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Te objective of this article is to examine the oscillatory behavior of a class of quasilinear second-order dynamic equations on time
scales. Our focus will be on the noncanonical case, which has received relatively less attention compared to the more commonly
studied canonical dynamic equations. Our approach involves transforming the noncanonical equation into a corresponding
canonical equation. By utilizing this transformation and a range of techniques, we develop new, more efcient, and precise
oscillation criteria. Finally, we demonstrate the signifcance and usefulness of our results by applying them to specifc cases within
the equation being studied.

1. Introduction

Te origins of studying dynamic equations on time scales
can be traced back to its founder Hilger[1], and it has since
evolved into a signifcant area of mathematics. Te purpose
of this theory is to bring together the study of diferential and
diference equations. In recent times, there have been dis-
cussions about various theoretical aspects of this theory. A
time scale T is an arbitrary nonempty closed subset of the
real numbers R. In order to have a comprehensive un-
derstanding, it is necessary to review some of the basic
concepts of time-scale theory. Te forward and backward
jump operators σ, ρ: T⟶ T are defned by

σ(ζ) � inf s ∈ T |s> ζ{ } and

ρ(ζ) � sup s ∈ T |s< ζ{ },
(1)

supplemented by inf ∅ � sup T and sup∅ � inf T . A point
ζ ∈ T is called right-scattered, right-dense, left-scattered,

and left-dense, if σ(ζ)> ζ, σ(ζ) � ζ, ρ(ζ)< ζ, ρ(ζ) � ζ holds,
respectively. Te set Tκ is defned to be T if T does not have
a left-scattered maximum; otherwise, it is T without this left-
scattered maximum. Te graininess function μ: T ⟶ [0,
∞) is defned by μ(ζ) � σ(ζ) − ζ. Hence, the graininess
function is constant 0 if T � R while it is constant ζ for
T � Z. However, a time scale T could have nonconstant
graininess. A function h: T⟶ R is said to be rd-
continuous and is written h ∈ Crd(T ,R), provided that h

is continuous at right-dense points, and at left-dense points
in T , left hand limits exist and are fnite. We say that
h: T⟶ R is diferentiable at ζ ∈ T whenever

h
∆ ≔ lim

s⟶ζ

h(ζ) − h(s)

ζ − s
, (2)

exists when σ(ζ) � ζ (hereby, s⟶ ζ it is understood that s

approaches ζ in the time scale), and when h is continuous at
ζ and σ(ζ)> ζ, it is
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h
∆ ≔ lim

s⟶ ζ

h(σ(ζ)) − h(ζ)

μ(ζ)
. (3)

Te product and quotient rules ([4], Teorem 1.20) for
the derivative of the product hk and the quotient h/k of two
diferentiable functions h and k are as follows:

(hk)
∆
(ζ) � h

∆
(ζ)k(ζ) + h(σ(ζ))k

∆
� h(ζ)k

∆
(ζ) + h

∆
(ζ)k(σ(ζ)),

h

k
􏼠 􏼡

∆

(ζ) �
h
∆
(ζ)k(ζ) − h(ζ)k

∆
(ζ)

k(ζ)k(σ(ζ))
.

(4)

Te chain rule ([4], Teorem 1.90) for the derivative of
the composite function h ∘ k of a continuously diferentiable
function h: R⟶ R and a delta diferentiable function
k: T⟶ R results in

(h ∘ k)
∆

� 􏽚
1

0
h
′

k + sμk
∆

􏼐 􏼑ds􏼨 􏼩g
∆
. (5)

For a great introduction to the fundamentals of time
scales, see [2–4].

In this work, we investigate the oscillatory properties of
solutions to the noncanonical second-order dynamic
equations of the following form:

r(ζ) x
∆
(ζ)􏼐 􏼑

α
􏽨 􏽩

∆
+ q(ζ)x

β
(τ(ζ)) � 0, ζ ∈ ζ0􏼂 ,∞)T . (6)

Te following assumptions will be needed throughout
the paper:

(H1) α≥ 1 and β are ratios of odd positive integers such
that α< β + 1;
(H2) r ∈ Crd([ζ0,∞)T , (0,∞)) such that

􏽚
∞

ζ0

∆s

r
1/α

(s)
<∞. (7)

(H3) q ∈ Crd([ζ0,∞)T , [0,∞)) such that q ≡ 0;
(H4) τ ∈ Crd(T , T) is nondecreasing such that τ(ζ)≤ ζ
and limζ⟶∞τ(ζ) �∞.

A solution x(ζ) of (6) is called oscillatory if it is neither
eventually positive nor eventually negative; otherwise, we
call it nonoscillatory. Equation (6) is said to be oscillatory if
all its solutions oscillate. Following Trench [5], we shall say
that equation (6) is in canonical form if

η(ζ) � 􏽚
ζ

ζ0

∆s

r
1/α

(s)
; η(ζ)⟶∞ as ζ⟶∞. (8)

Conversely, we say that (6) is in noncanonical form if

ξ ζ0( 􏼁 ≔ 􏽚
∞

ζ0

∆s

r
1/α

(s)
<∞. (9)

Oscillation phenomena arise in a variety of models based
on real-world applications. Understanding and predicting
oscillatory behavior is important for designing efective
control strategies, optimizing performance, and improving
predictions. As a result, the study of oscillation phenomena

is a key area of research in many felds, and it continues to
play a central role in the study of dynamic equations on time
scales. For instance, when T � Z and α � β, Chatzarakis
et al. [6] obtained new oscillation criteria for the half-linear
retarded diference equation

∆(r(ζ)∆(x(ζ)))
α

+ q(ζ)x
α
(τ(ζ)) � 0, (10)

where τ(ζ)≤ ζ in the noncanonical form via canonical
transformation. In [7], authors studied the oscillatory be-
havior of the second-order quasilinear retarded diference
equation

∆(r(ζ)∆(x(ζ)))
α

+ q(ζ)x
β
(τ(ζ)) � 0, (11)

where α≥ 1 and β are ratios of odd positive integers such that
β> α − 1 under the condition 􏽐

∞
ζ�ζ0r

− 1/α(ζ)<∞. Newly,
Grace [8] studied some new criteria for the oscillation of the
nonlinear second-order delay diference equations of the
following form:

∆ r(ζ)(∆x(ζ))
α

( 􏼁 + q(ζ)x
β
(ζ − m + 1) � 0, (12)

where α and β are ratios of positive odd integers and m≥ 1 is
a positive integer under the condition 􏽐

ζ− 1
s�ζ0

r− 1/α(s)⟶
∞ as t⟶∞. Grace provided some new oscillation criteria
for (12) via comparison with a second-order linear diference
equation or a frst-order linear delay diference equation
whose oscillatory behavior is discussed intensively in the
literature.

As a special case of (6) for T � R and α � β � 1,
Baculikova [9] obtained the oscillation of the delay and
advanced diferential equation

r(ζ)(x(ζ))
′

􏼒 􏼓
′
+ q(ζ)x(τ(ζ)) � 0, (13)

in the noncanonical form. With fewer restrictions than
recently used, Džurina and Jadlovská [10] examined the
oscillatory behavior of solutions of the delay diferential
equation

r(ζ) (x(ζ))
′

􏼒 􏼓
α

􏼒 􏼓
′
+ q(ζ)x

α
(τ(ζ)) � 0, (14)

where α> 0 is a quotient of odd positive integers and
􏽒
∞

r− 1/α(s)ds<∞.
Recently, Grace et al. [11] obtained some new unifed

oscillation criteria for solutions of (6) when α � β and τ(ζ) �

ζ in the canonical and noncanonical forms. Very recently,
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Graef et al. [12] established some new oscillation criteria for
the solutions of (6) when α � 1, β ∈ (0, 1] is a ratio of odd
positive integers in the noncanonical form with the
restriction

􏽚
∞

ζ0
ξ(s)q(s)∆s �∞. (15)

In recent times, numerous researchers have shown great
interest in examining the oscillations of specifc instances of
equation (6) (see [11–14]). As a special case for T � R, see
[15–21], and for T � Z, see [22–24]. Using techniques such
as integral averaging, generalized Riccati transformations,
and Kneser-type oscillation, the authors were able to achieve
the oscillation criteria in both canonical and noncanonical
cases. Nonoscillatory solutions (which become positive at
some point) for equation (6) in canonical form have
a structure where they maintain the same sign throughout
and their derivative x∆(ζ) becomes positive eventually. On
the other hand, for the noncanonical equation, the derivative
x∆(ζ) may become eventually positive or negative. A
commonly used approach in the literature is to analyze such
equations to apply previous fndings to canonical equations.
However, this technique has some disadvantages, such as
imposing additional conditions or not ensuring that all
solutions are oscillatory (for details, see [25]).

Given this context, our objective is to introduce novel
adequate criteria that guarantee the oscillatory nature of all
solutions to equation (6). By identifying an appropriate
transformation that can convert the equation (6) from the
noncanonical form to a canonical form, we can proceed with
our analysis. Te outcomes derived in this manuscript en-
hance and supplement the preexisting literature’s fndings,
even for the special cases when T � R and T � Z.

2. Preliminary Results

In what follows, we need only to consider the eventually
positive solutions of equation (6), since if x satisfes equation
(6), then − x is also its solution.Without loss of generality, we
only give proofs for the positive solutions. For brevity and
clarity, let

a(ζ) � r
1/α

(ζ)ξ(σ(ζ))ξ(ζ)

g(ζ) �
1
α

q(ζ)ξα− 1
(ζ)ξ(σ(ζ))ξ1+β− α

(τ(ζ))

A(ζ) � 􏽚
ζ

ζ0

∆s

a(s)
.

(16)

Te following results will be crucial in proving our main
results.

Lemma 1 (see [12]). Letx(ζ) be an eventually positive so-
lution of (6). Ten, x(t) satisfes one of the following two cases
for all sufciently large t:

(i) x(ζ)> 0, r(ζ)(x∆(ζ))α > 0, and (r(ζ)(x∆(ζ))α)∆ ≤ 0;
(ii) x(ζ)> 0, r(ζ)(x∆(ζ))α < 0, and (r(ζ)(x∆(ζ))α)∆ ≤ 0.

Lemma 2 ([4], Theorem 1.14) (mean value theorem). Let h

be a continuous function on [a, b] that is diferentiable on
[a, b). Ten, there exist λ, ς ∈ [a, b) such that

h
∆
(λ)≤

h(b) − h(a)

b − a
≤ h
∆
(ς). (17)

Theorem 3 (see [26]). Let X be a Banach space and S be
a bounded, convex, and closed subset of X. Consider two maps
T1 and T2 of S into X such that

(i) T1x + T2y ∈ S for every pair x, y ∈ S;
(ii) T1 is contraction mapping;
(iii) T2 is completely continuous.

Ten, the equation T1x + T2x � x has a solution in S.

Lemma 4 (see [26]). Suppose that X � y: y ∈ Crd􏼈

([ζ0,∞)T,R), supζ∈[ζ0 ,∞)T
|y(ζ)|<∞} is bounded and uni-

formly Cauchy. Further, suppose that X is equi-continuous on
[ζ0, ζ1]T for any ζ1 ∈ [ζ0,∞)T. Ten, X is relatively compact.

Lemma 5. Assume that x(ζ) is an eventually positive so-
lution of (6). Ten,

r1/α(ζ)x∆(ζ)

x(τ(ζ))
􏼠 􏼡

α− 1

≤ ξ1− α
(ζ). (18)

Proof. Let x(ζ) be an eventually positive solution of (6).
Ten, using Lemma 1, we can see that x∆(ζ)> 0 or x∆(ζ)< 0,
say for ζ ≥ ζ1 ≥ ζ0. First, assume that x∆(ζ)> 0 for all ζ ≥ ζ1.
Note that η(τ(ζ)) + ξ(τ(ζ)) � ξ(ζ1)> 0. Tis, with (9), leads
to η(τ(ζ))≥ ξ(ζ) for large ζ ≥ ζ2, for some ζ2 ≥ ζ1. Taking
into consideration the decreasing fact of r(ζ)(x∆(ζ))α, we
conclude that

x(τ(ζ))≥ 􏽚
τ(ζ)

ζ0

1
r
1/α

(s)
r
1/α

(s)x
∆
(s)􏼐 􏼑∆s

≥ r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑 􏽚

τ(ζ)

ζ0

1
r
1/α

(s)
∆s

≥ η(τ(ζ)) r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

≥ ξ(ζ) r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑,

(19)

which is obviously equivalent to (18). Next, assume that
x∆(ζ)< 0 for all ζ ≥ ζ1. Since r1/α(ζ)x∆(ζ) is decreasing, then
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x(τ(ζ))≥x(ζ)≥ 􏽚
∞

ζ

1
r
1/α

(s)
− r

1/α
(s)x

∆
(s)􏼐 􏼑∆s

≥ − ξ(ζ) r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑≥ 0,

(20)

using the fact that α≥ 1 is a quotient of odd positive integers.
Hence, it follows (18). Tis proves the lemma. □

3. Oscillation Results

In the following, we present oscillation results for (6) via
comparison with canonical second-order linear dynamic
equation.

Theorem 6. Assume that the dynamic equation

a(ζ)y
∆
(ζ)􏼐 􏼑

∆
+ g(ζ)A

β− c
(τ(ζ))y(τ(ζ)) � 0, (21)

where c ≔ max α, β􏼈 􏼉 is oscillatory, then (6) is also oscillatory.

Proof. Assume that there exists a nonoscillatory solution
x(ζ) of (6) such that x(ζ)> 0 and x(τ(ζ))> 0 for all
ζ ≥ ζ1 ≥ ζ0. By the chain rule ([4], Teorem 1.90), it is clear
that

r(ζ) x
∆
(ζ)􏼐 􏼑

α
􏼐 􏼑

∆
� r

1/α
(ζ)x

∆
(ζ)􏼐 􏼑

α
􏼐 􏼑

∆

≥ α r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

α− 1
r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

∆
.

(22)

Combining (6) with (22), we obtain

r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

∆
+
1
α

r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

1− α
q(ζ)x

β
(τ(ζ))≤ 0. (23)

Substituting (18) into (23), we get

r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

∆
+
1
α
ξα− 1

(ζ)q(ζ)x
1+β− α

(τ(ζ))≤ 0. (24)

Using a straightforward calculation (see [27]), we con-
clude that

r
1/α

(ζ)x
∆
(ζ)􏼐 􏼑

∆
�

1
ξ(σ(ζ))

r
1/α

(ζ)ξ(σ(ζ))ξ(ζ)
x(ζ)

ξ(ζ)
􏼠 􏼡

∆
⎛⎝ ⎞⎠

∆

. (25)

Consequently,

1
ξ(σ(ζ))

r
1/α

(ζ)ξ(σ(ζ))ξ(ζ)
x(ζ)

ξ(ζ)
􏼠 􏼡

∆
⎛⎝ ⎞⎠

∆

+
1
α
ξα− 1

(ζ)q(ζ)x
1+β− α

(τ(ζ))≤ 0. (26)

Using the transformation x(ζ) � ξ(ζ)y(ζ), we get

a(ζ)y
∆
(ζ)􏼐 􏼑

∆
+ g(ζ)y

1+β− α
(τ(ζ))≤ 0. (27)

It is worth noting that the transformation x(ζ) � ξ(ζ)y

(ζ) preserves oscillation and 􏽒
∞
ζ0
∆s/a(s) �∞. Tis leads to

[a(ζ)y∆(ζ)]∆ < 0 and y∆(ζ)> 0 on [ζ1,∞)T . Terefore,

y(ζ)≥ 􏽚
ζ

ζ1

a(s)y
∆
(s)

a(s)∆s

≥ a(ζ)y
∆
(ζ)􏼐 􏼑 􏽚

ζ

ζ1

∆s

a(s)

� A(ζ) a(ζ)y
∆
(ζ)􏼐 􏼑,

(28)

which implies

y(ζ)

A(ζ)
􏼠 􏼡

∆

< 0. (29)

If β≤ α, by the fact that (29), we get for ζ ∈ [ζ1,∞)T,

y(ζ)≤
y ζ1( 􏼁

A ζ1( 􏼁
A(ζ), (30)

whereas if β≥ α, by the fact that y∆(ζ)> 0 on [ζ1,∞)T , we
obtain for ζ ∈ [ζ1,∞)T,

y(ζ)≥y ζ1( 􏼁. (31)

Let 0< k< 1 be arbitrary. Combining (30) and (32), there
exists a ζ2 ∈ [ζ1,∞)T such that

y
β− α

(ζ)≥ kA
β− c

(ζ) for ζ ∈ ζ2,∞􏼂 􏼁T , (32)

where c ≔ max α, β􏼈 􏼉. Hence, for ζ ∈ [ζ2,∞)T ,

a(ζ)y
∆
(ζ)􏽨 􏽩

∆
+ g(ζ)A

β− c
(τ(ζ))y(τ(ζ))≤ 0, (33)

because k< 1 is arbitrary. Using the fact that a(ζ)y∆(ζ) is
decreasing and y∆(ζ)> 0, we get
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a(ζ)y
∆
(ζ)≥ 􏽚

∞

ζ
g(s)A

β− c
(τ(s))y(τ(s))∆s,

y(ζ)≥ 􏽚
ζ

ζ1

1
a(v)

􏽚
∞

v
g(s)A

β− c
(τ(s))y(τ(s))∆s􏼠 􏼡∆v.

(34)

Let

X � z: z ∈ Crd ζ0􏼂 ,∞)T ,R( 􏼁􏼈 􏼉, supζ∈ ζ0[ ,∞)T
|z(ζ)|<∞.

(35)

Clearly, X is a Banach space with the norm
‖z‖supζ∈[ζ0 ,∞)T

|z(ζ)|. Consider S ⊂ X such that

S � z ∈ X: 0≤ z(ζ)≤y(ζ), ζ ∈ ζ0􏼂 ,∞)T􏼈 􏼉. (36)

It is clear that S is a closed, bounded, and convex subset
of Crd([ζ0,∞)T,R). Defne an operator T: S⟶ X by

(Tz)(ζ) �

􏽚
ζ

ζ1

1
a(v)

􏽚
∞

v
g(s)A

β− c
(τ(s))y(τ(s))∆s􏼠 􏼡∆v, ζ ∈ ζ1􏼂 ,∞)T,

y ζ1( 􏼁, ζ ∈ ζ0, ζ1􏼂 􏼃T.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(37)

Now, T is continuous, and if z ∈ S, then

(Tz)(ζ)≥y ζ1( 􏼁≥ 0, (38)

and

(Tz)(ζ)≤ 􏽚
ζ

ζ1

1
a(v)

􏽚
∞

v
g(s)A

β− c
(τ(s))y(τ(s))∆s􏼠 􏼡∆v≤y(ζ). (39)

Tus, TS ⊂ S. Terefore, by the Krasnoselskii’s fxed
pointTeorem 3, T has a fxed point z ∈ S. Moreover, z(ζ) �

(Tz)(ζ) satisfes that

z(ζ) � y ζ1( 􏼁 + 􏽚
ζ

ζ1

1
a(v)

􏽚
∞

v
g(s)A

β− c
(τ(s))z(τ(s))∆s􏼠 􏼡∆v, ζ ≥ ζ1. (40)

It follows that z(t) is a positive solution of the following
dynamic equation:

a(ζ)z
∆
(ζ)􏼐 􏼑

∆
+ g(ζ)A

β− c
(τ(ζ))z(τ(ζ)) � 0. (41)

Tis completes the proof. □

Theorem 7. If

lim sup
ζ⟶∞

1
A(τ(ζ))

􏽚
τ(ζ)

ζ0
A(σ(s))g(s)A

β− c+1
(τ(s))∆s

+ 􏽚
ζ

τ(ζ)
g(s)A

β− c+1
(τ(s))∆s + A(τ(ζ)) 􏽚

∞

ζ
g(s)A

β− c
(τ(s))∆s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

> 1, (42)
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then (6) is oscillatory.

Proof. Assume that (6) is not oscillatory. Ten, by Teorem
6, we see that (21) is also not oscillatory. Let y(ζ) be an
eventually positive solution of (21), then there exists ζ1 ≥ ζ0
such that y(ζ)> 0 and y(τ(ζ))> 0, for all ζ ≥ ζ1. Integrating
(21) and using the increasing fact of y(ζ) lead to

y
∆
(ζ)≥

1
a(ζ)

􏽚
∞

ζ
g(s)A

β− c
(τ(s))y(τ(s))∆s. (43)

Integrating again yields

y(ζ)≥ 􏽚
ζ

ζ1

1
a(v)

􏽚
∞

v
g(s)A

β− c
(τ(s))y(τ(s))∆s􏼠 􏼡∆v

� 􏽚
ζ

ζ1

1
a(v)

􏽚
ζ

v
g(s)A

β− c
(τ(s))y(τ(s))∆s􏼠 􏼡∆v + 􏽚

ζ

ζ1

1
a(v)

􏽚
∞

ζ
g(s)A

β− c
(τ(s))y(τ(s))∆s􏼠 􏼡∆v,

(44)

for ζ1 ≥ ζ0. Using integration by parts, we obtain

y(ζ)≥ 􏽚
ζ

ζ1
A(σ(s))g(s)A

β− c
(τ(s))y(τ(s))∆s + A(ζ) 􏽚

∞

ζ
g(s)A

β− c
(τ(s))y(τ(s))∆s. (45)

Hence,

y(τ(ζ))≥ 􏽚
τ(ζ)

ζ1
A(σ(s))g(s)A

β− c
(τ(s))y(τ(s))∆s + A(τ(ζ)) 􏽚

∞

τ(ζ)
g(s)A

β− c
(τ(s))y(τ(s))∆s

� 􏽚
τ(ζ)

ζ1
A(σ(s))g(s)A

β− c
(τ(s))y(τ(s))∆s + A(τ(ζ)) 􏽚

ζ

τ(ζ)
g(s)A

β− c
(τ(s))y(τ(s))∆s

+ A(τ(ζ)) 􏽚
∞

ζ
g(s)A

β− c
(τ(s))y(τ(s))∆s.

(46)

Using the fact that y(ζ)/A(ζ) is decreasing and y(ζ) is
increasing, we see that if s≥ ζ, we have τ(s)≥ τ(ζ), so

y(τ(s))≥y(τ(ζ)) for ζ ≥ ζ2, (47)

for some ζ2 ≥ ζ1. Now,

􏽚
∞

ζ
g(s)A

β− c
(τ(s))y(τ(s))∆s≥y(τ(ζ)) 􏽚

∞

ζ
g(s)A

β− c
(τ(s))∆s. (48)

Also, for τ(s)≤ τ(ζ), we have

y(τ(s))

A(τ(s))
≥

y(τ(ζ))

A(τ(ζ))
. (49)

Tus,

􏽚
τ(ζ)

ζ1
A(σ(s))g(s)A

β− c
(τ(s))y(τ(s))∆s≥

y(τ(ζ))

A(τ(ζ))
􏽚
τ(ζ)

ζ1
A(σ(s))g(s)A

β− c+1
(τ(s))∆s, (50)

􏽚
ζ

τ(ζ)
g(s)A

β− c
(τ(s))y(τ(s))∆s≥

y(τ(ζ))

A(τ(ζ))
􏽚
ζ

τ(ζ)
g(s)A

β− c+1
(τ(s))∆s. (51)
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Using (48), (50), and (51) in (46) gives

y(τ(ζ))≥
y(τ(ζ))

A(τ(ζ))
􏽚
τ(ζ)

ζ1
A(σ(s))g(s)A

β− c+1
(τ(s))∆s

+ y(τ(ζ)) 􏽚
ζ

τ(ζ)
g(s)A

β− c+1
(τ(s))∆s + y(τ(ζ))A(τ(ζ)) 􏽚

∞

τ
g(s)A

β− c
(τ(s))∆s.

(52)

It follows that

1≥
1

A(τ(ζ))
􏽚
τ(ζ)

ζ1
A(σ(s))g(s)A

β− c+1
(τ(s))∆s

+ 􏽚
ζ

τ(ζ)
g(s)A

β− c+1
(τ(s))∆s + A(τ(ζ)) 􏽚

∞

ζ
g(s)A

β− c
(τ(s))∆s.

(53)

Tis is a contradiction and completes the proof of the
theorem. □

Theorem 8. Assume that there exists a function
φ ∈ C1

rd(T ,R+) such that

lim sup
ζ⟶∞

φ(ζ) 􏽚
∞

ζ
g(s)A

β− c
(τ(s))∆s + 􏽚

ζ

ζ0
φ(s)g(s)A

β− c
(τ(s)) −

a
∗
(s) φ∆+(s)􏼐 􏼑

2

4φ(s)τ∆(s)
⎛⎝ ⎞⎠∆s⎛⎝ ⎞⎠ �∞, (54)

where φ∆+(l) � max φ∆(ζ), 0􏼈 􏼉 and a∗(ζ) � max a{

(ζ)|τ(ζ)≤ ς≤ τ(σ(ζ))}, then (6) is oscillatory.

Proof. Assume that (6) is nonoscillatory, then, according to
Teorem 6, it follows that (21) is also nonoscillatory. Let
y(ζ) be an eventually positive solution of (21), then there
exists an integer ζ1 ≥ ζ0 such that y(ζ)> 0 and y(τ(ζ))> 0
for all ζ ≥ ζ1. Proceeding the proof in the same manner as in
([28], Teorem 6), we arrive at the contradiction. Tis
completes the proof. □

Theorem 9. Suppose that conditions (H1)–(H4) hold. Let
D0 � (ζ , s): t> s≥ ζ0, ζ, s ∈ T􏼈 􏼉 and D � (ζ , s): ζ ≥ s≥ ζ0, ζ,􏼈

s ∈ T}. Moreover, suppose that there exist functions
H ∈ C(D,R), h ∈ C(D0,R) and φ(t) ∈ C1

rd(T ,R+) such
that the following three conditions hold:

(i) H(ζ, ζ) � 0 for all t≥ ζ0, H(ζ, s)> 0 and for all
(ζ, s) ∈ D0;

(ii) H has a continuous and nonpositive partial de-
rivative on D0 with respect to the second variable;

(iii) [H(ζ , s)φ(s)]∆s � h(ζ , s)
����������
H(ζ , s)φ(s)

􏽰
, for all

(ζ, s) ∈ D0.

If

lim sup
ζ⟶∞

1
H ζ, ζ0( 􏼁

􏽚
ζ

ζ0
H(ζ , s)φ(s)g(s)A

β− c
(τ(s)) −

a
∗
(s)h

2
(ζ, s)

4τ∆(s)
􏼢 􏼣∆s �∞, (55)

then (6) is oscillatory.

Proof. Assume that (6) is nonoscillatory, then, according to
Teorem 6, it follows that (21) is also nonoscillatory. Let
y(ζ) be an eventually positive solution of (21), then there
exists an integer ζ1 ≥ ζ0 such that y(ζ)> 0 and y(τ(ζ))> 0
for all ζ ≥ ζ1. Proceeding the proof in the same manner as in

([28], Teorem 9), we arrive at the contradiction. Tis
completes the proof. □

Theorem 10. If the frst-order dynamic equation

χ∆(ζ) + g(ζ)A
β− c+1

(τ(ζ))χ(τ(ζ)) � 0, (56)
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for all sufciently large ζ ∈ [ζ0,∞)T, is oscillatory, then (6) is
also oscillatory

Proof. Assume that (6) is not oscillatory. Ten, by Teorem
6, we see that (21) is also not oscillatory. Let y(ζ) be an
eventually positive solution of (21), then there exists ζ1 ≥ ζ0
such that y(ζ)> 0 and y(τ(ζ))> 0 for all ζ ≥ ζ1. Let χ(ζ) �

a(ζ)y∆(ζ) form (28), then we have

y(τ(ζ))≥ a(ζ)y
∆
(ζ)A(τ(ζ)) � A(τ(ζ))χ(τ(ζ)). (57)

Using (57) in (21), we see that χ(ζ) is a positive solution
of the dynamic inequality

χ∆(ζ) + g(ζ)A
β− c+1

(τ(ζ))χ(τ(ζ))≤ 0. (58)

By ([6], Teorem 6), (56) also presents a nonoscillatory
solution. Tis contradiction proves that (21) is
oscillatory. □

Corollary 11. If there exists δ ∈ [0, 1]R such that

lim inf
ζ⟶∞

􏽚
ζ

τ(ζ)
g(s)ψ(τ(s))A(τ(s))∆s> δ and lim sup

ζ⟶∞
􏽚
σ(ζ)

τ(ζ)
g(s)ψ(τ(s))A(τ(s))∆s> 1 − (1 −

����
1 − δ

√
)
2
, (59)

then every solution of (6) is oscillatory.

Proof. Assume that (6) is not oscillatory. Ten, by Teorem
10, we see that (56) is also not oscillatory. Let χ(ζ) be an
eventually positive solution of (56), then there exists an
integer ζ1 ≥ ζ0 such that χ(ζ) and χ(τ(ζ)) for all ζ ≥ ζ1.
Proceeding the proof in the samemanner as in (24, Corollary
2), we arrive at the contradiction. Tis completes
the proof. □

Example 1. Consider the second-order diferential equation

ζ]+1
y
′
(ζ)􏼒 􏼓

]
􏼒 􏼓

′
+ q0y

]
(λζ) � 0, ζ ≥ 1,0< λ≤ 1, q0 > 0, ]≥ 1.

(60)

Here, r(ζ) � ζ]+1
, q(t) � q0, τ(ζ) � λζ. It is clear that

ξ(ζ) � 􏽚
∞

ζ
s

− (]+1)/]
ds � ]ζ − 1/] <∞. (61)

It follows that a(ζ) � ]2ζ(]− 1)/] and
g(ζ) � q0]]/λ

1/]ζ − (]+1)/], hence the transformed equation in
the canonical form is as follows:

]2ζ(]+1)/]
y
′
(ζ)􏼒 􏼓
′
+

q0]
]

λ1/]
ζ − (]+1)/]

y(λζ) � 0. (62)

Since

A(ζ) �
1
]2

􏽚
ζ

ζ0
s

− (]− 1)/]
ds �

ζ1/]

]
, (63)

choose φ(ζ) � ζ, then condition (54) takes the following
form:

lim sup
ζ⟶∞

φ(ζ) 􏽚
∞

ζ
g(s)A

β− c
(τ(s))∆s + 􏽚

ζ

ζ0
φ(s)g(s)A

β− c
(τ(s)) −

a
∗
(s) φ∆+(s)􏼐 􏼑

2

4φ(s)τ∆(s)
⎛⎝ ⎞⎠∆s⎛⎝ ⎞⎠

� lim sup
ζ⟶∞

q0]
]+1

λ1/]
ζ(]− 1)/]

+ 􏽚
ζ

ζ0
s

q0]
]

λ1/]
s

− (]+1)/]
−
]2s(]− 1)/]

4sλ
􏼠 􏼡ds􏼠 􏼡

�∞ for q0 >
]

4(] + 1)
λ(1− ])/]

􏼠 􏼡.

(64)

Terefore, when applying Teorem 7, we see that (60) is
oscillatory, if q0 > ]1− ]/2] − ln(λ). Also, (60) is oscillatory
provided that q0 > 0.75]1− ]/ln(1/λ).

Let ] � 1 and λ � 0.5; (60) is oscillatory byTeorem 8 if
q0 > 0.25 and by using Teorem 8, we see that (60) is
oscillatory for q0 > 0.37. By applying ([14], Teorem 4), we
conclude that (60) is oscillatory for q0 > 0.53073 and by
using ([1], Teorem 1), q0 > 0.37. Note that ([18], Teo-
rems 3 and 2.2) cannot be applied to (60) for ]> 1.

Example 2. Consider the following equation:

ζ2y′(ζ)􏼒 􏼓
′
+ q0ζ

2
y
3
(ζ) � 0, ζ ≥ 0. (65)

Here, α � 1, β � 3 and (ζ) � q0ζ
2. It is clear that

ξ(ζ) � 􏽚
∞

ζ

ds

s
2 �

1
ζ
<∞. (66)
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It follows that a(ζ) � 1 and g(ζ) � q0/ζ
2, hence the

transformed equation in the canonical form is

y
″
(ζ) +

q0

ζ2
y(ζ) � 0. (67)

Since (ζ) � ζ, by choosing φ(ζ) � ζ, the condition (54)
guarantees that (65) is oscillatory for q0 > c/4, where
c � cβ− α, > 0.

Example 3. Consider the second-order diference equation

∆ ζα(ζ + 1)(
α ∆y(ζ)

α
( 􏼁 + q0ζ

β− 1
y
β
(ζ − 1) � 0, ζ ≥ ζ0 > 1,

(68)

where α≥ 1, β are ratios of odd positive integers, q0 is
a positive real number, and σ(ζ) � ζ + 1. It is clear that

ξ(ζ) � 􏽘
∞

s�ζ

1
s(s + 1)

�
1
ζ
<∞. (69)

It follows that a(ζ) � 1 and g(ζ) � q0/
αζβ− α/(ζ + 1)(ζ − 1)1+β− α, hence the transformed equation
in the canonical form is

∆2(y(ζ)) +
q0

α
ζβ− α

(ζ + 1)(ζ − 1)
1+β− α y(ζ) � 0. (70)

Choose φ(ζ) � ζ, then condition (54) takes the form

lim sup
ζ⟶∞

φ(ζ) 􏽚
∞

ζ
g(s)A

β− c
(τ(s))∆s + 􏽚

ζ

ζ0
φ(s)g(s)A

β− c
(τ(s)) −

a
∗
(s) φ∆+(s)􏼐 􏼑

2

4φ(s)τ∆(s)
⎛⎝ ⎞⎠∆s⎛⎝ ⎞⎠

� lim sup
ζ⟶∞

􏽘

ζ

s�ζ0

q0

α
s
β− α+2

(s + 1)(s − 1)
2+β− α −

1
4s

􏼠 􏼡.

(71)

It follows that (68) is oscillatory for q0 > α/4c. We see
that (68) is oscillatory for q0 > 1/4 when α � β � 1 which is
consistent with the results in [6] and guarantee that every
solution of (68) is oscillatory unlike [29].

4. Conclusion and Discussion

Te outcomes of this paper are presented in a fundamentally
novel and highly general form. Tese fndings not only
enrich but also complement the existing literature’s dis-
coveries, even in the particular instances when T � R and
T � Z. Based on these outcomes, we can draw the following
conclusions:

(i) Te oscillatory behavior of the solution to (6) is
examined for the case α � β in previous works.
However, in this paper, we focus on studying the
oscillation of (6) for the case when α≠ β, see
[6, 9, 10].

(ii) When T � Z, (6) becomes the diference (11) which
is discussed in [8, 30, 31] with β ∈ [0, 1); however, in
our results β ∈ Q+

odd,whereQ+
odd ≔ a/b: a, b ∈ Z+{

are odd}.
(iii) In this paper, we improved the obtained results in

[12], where we removed condition (15).
(iv) In contrast to [25], our results ensure that all so-

lutions are oscillatory [28, 32, 33].
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