [38]. In all
these calculations, we set the energy cutoff of the plane-wave basis
to 400 eV, the energy convergence criterion to 10−8 eV, and use a
(18 × 18 × 1) 𝛤 -centered k-point grid for the Brillouin zone integration.
The experimental crystal structure of bulk Fe3GeTe2 was used [39],
where a vacuum space more than 16 Å between monolayer replicas in
the vertical 𝑧 direction was introduced. The positions of atoms were
allowed to relax until all the residual force components on each atom
were less than 10−3 eV/Å. From the calculated electronic structure,
we constructed a tight-binding Hamiltonian in a basis of localized
orbitals. To this end, maximally localized Wannier functions [40] were
constructed using the wannier90 package [41] projected onto the 3𝑑
and 5𝑝 states of iron and tellurium, respectively [42]. This ensures
that the constructed Wannier functions for both spin channels are well
localized, which provides an atomic-like basis for the application of
Eq. (2), and for the analysis of magnetic properties.

Classical Monte Carlo (MC) simulations of the constructed spin
Hamiltonian [Eq. (1)] as well as spin-wave dispersion calculations
were carried out using the Uppsala Atomistic Spin Dynamics (UppASD)
package [43,44]. All the results for both conventional and alternative
models are obtained using the specific lattice structures presented in
Fig. 1. At each temperature, we perform 20 000 MC steps for ther-
malization and 150 000 for measurements. Magnetization and specific
heat curves are calculated for a lattice containing 90 × 90 unit cells
with periodic boundary conditions. Importantly, to obtain clear peaks
in the specific heat, we averaged the graphs over ten different MC
runs and additionally smoothed the resulting curve. Spin–spin corre-
lators ⟨𝑆1𝑆2⟩ for nearest neighbor FeI and FeII atoms were calculated
for each considered temperatures averaging the results over 100 MC
configurations.

Magnon spectral functions were calculated within the framework of
the classical spin dynamics approach by solving the Landau–Lifshitz–
Gilbert (LLG) equation.

𝑑𝐒𝑖
𝑑𝑡

= −
𝛾

1 + 𝛼2
𝐒𝑖 × [− 𝜕𝐻

𝜕𝐒𝑖
+ 𝑏𝑖(𝑡)]−

−
𝛾
|𝐒𝑖|

𝛼
1 + 𝛼2

𝐒𝑖 × (𝐒𝑖 × [− 𝜕𝐻
𝜕𝐒𝑖

+ 𝑏𝑖(𝑡)]),
(3)

where 𝛾 is the gyromagnetic ratio, 𝛼 is the damping parameter and
𝑏𝑖(𝑡) is a stochastic magnetic field with a Gaussian distribution arising
from the thermal fluctuations. From this, we calculate the space- and
time-displaced correlation functions

𝐶𝑘(𝑟 − 𝑟′, 𝑡) = ⟨𝑆𝑘
𝑟 (𝑡)𝑆

𝑘
𝑟′ (0)⟩ − ⟨𝑆𝑘

𝑟 (𝑡)⟩⟨𝑆
𝑘
𝑟′ (0)⟩,

where ⟨… ⟩ denotes the ensemble average and 𝑘 is the Cartesian compo-
nent. The corresponding Fourier transform gives the dynamical struc-
ture factor

𝜒𝑘(𝐪, 𝜔) = 1
√

2𝜋𝑁
×

∑

𝑟,𝑟′
𝑒𝑖𝑞(𝑟−𝑟

′)
∫

∞

−∞
𝑒𝑖𝜔𝑡𝐶𝑘(𝑟 − 𝑟′, 𝑡)𝑑𝑡,

with 𝑁 being the total number of magnetic atoms. This quantity can
be probed in neutron scattering experiments of bulk systems [45]. The
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Fig. 2. Evolution of exchange couplings as a function of the distance between FeI
atoms shown for the two different spin models.

energy dispersion for spin waves presented in the simulated system is
described by the positions of the peaks in 𝜒𝑘(𝐪, 𝜔) [43,46]. Thus, the
resulting values at each 𝐪 vector are convoluted with a Gaussian filter
and then normalized to make peaks at any 𝐪 positions visible regardless
of their relative intensity [47]. All the results presented in this paper are
obtained for a lattice of (450 × 450) unit cells with periodic boundary
conditions.

Adiabatic magnon frequencies 𝜔𝐪𝜈 were calculated via diagonalizing
the spin-wave Hamiltonian, defined for magnetic sublatices 𝜇 and 𝜈 in
the unit cell [48]:

̂𝑆𝑊
𝜇𝜈 (𝐪) = 𝛿𝜇𝜈 [𝐴⟨𝑆𝑧

𝜇⟩ +
∑

𝜒
𝐽𝜇𝜒 (𝟎)⟨𝑆𝑧

𝜒 ⟩] − ⟨𝑆𝑧
𝜇⟩𝐽𝜇𝜈 (𝐪), (4)

where 𝐽𝜇𝜈 (𝐪) are the Fourier transform of the exchange interactions.
The magnon frequencies allow us to estimate the Curie temperature
within the random phase approximation (RPA) as [48,49]:

𝑇C = 𝑆
3𝑘𝐵

(

1
𝑁𝑞

∑

𝐪𝜈

1
𝜔𝐪𝜈

)−1

. (5)

. Results and discussion

.1. Magnetic models

The resulting isotropic exchange couplings are shown in Fig. 2,
ith the numerical values provided in Supplementary Material [42].
he nearest-neighbor FM interaction 𝐽1 = −113 meV is three times

arger than 𝐽2 and an order of magnitude stronger than AFM 𝐽3. The
alues of these exchange couplings were additionally checked by using
he total energies of collinear structures [32,33], which yields 𝐽1 =
113.9 meV and 𝐽 I

3 = 10.9 meV. The obtained parameters are also
n reasonable agreement with recently reported values in Ref. [50],
here 𝐽1 = −146.3 meV, 𝐽2 = −36.2 meV and 𝐽 I

3∕𝐽
II
3 = 10.9/4.5

eV. Short-range interactions 𝐽2 and 𝐽3 originate from the ligand-
ediated superexchange mechanism. Due to a metallic character [51],

he exchange couplings demonstrate an oscillating RKKY-like behavior
t increasing distances between the iron atoms (Fig. 2). These long-
ange interactions are essential for the simulation of magnetic systems
y means of the spin models [52]. The resulting magnetic moments in
hese calculations are 𝑚I = 2.43 𝜇𝐵 and 𝑚II = 1.48 𝜇𝐵 .

Strong coupling between the nearest neighbor iron atoms allows
s to propose a new model, where two FeI atoms in the dimer are
o be considered as an effective cluster with ten 3𝑑 orbitals. Within
his alternative model the exchange couplings can be reformulated in
erms of the interactions between these effective clusters and FeII atoms
Fig. 1). The proposed alternative model, which has the form of a
ipartite honeycomb lattice, is more tractable compared to the original
-site model as it allows to reduce the number of interactions needed
or simulations, and helps to eliminate the strong coupling 𝐽 within the
3

1 1
Fig. 3. Comparison of the magnetization (blue) and specific heat (red) curves for
conventional (top) and alternative (bottom) models under various strains.

Fig. 4. Temperature dependence of spin-spin correlator ⟨𝑆1𝑆2⟩ calculated between
earest neighbor FeI – FeI and FeI – FeII atomic pairs (see Fig. 1). The dashed line

denotes the critical temperature.

FeI–FeI cluster. In what follows, we use the notation of exchange inter-
actions for the alternative model as 𝐽𝑖. Below, we perform a systematic
comparison between the magnetic properties simulated using the two
different spin models, and discuss the performance of the alternative
model in more detail.

3.2. Model simulations

Monte Carlo results for both spin models are presented in Fig. 3.
In these simulations, we use the single-ion anisotropy parameter 𝐴 =
0.35 meV/Fe ion, which was calculated from the total energy differ-
ence between the configurations with the magnetic moments oriented
in-plane and out-of-plane directions taking spin–orbit coupling into
account [38,50]. Without loss of accuracy, we consider the exchange
interactions between the iron atoms within the radius 𝑟 < 13 Å (Fig. 2).
From Fig. 3, one can see that the calculated magnetization curves
for both spin models perfectly match and drop down at 𝑇 ∼ 340 K.

t the same time, the critical temperature estimated within RPA via
he adiabatic magnon spectra gives 𝑇C = 336 K and 328 K for the
onventional and alternative models, respectively.

Fig. 5 shows the adiabatic magnon dispersion relation calculated
or the two models. The resulting low energy (acoustic and optical)
agnon branches are in good agreement between the models. The

pin-wave stiffness constants are also close to each other and equal
o 𝐷 ≈ 445 meV⋅Å2 and 𝐷 ≈ 408 meV⋅Å2 for the conventional and
lternative models, respectively. The magnon gap for both models is
.36 meV, which is independent of the exchange interactions. The
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Fig. 5. Comparison of the magnon spectral function intensity map for conventional
model (a) (left) and alternative model (b) (right), obtained via spin dynamics calcula-
tions at 𝑇 = 5 K and damping constant 𝛼 = 10−3. Red lines correspond to the adiabatic
magnon spectra.

most prominent feature in the magnon spectrum of the conventional
model is the presence of a nearly flat branch at high energies, which
is mainly originated from the nearest-neighbor 𝐽1 interaction between
iron atoms. In the alternative model, the flat branch is absent (Fig. 5)
because the two FeI atoms are replaced by a single cluster. The energies
of the corresponding flat branch are extremely high for magnons. This
suggests that these states are strongly damped by other spin (or even
electron) excitations in the system.

To examine whether one can expect to observe this flat branch in
experiments, we calculate the magnon spectral function for the excited
spin waves using spin dynamics simulations, which is a theoretical
analog of the inelastic neutron scattering. Our calculations do not take
coupling with the Stoner excitations into account, but allows us to
elucidate on the magnon damping resulting from the localized spin
excitations. As can be seen from Fig. 5, both models behave in a sim-
ilar way, reproducing the adiabatic magnon dispersion with decaying
intensity toward high energies. Even for the conventional model, the
high energy flat branch is strongly damped. The observed behavior is
not unusual. For example, the authors of Ref. [53] demonstrate that
the intensities of the optical modes near the center of the Brillouin
zone are suppressed because of the specific dynamical properties of
the Heisenberg model, leading to strong damping of the standing
modes observed in the adiabatic spin-wave calculations. We suppose
that the absence of the flat branch in the spin dynamics simulation
of Fe3GeTe2 is in line with this scenario. Another reason why high-
energy optical mode is absent may be associated with the strong short
range magnetic order between FeI atoms, which is demonstrated by
the corresponding spin–spin correlation functions in Fig. 4. Strong
interaction within the FeI–FeI pair suppresses excitations of individual
spins.

The obtained Curie temperature overestimates the experimental
𝑇C ∼ 200 K [11–14], which is likely due to overestimation of the
exchange interactions. For 3𝑑 metals it is instructive to apply a Hub-
bard 𝑈 correction within DFT+𝑈 method. However, our results show
that this method results in even further overestimation of exchange
interactions [42] and 𝑇C. This discrepancy could be attributed to a
limited applicability of the localized spin models to FGT, which neglect
coupling to the electronic subsystem, especially important for metals.
Partially itinerant character of FGT is also suggested by the non-
integer magnetic moments on Fe atoms. Previous works demonstrated
a significant renormalization of the electron spectrum [16] as well as
site-dependent correlations [54], as follows from dynamical mean-field
studies. An explicit consideration of the electron subsystem as well
4

Table 1
Comparison of the Curie temperature 𝑇C (in K) calculated for Fe3GeTe2 via MC
simulations and RPA approach for the conventional and alternative magnetic models
of Fe3GeTe2 under strain. Values in brackets correspond to results of simulations using
DFT+𝑈 parameters with 𝑈 = 4 eV.
𝛥𝑎 Conventional model (a) Alternative model (b)

MC RPA MC RPA

0 ∼ 341 (631) 336 (544) ∼ 337 (685) 328 (618)
3% ∼ 424 403 ∼ 477 452
5% ∼ 451 407 ∼ 507 445

Fig. 6. Evolution of the nearest-neighbor and next-nearest-neighbor exchange inter-
actions in the conventional [Fig. 1(a)] and alternative [Fig. 1(b)] spin models for
various values of strain. For details see the crystal structure, corresponding exchange
interactions are given in the same color scheme. Note that short distance interaction
between FeI atoms (𝐽1 shown with blue solid line) in Model (a) is absent in Model (b).

as electron correlation effects indeed contribute to the reduction of
the Curie temperature in Fe3GeTe2, as it has been recently demon-
strated [55]. At the same time, the description of magnetism within the
localized spin models still remain possible with renormalized exchange
interactions. This, therefore, is not expected to limit the applicability
of the alternative model we propose in our study.

3.3. Effect of biaxial strain

The constructed models allow us to study the magnetic properties of
FGT under in-plane biaxial strain. For this purpose, we vary the lattice
constant 𝑎 from −5% (compressive) to 5% (tensile) and recalculate the
isotropic exchange couplings. The resulting magnetic moments of FeII
remain nearly the same (1.50 𝜇𝐵), while the moments of FeI increase
up to 2.6 𝜇𝐵 in case of the tensile strain, and reduce down to 1.53
𝜇𝐵 under compression. This is in agreement with the results reported
previously [56], also showing that tensile strain significantly enhances
the FM stability and increases 𝑇C [57].

For the conventional model, the nearest-neighbor FM interaction 𝐽1
increases its absolute value under pressure (Fig. 6), which, however,
does not affect the Curie temperature. This is not surprising keeping
in mind the adiabatic magnon spectra (Fig. 5) and the high-energy
magnon mode associated with the 𝐽1 interactions. The next-nearest-
neighbor FM interaction 𝐽2 demonstrates only a moderate change
under strain. More importantly, the third-nearest-neighbor interaction
between FeI atoms, i.e. 𝐽 I

3 changes its sign from AFM to FM at 𝛥𝑎 ≈ 3%.
A similar tendency can be seen for 𝐽 I

2 within the alternative model in
Fig. 6(b). Such a behavior reduces magnetic frustration, making the FM
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Fig. 7. Evolution of the adiabatic magnon spectra calculated for the conventional [Fig. 1(a)] and alternative [Fig. 1(b)] spin models of Fe3GeTe2 under strain.
order more preferable under tensile strain. This is further demonstrated
by the Monte Carlo simulations as well as by calculations within RPA,
both leading to an increase of the Curie temperature at 𝛥𝑎 > 0 (see
ig. 2 and Table 1).

At the same time, compressive strain suggests a destabilization of
he FM order due to the presence of AFM exchange interactions. Indeed,
rom the adiabatic magnon spectra (Fig. 7) one can see that the acoustic
ode becomes imaginary at finite wave vectors, indicating instability

f the FM ground state in compressed Fe3GeTe2.

. Conclusion

In this work, we present a systematic description of the mag-
etic properties of monolayer Fe3GeTe2 using a combination of spin
amiltonians with 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 calculations. A strong coupling between

he nearest iron atoms motivates us to consider them as an effective
luster with a magnetic moment of ∼5 𝜇𝐵 , giving rise to a simpli-
ied spin model on a bipartite honeycomb lattice. This lattice is in
any respects a more tractable and fundamentally important model in
hysics, which permits analytical calculations and might be important
or the development or extensions of many-body theories related to
ollective excitations in 2D honeycomb magnets [58]. The alternative
pin model perfectly reproduces the results of the conventional three-
ite model in the moderate-energy region, which is demonstrated by
imulating the magnon spectra as well as thermodynamical properties.
he alternative model allows us to reduce the number of long-range

nteractions needed for modeling of metallic systems, which is impor-
ant, e.g., for large-scale simulations. We also find that the stability of
he FM ordering in monolayer Fe3GeTe2 can be enhanced under tensile

strain.
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