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Abstract: We formulate the mathematical model of directional crystallization of a binary melt with a
mushy layer (region) between purely solid and liquid phases. This model is complicated by melt
convection and pressure-dependent phase transition temperature. Approximate analytical solutions
to this nonlinear moving-boundary problem are constructed. Namely, the concentration of impurity,
fraction of solid phase, mushy region thickness, average fluid velocity, primary interdendritic spacing,
mean radius of a chimney, and a characteristic distance between chimneys in a mushy region are
found. Using this analytical solution, we describe the mushy region structure near the inner core
boundary of the Earth, which is consistent with computer simulations and estimates existing in recent
literature. A scheme illustrating the mushy region arrangement with chimneys at the inner core
boundary of the Earth is presented. This arrangement based on the developed theory represents the
novelty and importance of our study.

Keywords: crystallization; mushy region; convection; pressure; earth’s inner core boundary

1. Introduction

The Earth’s core is the deepest central region of the planet; it has inner and outer
parts. Presumably, the core consists of an alloy of iron and nickel with an admixture of
various elements (sulfur, oxygen, silicon, chromium, phosphorus, and others). The core’s
temperature is estimated to be around 5000–6000 degrees Celsius. Since for the most part
the core consists of iron, it weighs about 1/3 of the planet’s mass. The inner part of the
core, with a radius of about 1300 km, is in a solid state. The temperature on the outer part
of the core is about 6000 degrees Celsius. The inner part of the core has a high density and
is under tremendous pressure. The outer part of the core is in a liquid state, enveloping
the inner core and circulating around it. Between these two parts of the Earth’s core, there
is a transitional two-phase region filled with solid and liquid phases and possessing the
properties of the inner and outer parts of the core.

The theory of two-phase (mushy and/or slurry) regions filled with solid and liquid
phases at the Earth’s inner core originates from classical works [1,2]. This theory is still
being actively explored [3–6]. The existence of such a region may be a consequence of
constitutional supercooling, which is the driving force of crystal formation and dendrite
growth [7]. The growing solid phase elements release the latent heat of crystallization and,
thus, compensate for the supercooling. As a result, by analogy with classical processes of
directional and bulk crystallization in terrestrial conditions, a slurry, mushy, or mixed-type
region can be developed at the Earth’s inner core boundary. The morphological stability
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analysis of the interfacial boundary can elucidate which of the aforementioned types of
liquid–solid regions are present at the Earth’s inner core. It is vital to note that the crystal-
lization of the Earth’s core occurs under conditions that are very different from those on
the Earth’s surface. Namely, the key differences are (i) extremely slow crystallization veloc-
ity, (ii) strong pressure dependence of the phase transformation temperature, (iii) higher
temperature of the solidified core as compared to the surrounding liquid, and (iv) the
significant impact of convection on the solidification process. These factors suggest that the
use of the classical morphological stability theory developed by Mullins and Sekerka [8,9]
is incorrect under the solidification conditions of Earth’s inner core. Therefore, the classical
stability theory has been modified to take the above-mentioned factors into account in sev-
eral recently published works [10–13]. For example, the stability analysis is made without
taking the convective melt flow into account in [10], and convection is only considered in
part in [11]. A more general analysis of morphological stability with convection was made
in [12,13]. The criteria for morphological stability and constitutional supercooling derived
in this paper showed the possibility of stable and unstable crystallization scenarios in the
region of constitutional supercooling. These scenarios are consistent with the crystallization
processes of the Earth’s inner core, which involve slurry and mushy regions, respectively
(for details, see the crystallization model developed in [12]). Supporting the existence of a
mushy region near the Earth’s inner core is the theory presented in [10]. Here, the authors
show that the existence of a slurry region is less likely because of the need to provide
sufficient nuclei to sustain such a region. The authors of [14] also favor the existence of a
mushy region that extends from the Earth’s inner core surface to the center of the fluid’s
outer core. It is significant that this conclusion is proved by the seismological data of [15,16].

An important circumstance of the Earth’s core crystallization is that it is accompa-
nied by the emission of light elements [17]. This impurity maintains the constitutional
supercooling near the interphase boundary, which acts as the catalyst for the growth of the
solid phase and the evolution of the mushy region. Hydrodynamic currents and pressure
gradients at the Earth’s inner core also play important roles in this process. On the one
hand, fluid currents dilute the impurity concentration and attenuate the constitutional
supercooling. On the other hand, the pressure gradient supported by convective currents
enters the criterion of constitutional supercooling under conditions of the Earth’s core
crystallization and enhances the supercooling. As a result, the supercooled region becomes
larger, which promotes the growth of the solid phase and the development of morphologi-
cal perturbations. This paper focuses on the impact of convection and the mushy region on
crystallization under the conditions of the Earth’s inner core.

2. Governing Equations and Analytical Solutions

The local conservation of heat and solutes in the mushy region usτ < ζ1 < h + usτ can
be represented as follows, referencing [18] (us is the solidification velocity, τ is the time, ζ1
is the spatial coordinate of the solidification direction, and h is the mushy region thickness):

ρ(φ)c(φ)
∂θ

∂τ
+ ρ(φ)c(φ)V · ∇θ

= ∇(λsl(φ)∇θ) + QV

(
∂φ

∂τ
+ V · ∇φ

)
,

(1)

(1− φ)
∂σ

∂τ
+ (1− φ)V · ∇σ

= ∇(D(φ)∇σ) + (1− k0)σ

(
∂φ

∂τ
+ V · ∇φ

)
,

(2)

where
ρ(φ)c(φ) = ρscsφ + ρlcl(1− φ),

λsl(φ) = λsφ + λl(1− φ),
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D(φ) = Dl(1− φ).

Parameter ρ is the density, φ is the solid fraction in the mushy region, c is the thermal
(heat) capacity, θ is the temperature, τ is the time, V is the fluid velocity, λs and λl are
the thermal conductivities in solid and liquid phases, respectively, QV is the latent heat of
solidification, σ is the impurity concentration, D is the chemical diffusivity in the mush,
Dl is the chemical diffusivity in the liquid, and k0 is the partition coefficient. Note that
parameters ρ, c, λsl , and D are chosen via the properties of solid and liquid phases [18,19].

Let us consider the mushy region as a porous substance and use Darcy’s equa-
tion [18,20] to model the flow

η(1− φ)V = Π(φ)[(ρl − ρh)g−∇p], (3)

where the fluid velocity satisfies the continuity equation, and the permeability Π is depen-
dent of the solid fraction φ

∇[ρl(1− φ)V] = 0. (4)

Parameter η represents the dynamic viscosity, ρh is the density of the liquid phase,
and g and p are the acceleration of the gravity and pressure, respectively.

Further, we use the equation for the permeability in the form of

Π(φ) = Π0(1− φ)3,

where Π0 is the permeability constant. This expression represents a slightly simplified
version of the Kozeny–Carmen law [21,22]. Note that this formula has no singularity at
the mushy region/liquid interface, where φ→ 0, in comparison with the Kozeny–Carmen
equation.

In order to define the buoyancy forcing (3), the fluid density must be a function of
the state equation. The density ρl can be expressed as a function of σ [23,24] in the case of
intense convective motions near the inner core. We approximate this dependence with a
linear function and, by analogy with [18], we obtain the following expression:

ρl = ρh[1 + κ(σ− σh)], (5)

where σh is the solute concentration at ζ1 = h, and κ is a positive constant. This parameter
can be evaluated from density variations in the fluid’s outer core. The density of the Earth’s
core changes from the core-mantle boundary to the inner core boundary by about 20% [25].

We assume that the latent heat of dendritic growth in the mushy region completely
compensates for the constitutional supercooling. This leads us to the quasi-equilibrium
mushy layer model [18,26,27], where it is possible for various dendrite-like structures
to evolve. In addition, this model assumes that crystal nucleation does not occur in the
two-phase region, which greatly simplifies the heat and mass transfer model. In this case,
the temperature gradient in a mush is equal to the phase transition temperature gradient,
which depends on the pressure and impurity concentrations. Introducing this relationship
by a linear expression, we obtain [11,12]

∇θ = mσ∇σ + mp∇p, (6)

where mσ is the liquidus slope and mp is the Clapeyron slope.
Strictly speaking, the buoyancy forcing (treated as a local linear function of the con-

vective impurity concentration near the inner core) cannot describe the whole outer core
density variation (by about 20%) in Equation (5) because there is a large compressional
component to the density variation across the whole outer core. It is not a function of
just the impurity concentration. Furthermore, integrating this local derivative across the
whole mushy layer precludes any of the very interesting effects discovered in high-pressure
liquidus phase diagrams, showing that the melting points of binary systems can be quite
complex, nonlinear, and pressure-dependent. For example, the effect of “snowing” of
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solid crystals at the bottom, middle, or top of the core during convection, depending on
the system, impurity, and pressure [28], is precluded in the present treatment. This leads
to a non-linear form of Equation (6). Here, for the sake of simplicity, we ignore the real
complex possibilities that the phase equilibrium determinations of high-pressure liquids
likely make.

To solve the problem, we should use the boundary conditions at the inner core surface,
where ζ1 = usτ, in the form of

λsn(∇θ)ζ1=usτ−0 − λsln(∇θ)ζ1=usτ+0 = (1− φ∗)usQV , (7)

where φ∗ represents the boundary fraction of the solid, n is the unit normal vector pointing
toward the liquid, and n(∇θ)ζ1=usτ−0 = Gs is the temperature gradient in the solid inner
core at the phase transition boundary, where ζ1 = usτ.

At the mushy region–liquid boundary, the density, concentration, and fraction of the
solid will be assumed to be known as

σ = σh, ρl = ρh, φ = 0, ζ1 = usτ + h. (8)

Thus, the model of equations and boundary conditions (1)–(8) defines the main char-
acteristics and arrangements of the mushy region near the inner core.

Note that the Earth’s inner core becomes cooled by transporting heat to the liquid
mantle, which is further moved to the Earth’s surface by convection within the Earth’s
mantle [29]. This cooling of the Earth’s core is the driving force for its crystallization.
As this takes place, the denser melt components crystallize to become the Earth’s inner
core, while the lighter components float to the Earth’s outer core. These light components
stir in the molten core by convection, leading to different chemical compositions of its
parts [30]. In addition, the compositional convection is responsible for the geodynamo
mechanism. To save space, we refer the interested reader to the literature review of this
problem [31], which discusses the mutual influence of the Earth’s core crystallization, melt
convection, and the planet’s magnetic field. Note that an important feature of melt flows
in the Earth’s liquid core is the fact that the buoyancy, Lorentz, and Coriolis mechanisms
partially compensate for melt turbulization [32]. This allows us to consider the melt flows
in the outer core as non-turbulent flows. The fluid currents are likely to be represented by
thin upward melt channels (chimneys) and thick downward melt channels that lie between
them [32,33]. This mushy region at the Earth’s solid core is confirmed by several laboratory
experiments [34,35]. Below, we use the convective theory developed in [36] to describe the
mushy region near the Earth’s inner core.

We describe the mass transfer in a mush using the Scheil approximation, neglecting
the diffusion term in Formula (2), since in the case of convective motions, diffusion is
not effective at redistributing the impurity material. This approach is often used by re-
searchers (see [37,38]). In addition, we consider Equation (2) in the region where the fluid
is sinking. So, if vζ represents the ζ-component of fluid velocity, convective terms corre-
sponding to the perpendicular directions are significantly smaller than the convective term
vζ(1− φ)∂σ/∂ζ1. Thus, after the transition to the moving coordinate system ζ = ζ1 − usτ,
we obtain(1− φ)dσ/dζ = (1− k0)σdφ/dζ. Now we can find the concentration of impurity
as a function of φ in the mushy region, where 0 < ζ < h, by integrating this equation and
taking into account the boundary condition (8), i.e.,

σ(φ) = σh(1− φ)k0−1. (9)

Taking into account expressions (3) and (5), substituting the temperature derivative
dθ/dζ from (6) into (1) in the moving frame of the reference and denoting ψ(φ) = dφ/dζ,
we arrive at

dψ

dφ
=

y1(φ, ψ) + y2(φ, ψ) + y3(φ, ψ)

λsl(φ)mσσh(k0 − 1)(1− φ)k0−2ψ
, (10)
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where
y1 = ρ(φ)c(φ)(vζ − us)

×
[
mσσh(k0 − 1)(1− φ)k0−2ψ + ρhκσh

(
(1− φ)k0−1 − 1

)
gmp − η(1− φ)vζmpΠ−1(φ)

]
,

y2 = mσσh(k0 − 1)(1− φ)k0−3ψ2

×[λsl(φ)(k0 − 2)− (λs − λl)(1− φ)]− (λs − λl)(ρl − ρh)gmpψ,

y3 = λsl(φ)κρhσh(k0 − 1)(1− φ)k0−2gmpψ

+QV(vζ − us)ψ +
d

dφ

[
λsl(φ)η(1− φ)vζmp

Π(φ)

]
ψ.

By integrating Equation (4), we obtain the velocity component as follows:

vζ(φ) =
B

(1− φ)ρl(φ)
, (11)

where parameter B is defined in terms of the average velocity V̄, i.e.,

B =
V̄φ∗

φ∗∫
0

dφ
(1−φ)ρl(φ)

,

V̄ =
1

φ∗

φ∗∫
0

vζ(φ)dφ.

The solid fraction φ∗ on the inner core’s surface may be expressed from the boundary
condition (7) in terms of temperature gradients on the left gs and right gl sides of the
boundary

φ∗ =
λsgs − λl gl −QVus

gl(λs − λl)− usQV
. (12)

The boundary condition to Equation (10) now follows from expressions (3) and (6) at
the inner core surface (where φ = φ∗):

ψ =
η(1− φ∗)vζ(φ∗)mp/Π(φ∗)− gl − (ρl − ρh)gmp

mσσh(k0 − 1)(1− φ∗)k0−2 . (13)

Equations (10) and (13) present the standard Cauchy problem, whose solution deter-
mines the function ψ(φ).

Next, the thickness of the mushy region and the fraction of the solid phase can be
found using the following integrals:

h =

0∫
φ∗

ψ−1(φ)dφ, ζ(φ) = h +

φ∫
0

ψ−1(φ)dφ. (14)

3. Discussion

Analytical solutions obtained in accordance with expressions (9)–(14) for various
physical constants, which are typical for the Earth’s core (Table 1), are presented in
Figures 1 and 2. The viscosity of the inner core is known to vary over a wide range from
1013 to 1021 Pa-s [39], 107 Pa-s [40,41], and 10−2 Pa-s [42,43]. Our calculations demonstrate
that an increase in viscosity leads to a decrease in the thickness of the mushy region. Small
viscosities, when η is less than or of the order of 1010 Pa-s, correspond to extremely large
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thicknesses of the mushy region h exceeding the radius of the outer core. This gives a lower
bound estimate of the dynamical viscosity of 1011 Pa-s.

Table 1. Physical parameters characterizing the solidification conditions of the Earth’s core [12].

Parameter Symbol Value Units

Chemical diffusivity in the liquid phase Dl 10−9 m2/s
Thermal diffusivity in the liquid phase λl/(ρhcl) 6·10−6 m2/s
Thermal diffusivity in the solid phase λs/(ρscs) 7·10−6 m2/s
Thermal conductivity in the liquid phase λl 63 J/(m s K)
Thermal conductivity in the solid phase λs 79 J/(m s K)
Solute partition coefficient k0 0.25 -
Latent heat of solidification QV 6.84·109 J/m3

Thermal (heat) capacity in the liquid phase cl 860 J/(kg K)
Acceleration of gravity g 4.4 m/s2

Clapeyron slope mp 9·10−9 K/Pa
Permeability constant Π0 10 m2

Capillary constant d0 10−9 m

However, if η is of the order of or greater than 1019 Pa-s, the thickness of the mushy
region vanishes. This presents an upper-bound estimate of the dynamic viscosity of
∼1018 Pa-s. Hence, the existence of a mushy region in the vicinity of the inner core boundary
based on the analysis of the morphological instability of the inner core boundary in the
presence of convection [12] yields a viscosity range of 1011–1018 Pa-s. But this relatively
wide range of viscosities can be narrowed, based on narrowing the characteristic intervals of
fluid velocities. Assuming an average fluid velocity of V̄∼10−8–10−6 m/s [44], the gradient
of temperature on the upper side of the inner core boundary gl∼−3.7 · 10−4 K/m [10],
and solidification velocity us∼6 · 10−12 m/s [11], we arrive at a viscosity estimate of
η∼1014–1016 Pa-s. Figure 1 shows that small possible variations of gl and us may expand
this interval to 1013–1017 Pa-s. This estimate agrees well with the selection theory of
dendritic growth at the inner core boundary [7].

Figures 1 and 2 demonstrate that the width of the mushy region increases with the
growth of the solid fraction φ∗ at the inner core boundary, temperature gradient gl , and
solidification velocity us at the inner core boundary, and with the decrease in the average
fluid velocity |V̄| oriented from the inner core boundary to the fluid’s outer core. However,
at certain physical parameters, sufficiently small average velocities |V̄| < |V̄c| (see Figure 1)
do not cause the formation of a mushy region due to the absence of convective cooling.
Notably, an increase in |V̄| leads to an increase in the solid fraction φ∗ and solidification
rate us for a fixed value of the mushy region thickness h (see Figure 1).

Now, we will evaluate the effect of the liquidus slope mσ on the width of the mushy
region as this parameter also changes in a wide range from −102 to −1.1 · 104 K [10,11].
The thickness of the mushy region can extend to the center of the inner core if |mσ| is larger
than 1.3 · 103 K, as noted by Degen et al. [11]. Conversely, the thermodynamic estimates
give that h∼3 · 105 m if |mσ|∼102 K. Several estimates, which are based on a collapsing
mushy region, result in a width of ∼10–105 m due to uncertainties in η. It is shown in
Figure 2 that an increase in the absolute value of the liquidus slope causes an increase in
the thickness. At the same time, smaller velocities |V̄| give larger differences in the two
curves in Figure 2.
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Figure 1. The mushy region width h as a function of average fluid velocity V̄ plotted for (a) dif-
ferent temperature gradients and solid fractions; (b) different solidification velocities and solid
fractions. Parameters used for calculation: (a) gl = −5.4 · 10−4 K/m, φ∗ = 0.043 (solid lines)
and gl = −3.7 · 10−4 K/m, φ∗ = 0.432 (dashed lines); mσ = −1.1 · 104 K, us = 3.2 · 10−12 m/s,
η = 1019 Pa-s (1), η = 1017 Pa-s (2), η = 1015 Pa-s (3), η = 1013 Pa-s (4), η = 1010 Pa-s (5);
the critical fluid velocities are shown by vertical lines V̄c (we evaluate here and later in the paper
κ as 0.05/(σ(φ∗) − σh)); (b) us = 3.2 · 10−12 m/s, φ∗ = 0.432 (solid lines), us = 6 · 10−12 m/s,
φ∗ = 0.664 (dashed lines) and us = 2 · 10−11 m/s, φ∗ = 0.889 (dotted lines); mσ = −1.1 · 104 K,
gl = −3.7 · 10−4 K/m, η = 1019 Pa-s (1), η = 1017 Pa-s (2), η = 1015 Pa-s (3), and η = 1013 Pa-s (4).

Figure 2. (a) Solid fraction versus spatial coordinate in a mushy region for different viscosi-
ties. Parameters used for calculation: η = 1015 Pa-s (solid lines) and η = 1014 Pa-s (dashed
lines), mσ = −1.1 · 104 K, gl = −3.7 · 10−4 K/m, V̄ = −10−6 m/s, us = 3.2 · 10−12 m/s (1),
us = 6 · 10−12 m/s (2), and us = 2 · 10−11 m/s (3); (b) mushy region thickness versus the mean
fluid velocity for different liquidus slopes. Parameters used for calculation: mσ = −1.1 · 104 K (solid
line) and mσ = −102 K (dashed line), gl = −3.7 · 10−4 K/m, us = 2 · 10−11 m/s, and η = 1015 Pa-s.

The primary interdendritic spacing λ1 represents one of the important physical pa-
rameters of the mushy region structure. This average distance separating two dendritic
tips characterizes the hydrodynamics of the mushy region and the size of the crystal. For a
stationary solidification and the case of an axisymmetric dendritic tip, the interdendritic
spacing at the inner core surface can be formulated as [11]

λ1 =

√√√√ 2πr

b1

(
dφ
dζ

) . (15)

Here,
(

dφ
dζ

)
= ψ is defined from the boundary condition (13), and parameters b1 = 1

and b1 = 0.86 for cubic and hexagonal dendritic lattices, respectively.
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Let us briefly formulate the main predictions following the stable dendrite growth
theories: (a) we assume that the dendritic shape remains parabolic near the tip; (b) r2us
is constant; (c) r2us is independent of the transverse flow component and grows linearly
with the increasing longitudinal flow component |V̄| (see [45]) for various impurity con-
centrations of the order of 10−2, characteristic of the inner core surface conditions, i.e.,

r2us =
2d0Dl

σ0

(
1 +

vd0|V̄|
Dl

)
. (16)

Here, d0 represents the capillary constant, and numerical constants are estimated as
σ0 = 0.032 and v = 5300 [45]. Note that dendrite vertices reach stationary velocity very
quickly in terrestrial and microgravity conditions [46]. Considering this circumstance, we
estimate the growth rate of their vertices to be of the order of the rate of motion of the solid
inner core surface. Further, eliminating the radius of the dendrite tip r from Equations (15)
and (16), we arrive at the interdendritic spacing λ1.

Figure 3 illustrates how the parameter λ1 depends on the potential differences in the
main parameters of the mushy region of the Earth’s core. An increase in fluid velocity |V̄|,
solidification velocity, and dynamic viscosity results in a decrease in interdendritic spacing.
Our findings incorporate previous estimates for λ1 as presented by Bergman [47], where
λ1∼102 m, and by Deguen et al. [11], where λ1∼10 m, showing that the interdendritic
interval strongly depends on the solidification conditions at the inner core surface. Notice
that the dendrite tip radius r ranges from 2 mm to 6 mm for all curves shown in Figure 3.
This agrees well with the estimates previously reported in [11], where r varies from ∼1 mm
to ∼1 cm.

Figure 3. (a) Primary interdendritic spacing versus the mean fluid velocity for different solidification
rates. Parameters used for calculation: us = 2 · 10−11 m/s (solid lines) and us = 3.2 · 10−12 m/s
(dashed lines), mσ = −1.1 · 104 K, gl = −3.7 · 10−4 K/m, b1 = 0.86, η = 1015 Pa-s (1), and
η = 1014 Pa-s (2); (b) mean horizontal dimension Ξ and mean radius of a chimney’s α dependency on
the solid fraction at the inner core boundary for different fluid velocities: uξ = 10−9 m/s, θΞ = 6000 K,
θ0 = 5000 K, V̄ = −0.5 · 10−6 m/s (1), V̄ = −10−7 m/s (2), and V̄ = −0.5 · 10−7 m/s (3).

The laboratory experiments on the crystallization of binary liquids are well known
to be the main instruments for investigating the structure of the mushy region. Similar
experiments carried out with various mixtures (water solutions [48] and metal alloys [49])
show the chimney formation development. The mushy region is an area of descending
liquid, except in narrow areas (plumes), where buoyant liquid rises from each chimney.
This kind of mushy region structure probably exists at the inner core surface [44]. To
evaluate its characteristic horizontal dimension Ξ (average chimney spacing), we integrate
the temperature conductivity expression (1) in the vicinity of the inner core surface, where
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the fluid flows mainly along the perpendicular direction ξ. Taking the small variations of φ,
we obtain the following formula near the inner core surface:

ρ(φ)c(φ)vξ θ ≈ λsl(φ)
dθ

dξ
+ QVvξ φ, (17)

where vξ is the ξ component of the fluid velocity. The integration constant is selected, such
that dθ/dξ ≈ 0, vξ ≈ 0 at ξ = 0. Determining φ ≈ φ∗ and vξ ≈ const in the vicinity of the
inner core surface, integrating this equation, and taking into account that θ = θ0 at ξ = 0,
we obtain

ξ ≈ λsl(φ∗)

ρ(φ∗)c(φ∗)vξ
ln

θ − θv

θ0 − θv
, θv =

QVφ∗
ρ(φ∗)c(φ∗)

. (18)

Substituting θ = θΞ at ξ = Ξ in Equation (18) and equating the upward and downward
fluid flows in the mushy region, we arrive at the horizontal dimension Ξ of the mushy
region’s convective mesh and the radius of the chimney α in the form of

Ξ ≈ λsl(φ∗)

ρ(φ∗)c(φ∗)vξ
ln

θΞ − θv

θ0 − θv
, α ≈ Ξ

√
|V̄/v̄|. (19)

It is possible to estimate here θΞ and θ0 as the maximum and minimum temperatures
at the inner core surface (for example, θΞ ≈ 6000 K and θ0 ≈ 5000 K [11]), and |V̄| and |v̄|
denote the average velocities of downward and upward fluid flows.

The average radius of the chimney α and the average distance between the chimneys
∼2Ξ are shown in Figure 3. As can easily be seen, the α radius grows as the average
velocity of the fluid |V̄| (directed toward the inner core surface) builds up. It is worth
noting that our estimate for α, less than or of the order of 10−1Ξ, is in agreement with the
numerical simulation of the chimney formation in a Hele–Shaw cell, as noted by Katz and
Worster [22].

4. Conclusions

A schematic arrangement of the mushy region with narrow chimneys of convective
fluid at the Earth’s inner core is shown in Figure 4. Namely, the chimneys are relatively
narrow regions of upward melt flows from the solid inner core to the outer core (their
characteristic size is of the order of 2α). Broader regions of downward melt flows lie
between them, whose characteristic sizes are of the order of 2Ξ. As this takes place, a
mushy region consisting of dendrite-like elements is located between two neighboring
chimneys (the characteristic sizes of dendritic tips and their stable growth rate selection
are presented in [7]). It is important to note that the mushy region width (dashed curve
connecting dendritic tips in Figure 4) grows up from the central region (ξ ≈ 0) to the
place lying near a chimney (ξ ≈ Ξ). This can be attributed to the fact that as the melt
velocity decreases, constitutional supercooling increases. In other words, relatively low
flow velocities |V̄|∼|V̄c| lead to a larger width of the mushy region. Also, it is significant
that the mushy region vanishes near the channel filled with incoming hot melt (where |V̄|
is less than |V̄c|).

In summary, let us formulate the most important conclusions of the developed theory.
(1) A schematic arrangement of the mushy region near the Earth’s inner core is similar to
crystallization processes in terrestrial conditions [22,34]. Namely, the mushy region width
changes along the solid inner core boundary (with a spatial axis of ξ) because of different
melt velocities at different points ξ. In addition, this width increases with the growth of
the solid phase near the inner core, its crystallization velocity, and as the melt velocity
slows down while moving from the fluid outer core to the solid inner core. (2) A typical
dynamic viscosity of the inner core melt is estimated as 1013–1017 Pa-s (which is consistent
with [7,50]) while the characteristic size of dendritic tips is in the range of ∼10−3–10−2 m
(which is consistent with [7]). As this takes place, the characteristic spacing 2Ξ between
chimneys is of the order of ∼101–103 m while a typical size 2α of a chimney is of the order
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of 10−1Ξ. Note that these parameters have been found based on their orders of magnitude
using analytical solutions that took into account characteristic physical parameters related
to the Earth’s inner core solidification. (3) A typical interdendritic spacing λ1 between
the primary stems of dendrites in a mush is of the order of 10–102 m. It is significant that
the primary interdendritic spacing reduces when the crystallization and melt velocities
increase, as well as when the dynamic viscosity of the melt is estimated to be larger.

Figure 4. Schematic illustration of the mushy region near the inner core boundary. Velocity flow lines
are shown as blue solid lines with arrows. Growing dendrites are illustrated by dash-dotted lines.
The dashed curve connecting the dendrites shows the curved thickness of the mushy region.
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