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Bernstein-Szegő inequality for the Riesz derivative
of trigonometric polynomials in Lp-spaces, 0 ⩽ p ⩽ ∞,

with classical value of the sharp constant

A. O. Leont’eva

Abstract. The Bernstein-Szegő inequality for the Weyl derivative of real
order α ⩾ 0 of trigonometric polynomials of degree n is considered. The
aim is to find values of the parameters for which the sharp constant in this
inequality is equal to nα (the classical value) in all Lp-spaces, 0 ⩽ p ⩽ ∞.
The set of all such α is described for some important particular cases of
the Weyl-Szegő derivative, namely, for the Riesz derivative and for the
conjugate Riesz derivative, for all n ∈ N.

Bibliography: 22 titles.
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§ 1. Introduction

1.1. Notation. The statement of the problem. Let Tn = Tn(C) be the class
of all trigonometric polynomials

fn(t) =
a0

2
+

n∑
k=1

(ak cos kt+ bk sin kt) =
n∑

k=−n

cke
ikt (1.1)

with complex coefficients. For a parameter p, 0 ⩽ p ⩽ ∞, consider the following
functionals on Tn:

∥fn∥p =
(

1
2π

∫ 2π

0

|fn(t)|p dt
)1/p

, 0 < p <∞,

∥fn∥∞ = lim
p→+∞

∥fn∥p = ∥fn∥C2π = max{|fn(t)| : t ∈ R},

∥fn∥0 = lim
p→+0

∥fn∥p = exp
(

1
2π

∫ 2π

0

ln |fn(t)| dt
)

;

these functionals define a norm only for 1 ⩽ p ⩽ ∞.
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In 1917 Weyl [1] introduced fractional derivatives of a periodic function. On the
class Tn, the fractional (or Weyl) derivative of real order α ⩾ 0 is defined by

Dαfn(t) =
n∑

k=1

kα

(
ak cos

(
kt+

πα

2

)
+ bk sin

(
kt+

πα

2

))

=
n∑

k=−n

ck|k|αe(iπα/2) sign keikt.

For any positive integer α the Weyl derivative coincides with the classical deriva-
tive: Dαfn = f

(α)
n . In the case when α = 0 the operator D0 removes the constant

term of the polynomial: D0fn(t) = fn(t) − c0. The Weyl derivatives have the
following semigroup property: DβDα = Dα+β , α, β ⩾ 0.

Along with the polynomial (1.1) we consider the conjugate polynomial

f̃n(t) =
n∑

k=1

(bk cos kt− ak sin kt) = i

n∑
k=−n

ck(sign k)eikt;

note that this definition of the conjugate polynomial, in which we follow [2], differs
in sign from the classical definition (see, for example, [3], Vol. 1, § 2.5).

Given a real θ, consider the Weyl-Szegő operator

Dα
θ fn(t) = f (α)

n (t) cos θ + f̃ (α)
n (t) sin θ

=
n∑

k=1

kα

(
ak cos

(
kt+

πα

2
+ θ

)
+ bk sin

(
kt+

πα

2
+ θ

))

=
n∑

k=−n

ck|k|αei(πα/2+θ) sign keikt. (1.2)

For θ = −πα/2 we have the operator

Dα
−πα/2fn(t) =

n∑
k=1

kα(ak cos kt+ bk sin kt) =
n∑

k=−n

ck|k|αeikt, (1.3)

and for θ = π(1− α)/2, the operator

Dα
π(1−α)/2fn(t) =

n∑
k=1

kα(bk cos kt− ak sin kt) = i

n∑
k=−n

ck|k|α(sign k)eikt. (1.4)

The operator (1.3) is known as the Riesz derivative; for some of its properties, see
§ 5.25.4 in [4]. The operator (1.4) will be called the conjugate Riesz derivative, since
the polynomial Dα

π(1−α)/2fn is conjugate to Dα
−πα/2fn for any fn ∈ Tn. In what

follows we write Dα
R and D̃α

R for Dα
−πα/2 and Dα

π(1−α)/2, respectively.
An important property of such operators is that the Riesz derivative of an even

polynomial is an even polynomial again, and the conjugate Riesz derivative of an
even polynomial is an odd one. Note that Dα

R for even α ∈ N and D̃α
R for odd α ∈ N
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are the classical derivatives of order α. On the other hand, Dα
R for odd α ∈ N and

D̃α
R for even α ∈ N are the conjugate derivative operators of order α. Also note

that D0
R = D0, and D̃0

R is the conjugation operator.
The Weyl-Szegő operator (1.2) can be written in a different way in terms of Riesz

derivatives:

Dα
θ fn(t) = Dα

Rfn(t) cos τ + D̃α
Rfn(t) sin τ, τ =

πα

2
+ θ. (1.5)

We are interested in the norm of operator (1.2) on the set Tn, that is, the least
constant Bn(α, θ)p in the inequality

∥Dα
θ fn∥p ⩽ Bn(α, θ)p∥fn∥p, fn ∈ Tn. (1.6)

Inequalities of this kind are called Bernstein-Szegő inequalities (Bernstein
inequalities for θ = 0, and Szegő inequalities for θ = π/2). It is easily checked
that the constant Bn(α, θ)p is π-periodic in θ; so we assume in what follows that
θ ∈ [0, π].

Since Dα
θ is the convolution operator, for the constant Bn(α, θ)p in (1.6) we have

Bn(α, θ)p ⩽ Bn(α, θ)∞, 1 ⩽ p ⩽ ∞, (1.7)

and
nα = Bn(α, θ)2 ⩽ Bn(α, θ)p ⩽ Bn(α, θ)0, 0 ⩽ p ⩽ ∞. (1.8)

Inequality (1.7) is known; the first inequality in (1.8) is quite clear— the corres-
ponding lower estimate is given by the polynomial eint. The last inequality in (1.8)
was proved by Arestov [5]. This inequality means that Bn(α, θ)p assumes its largest
value over p ∈ [0,∞] at p = 0; thus, the case p = 0 is of great value in this field of
research.

In this paper, for all n ∈ N we characterize the α for which the constants
Bn(α,R)p and B̃n(α,R)p in the inequalities

∥Dα
Rfn∥p ⩽ Bn(α,R)p∥fn∥p (1.9)

and
∥D̃α

Rfn∥p ⩽ B̃n(α,R)p∥fn∥p (1.10)

are equal to nα for all p, 0 ⩽ p ⩽ ∞. In view of (1.8), to do this it suffices to
investigate the inequalities

∥Dα
Rfn∥0 ⩽ Bn(α,R)0∥fn∥0 (1.11)

and
∥D̃α

Rfn∥0 ⩽ B̃n(α,R)0∥fn∥0, (1.12)

or, more precisely, to characterize n and α for which the constants Bn(α,R)0 and
B̃n(α,R)0 are nα.
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1.2. Historical remarks. Inequalities of the form (1.6) have been studied for over
90 years. For a historical account, see [2], [6]–[12] and the books [13], Ch. 3, [14],
§ 8.1, and [15], §§ 6.1.2 and 6.1.7. For 1 ⩽ p ⩽ ∞ and α ⩾ 1, for each θ ∈ [0, π] the
sharp inequality∥∥f (α)

n cos θ + f̃ (α)
n sin θ

∥∥
p

⩽ nα∥fn∥p, fn ∈ Tn, (1.13)

holds with the classical constant Bn(α, θ)p = nα. For the first-order derivative,
inequality (1.13) in the uniform norm is due to Bernstein, M. Riesz and Szegő.
For α ∈ N and p ⩾ 1 it was established by Zygmund. For real α ⩾ 1 and p ⩾ 1
inequality (1.13) is due to Lizorkin for θ = 0 and Kozko for all θ ∈ [0, π]. Moreover,
Kozko [16] examined conditions on the parameters α and θ under which (1.13) holds
with the constant nα for all Lp, 1 ⩽ p ⩽ ∞.

For 0 < p < 1 even Bernstein’s inequality (for the first-order derivative) was quite
a challenge. It was proved by Arestov, who created in [6] and [17] a new method for
dealing with extremal problems for algebraic polynomials on the unit circle, and,
as a consequence, with trigonometric polynomials on the period with respect to the
norms generated by functions φ in the class Φ+, which he introduced. In particular,
his method also works in the Lp-spaces, 0 ⩽ p ⩽ ∞. Using this approach, for all
0 ⩽ p ⩽ ∞ he proved the sharp Bernstein inequality

∥f (r)
n ∥p ⩽ nr∥fn∥p, fn ∈ Tn, (1.14)

on the class of all trigonometric polynomials Tn with positive integer r.
In 1994 Arestov [2] considered Szegő’s inequality for the derivatives of nonnega-

tive integer order r for conjugate trigonometric polynomials in L0, that is,

∥f̃ (r)
n ∥0 ⩽ Bn

(
r,
π

2

)
0

∥f∥0, fn ∈ Tn. (1.15)

He showed that, for a fixed nonnegative integer r, the constant in Szegő’s inequality
behaves as

Bn

(
r,
π

2

)
0

= 4n+o(n) as n→∞. (1.16)

Thus, the behaviour of Bn(r, π/2)0 differs substantially from that of the constant
Bn(r, 0)0 = nr in Bernstein’s inequality (1.14) for r ∈ N in L0.

In the same paper [2] Arestov raised the problem of characterizing r and n such
that inequality (1.15) for the derivative of the conjugate polynomial holds with the
classical constant Bn(r, π/2)0 = nr. He showed that this inequality holds with this
constant if r ⩾ n ln 2n. In 1994, on the basis of computer experiments, Arestov put
forward the following conjecture regarding the constant Bn(r, π/2)0 in (1.15).

Conjecture A. A necessary and sufficient condition for Szegő’s inequality (1.15)
to hold in L0 for the derivative of order r ∈ N of the conjugate polynomial of order n
with constant nr is r ⩾ 2n− 2.

In 2014 Arestov and Glazyrina [10] investigated the Bernstein-Szegő inequality
for real α ⩾ 0 and arbitrary real θ. In this and more general settings, they examined
conditions on n, α and θ under which the Bernstein-Szegő inequality in L0 (and, as
a consequence of (1.8), in all Lp-spaces, 0 < p ⩽ ∞) holds with constant nα. They
showed that for all θ ∈ [0, π] a sufficient condition for this is α ⩾ n ln 2n.
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Let An(θ) be the set of all α ⩾ 0 such that Bn(α, θ)0 = nα.
Arestov and Glazyrina made the following two conjectures.

Conjecture 1. If α ∈ R and α ⩾ 2n−2, then the Bernstein-Szegő inequality in L0

for the derivative of order α of a polynomial of degree n holds with constant nα for
each θ.

Conjecture 2. For θ = 0 Bernstein’s inequality holds with constant nα if and only
if α ∈ N or α ⩾ 2n− 2, that is,

An(0) = {1, 2, 3, . . . , 2n− 3} ∪ [2n− 2,∞).

Arestov and Glazyrina [10] proved these two conjectures for n = 2. For each θ,
they described the set A2(θ). Namely, they showed that A2(0) = {1} ∪ [2,∞)
and A2(θ) = [α∗(θ),∞) for θ ∈ (0, π), where α∗(θ) ∈ (1, 2) is a root of a certain
equation.

Popov announced (in his talks at several conferences of 2017–2021; see [18] and
the references given there) that Conjecture 2 holds for n ⩽ 10 and θ = 0 (that is,
in the case of Bernstein’s inequality).

In 2022 this author [12] showed that, for any θ ∈ [0, π], the condition α ⩾ 2n− 2
ensures the Bernstein-Szegő inequality with the classical constant nα, that is, Con-
jecture 1 was confirmed for all n ∈ N.

1.3. The main results. In this paper we prove the following results on the Riesz
and conjugate Riesz derivatives.

Theorem 1. A necessary and sufficient condition that inequality (1.9) hold for the
Riesz derivative with constant Bn(α,R)p = nα for all 0 ⩽ p ⩽ ∞ is that

α ∈ {2, 4, 6, . . . , 2n− 4} ∪ [2n− 2,∞). (1.17)

Theorem 2. A necessary and sufficient condition that inequality (1.10) hold for
the conjugate Riesz derivative with constant B̃n(α,R)p = nα for all 0 ⩽ p ⩽ ∞ is
that

α ∈ {1, 3, 5, . . . , 2n− 5} ∪ [2n− 3,∞). (1.18)

For n ∈ N let α∗n be the least nonnegative number such that Bn(α, θ)0 = nα for
all α ⩾ α∗n and all θ ∈ [0, π]. The result of this author confirming Conjecture 1
(see [12]) means that α∗n ⩽ 2n−2. Theorem 1 implies that α∗n ⩾ 2n−2. Therefore,
α∗n = 2n− 2.

Below, in § 5, for each p, 0 ⩽ p < ∞, we describe the set of trigonometric
polynomials for which inequalities (1.9) and (1.10) for α given by conditions (1.17)
and (1.18), respectively, become equalities.

§ 2. The method

2.1. Arestov’s method for extremal problems. Below we attack the Bern-
stein-Szegő inequality using Arestov’s method (see [5], [6] and [17]), which is capable
of dealing with extremal problems for algebraic polynomials on the unit circle of the
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complex plane, or, which is the same, for trigonometric polynomials on the period,
in view of the formula

P2n(eit) = eintfn(t). (2.1)

Let Pm = Pm(C) be the set of algebraic polynomials of degree at most m with
complex coefficients. For a polynomial of degree s < m it is convenient to assume
that it has a zero of multiplicity m− s at the point at infinity z = ∞.

It is clear that Pm(eit) ∈ Tm. Given a polynomial Pm ∈ Pm, for 0 ⩽ p ⩽ ∞,
we write for brevity ∥Pm∥p = ∥Pm(eit)∥p; in particular,

∥Pm∥0 = ∥Pm(eit)∥0 = exp
(

1
2π

∫ 2π

0

ln |Pm(eit)| dt
)
. (2.2)

For a polynomial Pm with nonzero leading coefficient cm ̸= 0 and zeros {zj}m
j=1,

it follows from Jensen’s formula (see, for example, [19], Vol. 1, Problem 175) that

∥Pm∥0 = |cm|
m∏

j=1

max{1, |zj |}. (2.3)

Given two polynomials

Pm(z) =
m∑

k=0

Ck
makz

k ∈ Pm and Λm(z) =
m∑

k=0

Ck
mλkz

k ∈ Pm,

the polynomial

ΛmPm(z) =
m∑

k=0

Ck
mλkakz

k (2.4)

is known as their Szegő composition. For some properties of the Szegő composition,
see [19], Vol. 2, Pt. V, Ch. 2, and [20], Ch. 4. For fixed Λm the Szegő com-
position (2.4) is a linear operator in Pm. The polynomial

Im(z) = (1 + z)m =
m∑

k=0

Ck
mz

k (2.5)

has the following property: for each Λm ∈ Pm,

ΛmIm(z) = ImΛm(z) = Λm(z). (2.6)

In view of this Im can be regarded as the ‘identity element’ for Szegő composition.
The following result is due to Arestov [5].

Theorem A. For all polynomials Λm, Pm ∈ Pm and 0 ⩽ p ⩽ ∞,

∥ΛmPm∥p ⩽ ∥Λm∥0∥Pm∥p. (2.7)

For p = 0 inequality (2.7) is sharp for any Λm and is attained at the polynom-
ial (2.5).
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2.2. Turning to the investigation of the (conjugate) Riesz derivative of
the extremal polynomial. Let us verify that the Riesz derivative operator Dα

R

and the conjugate Riesz derivative operator D̃α
R, as defined by (1.3) and (1.4) on the

set Tn via (2.1), can be represented as the Szegő composition operator (see (2.4))
on the set P2n for some polynomials Λα

2n and Λ̃α
2n. More precisely,

Dα
Rfn(t) = e−int(Λα

2nP2n)(eit), fn(t) = e−intP2n(eit), (2.8)

and
D̃α

Rfn(t) = e−int(Λ̃α
2nP2n)(eit), fn(t) = e−intP2n(eit). (2.9)

The following notation will be adhered to in what follows:

Qα
n(z) =

n∑
k=1

Cn+k
2n kαzk. (2.10)

Proposition 1. For α ⩾ 0, to the Riesz derivative Dα
R on the class Tn there

corresponds via (2.8) the operator of Szegő composition with the polynomial

Λα
2n(z) =

n∑
k=1

Cn+k
2n kαzn−k +

n∑
k=1

Cn+k
2n kαzn+k = znQα

n

(
1
z

)
+ znQα

n(z) (2.11)

on the set P2n , and to the conjugate Riesz derivative D̃α
R there corresponds via (2.9)

the operator of Szegő composition with the polynomial

Λ̃α
2n(z) = −

n∑
k=1

Cn+k
2n kαzn−k +

n∑
k=1

Cn+k
2n kαzn+k = −znQα

n

(
1
z

)
+znQα

n(z). (2.12)

Proof. We write a trigonometric polynomial fn ∈ Tn as

fn(t) =
n∑

k=−n

Cn+k
2n cke

ikt.

Using (1.3) and (1.4),

Dα
Rfn(t) =

n∑
k=−n

Cn+k
2n |k|αckeikt and D̃α

Rfn(t) =
n∑

k=−n

Cn+k
2n |k|α(sign k)ckeikt.

The algebraic polynomial

P2n(z) =
n∑

k=−n

Cn+k
2n ckz

n+k

is defined from the polynomial fn via (2.1), and, in a similar way, the polynomials

Rα
2n(z) =

n∑
k=−n

Cn+k
2n |k|αckzn+k and R̃α

2n(z) =
n∑

k=−n

Cn+k
2n |k|α(sign k)ckzn+k
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are defined from the polynomials Dα
Rfn and D̃α

Rfn, respectively. From (2.4)
we obtain

Rα
2n = Λα

2nP2n and R̃α
2n = Λ̃α

2nP2n,

where the polynomials Λα
2n and Λ̃α

2n are defined by (2.11) and (2.12), respectively.
This proves Proposition 1.

In view of (1.8) we must look at inequalities (1.11) and (1.12), that is,

∥Dα
Rfn∥0 ⩽ Bn(α,R)0∥fn∥0, fn ∈ Tn,

and
∥D̃α

Rfn∥0 ⩽ B̃n(α,R)0∥fn∥0, fn ∈ Tn.

Using (2.8) and (2.7) we have

∥Dα
Rfn∥0 = ∥Λα

2nP2n∥0 ⩽ ∥Λα
2n∥0∥P2n∥0 = ∥Λα

2n∥0∥fn∥0, P2n(eit) = eintfn(t).
(2.13)

Inequality (2.13) is sharp; it becomes an equality for

P2n(z) = I2n(z) = (1 + z)2n. (2.14)

From this polynomial, via (2.1) we define

hn(t) = e−intI2n(eit) = 4n cos2n t

2
= 2n(1 + cos t)n

=
n∑

k=−n

Cn+k
2n eikt = Cn

2n + 2
n∑

k=1

Cn+k
2n cos kt. (2.15)

Note that ∥hn∥0 = ∥I2n∥0 = 1 by (2.14) and (2.3).
In view of (2.6) and (2.15) the sharp constant in (2.13) is

∥Λα
2n∥0 = ∥Λα

2nI2n∥0 = ∥Dα
Rhn∥0,

Dα
Rhn(t) = 2

n∑
k=1

Cn+k
2n kα cos kt. (2.16)

Thus, the polynomial (2.15) is extremal in inequality (2.13) for p = 0. The conju-
gate Riesz derivative is dealt with similarly. In this case we obtain the polynomial

D̃α
Rhn(t) = 2

n∑
k=1

Cn+k
2n kα sin kt. (2.17)

This establishes the following result.

Proposition 2. The sharp constants in inequalities (1.11) and (1.12) satisfy

Bn(α,R)0 = ∥Λα
2n∥0 = ∥Dα

Rhn∥0 (2.18)

and
B̃n(α,R)0 = ∥Λ̃α

2n∥0 = ∥D̃α
Rhn∥0. (2.19)
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The leading coefficients of the polynomials (2.11) and (2.12) are λ2n = nα. Hence
by Jensen’s formula (2.3) the equality ∥Λα

2n∥0 = nα (or the equality ∥Λ̃α
2n∥0 = nα)

holds if and only if all the 2n zeros of the polynomial (2.11) (or of (2.12), respec-
tively) lie in the closed unit disc |z| ⩽ 1. Since Λα

2n(z) = z2nΛα
2n(1/z) and since Λ̃α

2n

has the same property, this is possible if and only if all the zeros of Λα
2n (or Λ̃α

2n) lie
on the unit circle. But this is equivalent to saying that all the 2n zeros of the poly-
nomial Dα

Rhn (of D̃α
Rhn, respectively) lie on the period. Thus, we have established

the following result.

Proposition 3. For parameters n and α, inequality (1.11) for the Riesz derivative
in L0 holds with constant nα if and only if all the 2n zeros of the polynomial (2.16)
lie on the period. The same result also holds for the conjugate Riesz derivative and
the polynomial (2.17).

The result below follows from (1.8) and Proposition 3.

Corollary. Inequality (1.9) (inequality (1.10)) holds with the constant nα for all
0 ⩽ p ⩽ ∞ if and only if all the zeros of the polynomial (2.16) (of (2.17), respec-
tively) lie on the period.

Thus, the above problem reduces to examining the position of the zeros of the
polynomials (2.16) and (2.17) (or, which is the same in view of (2.1), of the zeros of
the polynomials (2.11) and (2.12)). For this investigation we invoke the polynomials

Qα
n(z) =

n∑
k=1

Cn+k
2n kαzk

(see (2.10)), since

Dα
Rhn(t) = 2ReQα

n(eit) and D̃α
Rhn(t) = 2 ImQα

n(eit) (2.20)

by (2.11) and (2.12).

§ 3. Auxiliary results

A function g is said to be completely monotone on the half-axis (0,∞) if it is
infinitely differentiable and (−1)νg(ν)(x) ⩾ 0 for all ν = 0, 1, 2, 3, . . . and all x > 0.
By the Hausdorff-Bernstein-Widder theorem a function g is completely monotone
if and only if it can be expressed as

g(x) =
∫ ∞

0

e−tx dµ(t), (3.1)

where µ is a nonnegative Borel measure such that the integral (3.1) converges for
all x > 0; here the measure µ is finite if and only if g(0) < ∞. For the proof of
this theorem, see, for example, [21], § 5.5. An example of a completely monotone
function is given by g(x) = 1/xβ , β > 0; this function can be written as

1
xβ

=
1

Γ(β)

∫ ∞

0

e−txtβ−1 dt;
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this representation can be derived from the formula

Γ(β) =
∫ ∞

0

e−ttβ−1 dt.

We require the following important result, which we proved in [12].

Lemma 1 (see [12], Lemma 1). Let the polynomial

Qn(z) =
n∑

k=1

ckz
k

of degree n ∈ N have real coefficients satisfying, for some a ∈ N, the m conditions

n∑
k=1

(−1)kckg
(aν)(k) = 0, ν = 0, 1, 2, . . . ,m− 1, (3.2)

1 ⩽ m ⩽ n − 1, where g is a completely monotone function equal to the Laplace
transform of a measure with support on a set of cardinality at least n. Then Qn

has at least m sign changes on the interval (−1, 0).

For n ⩾ 1 consider the function

Sn(α) =
n∑

k=1

(−1)kCn+k
2n kα

of α ⩾ 0. The following result holds for this function.

Lemma 2. For any n ∈ N,

Sn(2r) =
n∑

k=1

(−1)kCn+k
2n k2r = 0, r = 1, 2, 3, . . . , n− 1, (3.3)

and

signSn(α) = (−1)r for r = 1, 2, 3, . . . , n and α = 2r − β, 0 < β < 2. (3.4)

Proof. First we prove (3.3). Consider the polynomial

hn(t) = 4n cos2n t

2
=

n∑
k=−n

Cn+k
2n cos kt.

For even r ∈ N, we have

Sn(2r) =
(−1)r/2

2
h(2r)

n (π).

The polynomial hn has a zero of multiplicity 2n at t = π. Hence h(2r)
n (π) = 0 for

r = 1, 2, 3, . . . , n− 1. This proves (3.3).
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Now let us verify (3.4). Consider the function

φn(x) =
Cn

2n

2
+

n∑
k=1

(−1)kCn+k
2n e−k2x.

We claim that
φn(x) > 0 for any x > 0. (3.5)

For fixed x > 0 consider the function ψx(y) = e−y2/(4x)/
√
πx, y ∈ (−∞,∞), whose

Fourier transform is the Gauss-Weierstrass kernel

ψ̂x(ω) =
∫ ∞

−∞
ψx(y)e−iyω dy = e−xω2

.

Now (3.5) follows since

φn(x) =
1
2

n∑
k=−n

(−1)kCn+k
2n ψ̂x(k) =

1
2

n∑
k=−n

(−1)kCn+k
2n

∫ ∞

−∞
ψx(y)e−iky dy

=
1
2

∫ ∞

−∞
ψx(y)

( n∑
k=−n

(−1)kCn+k
2n e−iky

)
dy =

1
2

∫ ∞

−∞
ψx(y)hn(π − y) dy > 0.

In what follows we require the Mellin transform of φn,

gn(s) = (Mφn)(s) =
∫ ∞

0

xs−1φn(x) dx. (3.6)

Let us find a domain where the integral in (3.6) defines an analytic function. To
this end we find how φn(x) behaves as x→ 0 and x→∞. We have

φn(0) =
Cn

2n

2
+

n∑
k=1

(−1)kCn+k
2n =

1
2

n∑
k=−n

(−1)kCn+k
2n =

1
2
(1− 1)2n = 0.

Next, an application of (3.3) shows that φ′n(0) = φ′′n(0) = · · · = φ
(n−1)
n (0) = 0. In

addition, limx→∞ φn(x) = Cn
2n/2 = const > 0. This implies that, for −n < σ < 0,

the function xσ−1φn(x) lies in L(0,∞). Consequently, the function (3.6) is analytic
in the strip −n < Re s < 0 (see, for example, Theorem 1 in [22]).

From the definition (3.6) of gn and the property (3.5) we obtain the following
important fact, which is required below:

gn(s) > 0, −n < s < 0. (3.7)

Having the function (3.6) at our disposal, we consider the functions gr
n(s) =

(Mφ
(r)
n )(s). We claim that for each r = 1, 2, . . . , n the function gr

n(s) is analytic
in the half-plane Re s > −n+ r and, in addition, can be expressed in terms of the
function (3.6) in the strip −n+ r < Re s < r.

First consider g1
n. We have

g1
n(s) =

∫ ∞

0

xs−1φ′n(x) dx =
∫ ∞

0

xs−1 dφn(x)

= xs−1φn(x)
∣∣∞
0
− (s− 1)

∫ ∞

0

xs−2φn(x) dx. (3.8)
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The function φ′n(x) behaves asO(xn−1) as x→0 and decays exponentially as x→∞;
hence the left-hand integral in (3.8) exists and is analytic for −n+ 1 < Re s <∞.
In the strip −n + 1 < Re s < 1 the term outside the integral vanishes, and the
right-hand integral in (3.8) defines an analytic function. So

g1
n(s) = −(s− 1)gn(s− 1), −n+ 1 < Re s < 1.

A similar analysis shows that the functions gr
n(s), r = 2, 3, . . . , n, are analytic in

the half-plane Re s > −n+ r, and

gr
n(s) = (−1)r(s− r)(s− r + 1) · · · (s− 1)gn(s− r), −n+ r < Re s < r. (3.9)

In the half-plane Re s > 0,

gr
n(s) =

∫ ∞

0

xs−1φ(r)
n (x) dx =

∫ ∞

0

xs−1

( n∑
k=1

(−1)kCn+k
2n k2r(−1)re−k2x

)
dx

= (−1)rΓ(s)
n∑

k=1

(−1)kCn+k
2n k2r−2s. (3.10)

For s ∈ (0, 1) we have

gr
n(s) = (−1)rΓ(s)

n∑
k=1

(−1)kCn+k
2n kα = (−1)rΓ(s)Sn(α),

α = 2r − 2s = 2r − β, β = 2s ∈ (0, 2).

Thus, for 0 < Re s < r the function gr
n(s) can be defined by (3.9) and (3.10)

alike.
Let us find the sign of gr

n(s) for 1 ⩽ r ⩽ n and s ∈ (0, 1). The sign of the product
(s− r)(s− r + 1) · · · (s− 1) is (−1)r. For such s the function gn(s− r) is positive
by (3.7). This establishes (3.4) for 1 ⩽ r ⩽ n and completes the proof of Lemma 2.

Lemma 3. For n ⩾ 2 and 2n − 4 < α < 2n − 2 let Qα
n be the polynomial defined

by (2.10). Then
1) all the zeros of Qα

n , save one, lie in the open unit disc;
2) in addition, Qα

n has a real zero x0 = x0(n, α) < −1.

Proof. To prove 1) we apply Lemma 1 to Qα
n. Let ck be the coefficients of the

polynomial Qα
n, that is,

ck = Cn+k
2n kα = Cn+k

2n k2n−4+β , 0 < β < 2, k = 1, 2, . . . , n.

We take a = 2 in this lemma and consider the completely monotone function
g(t) = 1/tβ . We claim that

Sν =
n∑

k=1

(−1)kckg
(2ν)(k) = 0, ν = 0, 1, . . . , n− 3.
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Indeed, using (3.3) (see Lemma 2) we obtain

Γ(β)
Γ(β + 2ν)

Sν =
n∑

k=1

(−1)kCn+k
2n

k2n−4+β

k2ν+β

=
n∑

k=1

(−1)kCn+k
2n k2(n−2−ν) = 0, ν = 0, 1, . . . , n− 3.

So the assumptions of Lemma 1 are met. Hence n − 2 zeros of Qα
n lie on (−1, 0).

Another zero of Qα
n is at 0. Let us estimate the remaining zero.

To prove assertion 2) of the lemma it suffices to see that Qα
n(−1) has the correct

sign, that is,
signQα

n(−1) = (−1)n−1. (3.11)

It is easily checked that

Qα
n(−1) =

n∑
k=1

(−1)kCn+k
2n kα = Sn(α).

Now the required fact follows from (3.4) in Lemma 2. Lemma 3 is proved.

Lemma 4. For 2n− 4 < α < 2n− 2 consider the polynomial

un(t) = uα
n(t) = Dα

Rhn(t) = 2 ReQα
n(eit).

Then

un(0) > 0, signun(π) = (−1)n−1 and signu′′n(π) = (−1)n−1. (3.12)

Proof. Since

un(t) = 2 ReQα
n(eit) = 2

n∑
k=1

Cn+k
2n kα cos kt,

we have

un(0) = 2
n∑

k=1

Cn+k
2n kα > 0 and un(π) = 2

n∑
k=1

(−1)kCn+k
2n kα = 2Sn(α).

Hence signun(π) = (−1)n−1 by (3.4) in Lemma 2.
Next we have

u′′n(t) = −2
n∑

k=1

Cn+k
2n kα+2 cos kt,

and another appeal to (3.4) shows that signu′′n(π) = (−1)n−1, which proves
Lemma 4.
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§ 4. Proofs of the main results

4.1. Proof of Theorem 1. Let us show that, for 2n − 4 < α < 2n − 2, for
the Riesz derivative we have Bn(α,R)0 > nα. By (2.20), Dα

Rhn(t) = 2ReQα
n(eit).

We denote this polynomial by un(t) = uα
n(t). We claim that not all of its zeros lie

on the period.
By Lemma 3 the polynomial Q = Qα

n has precisely n− 1 zeros in the unit disc,
and it has no zeros on the unit circle. As t ranges from −π to π, the function Q(eit)
describes a curve Z(t). By the argument principle this curve makes n − 1 circuits
about the origin. Hence un has at least 2n− 2 zeros on the period.

By Lemma 4
un(0) > 0 and signun(π) = (−1)n−1. (4.1)

Hence the zeros of un lie on the intervals (−π, 0) and (0, π). Since the polynomial un

is even, each of these intervals contains the same number m ∈ {n− 1, n} of zeros.
Assume that the polynomial un has ℓ distinct zeros 0 < t1 < · · · < tℓ < π

of multiplicity κ1, . . . , κℓ, 1 ⩽ ℓ ⩽ m, on (0, π), where κ1 + · · ·+ κℓ = m. If t1 has
even multiplicity κ1, then on the interval (t1, t2) the polynomial un(t) has the same
sign as un(0). If κ1 is odd, then the sign of un(t) on (t1, t2) is opposite to that
of un(0). So signun(t) = (−1)κ1 signun(0) for t ∈ (t1, t2).

A similar analysis shows that

signun(t) = (−1)κ1 · · · (−1)κj signun(0), t ∈ (tj , tj+1), j = 1, . . . , ℓ− 1.

For t ∈ (tℓ, π] we have

signun(t) = (−1)κ1 · · · (−1)κℓ signun(0) = (−1)m signun(0), t ∈ (tℓ, π]. (4.2)

But m is equal to either n−1 or n. Hence m = n−1 by (4.1) and (4.2). As a result,
un has precisely 2n− 2 zeros on the period.

Now let α ∈ (2r, 2r+2), r = 0, 1, . . . , n−3. We claim that the polynomial Dα
Rhn

cannot have 2n zeros on the period. If Dα
Rhn had 2n zeros, then (Dα

Rhn)(2n−4−2r) =
(−1)n−2−rD2n−4+α−2r

R hn would have 2n zeros on the period, but this is not so by
the above since 2n− 4 < 2n− 4 + α− 2r < 2n− 2.

Now assume that α = 0. The constant term of the polynomial D0hn is zero, and
so D0hn has at least two zeros on the period. But it has at most two such zeros,
because its derivative (D0hn(t))′ = h′n(t) is positive for t ∈ (−π, 0) and negative
for t ∈ (0, π).

Thus, for α ∈ [0, 2) ∪ (2, 4) ∪ (4, 6) ∪ · · · ∪ (2n− 4, 2n− 2) the polynomial Dα
Rhn

has at most 2n− 2 zeros on the period.
For the remaining

α ∈ {2, 4, 6, . . . , 2n− 4} ∪ [2n− 2,∞),

we have
∥Dα

Rhn∥0 = nα. (4.3)

Indeed, for even α ∈ N, the Riesz derivative coincides, up to the sign of (−1)α/2,
with the classical derivative of order α, and now (4.3) follows from the sharp Bern-
stein inequality (1.14), which was proved by Arestov. For α ⩾ 2n−2 equality (4.3)
also follows from this author’s result in [12].
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Thus, we have shown that, for p = 0 for n ∈ N and α ⩾ 0, the best constant (2.18)
in inequality (1.11) is equal to Bn(α,R)0 = nα if and only if α satisfies (1.17).

Now the conclusion of Theorem 1 is secured by (1.8).

4.2. Proof of Theorem 2. Let α ∈ [0, 1) ∪ (1, 3) ∪ (3, 5) ∪ · · · ∪ (2n− 5, 2n− 3).
We show that the polynomial D̃α

Rhn cannot have 2n zeros on the period. If D̃α
Rhn

had 2n zeros on the period, then (D̃α
Rhn)′ = Dα+1

R hn would have 2n zeros on the
period, but this is impossible by what was proved in § 4.1, because α+ 1 < 2n− 2
and is not a natural number.

So, for α ∈ [0, 1)∪ (1, 3)∪ (3, 5)∪ · · · ∪ (2n− 5, 2n− 3) the polynomial D̃α
Rhn has

at most 2n− 2 zeros on the period.
Let us show that, for

α ∈ {1, 3, 5, . . . , 2n− 5} ∪ [2n− 3,∞), (4.4)

we have
∥D̃α

Rhn∥0 = nα. (4.5)

For odd α ∈ N, the Riesz derivative coincides, up to the sign of (−1)(α−1)/2, with
the classical derivative of order α, and so (4.5) follows from (1.14). For α ⩾ 2n− 2,
(4.5) is secured by [12].

It remains to consider the case when α ∈ (2n − 3, 2n − 2). Let us show that
for such α all 2n zeros of the polynomial vn = vα

n = D̃α
Rhn lie on the period. It is

clear that vα
n = (uα−1

n )′, α− 1 ∈ (2n− 4, 2n− 3). The polynomial uα−1
n has 2n− 2

zeros −π < τ1 < · · · < τ2n−2 < π. So the polynomial vn has 2n − 3 zeros on the
interval [τ1, τ2n−2], and it also vanishes at π. In addition, vn has two more zeros
on the intervals (−π, τ1) and (τ2n−2, π) because by (3.12) uα−1

n (π) and (uα−1
n )′′(π)

are positive or negative simultaneously. So, all the 2n zeros of the polynomial vn

lie on the period.
This proves equality (4.5) for α as in (4.4).
Thus, for p = 0, n ∈ N and α ⩾ 0 the best constant (2.19) in inequality (1.12) is

B̃n(α,R)0 = nα if and only if α satisfies condition (1.18).
Now the conclusion of Theorem 2 follows from (1.8).

§ 5. Extremal polynomials

In this section we describe the sets of extremal polynomials in inequalities (1.9)
and (1.10) for α given by (1.17) and (1.18), respectively, and 0 ⩽ p < ∞. To
do this we invoke some results due to Arestov [6], which provide necessary and
sufficient conditions for a polynomial to be extremal in the inequality for the Szegő
composition operator under some conditions on the operator.

Following [6], we denote by P0
m, P∞

m and P1
m the subsets of the set of poly-

nomials Pm such that all of their m zeros lie in the disc |z| ⩽ 1, in the set |z| ⩾ 1,
or on the circle |z| = 1, respectively.

Theorem B (Arestov; see Theorems 1, 2 and 5 in [6]). Let m ∈ N, m ⩾ 2, and let
Λm(z) =

∑m
k=0 C

k
mγkz

k ∈ P1
m . In addition, let the polynomial

Λ‵
m(z) =

m−2∑
k=0

Ck
m−2γk+1z

k
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of degree m− 2 also lie in P1
m−2 . Then for all 0 ⩽ p ⩽ ∞,

∥ΛmPm∥p ⩽ |γm| · ∥Pm∥p, Pm ∈ Pm. (5.1)

For p = 0 this inequality turns to equality precisely for the polynomials Pm ∈
P0

m ∪P∞
m , while for 0 < p < ∞ it turns to equality precisely for the polynomials

azm + b, a, b ∈ C.

For Λm ∈ P1
m, in view of (2.3) we have ∥Λm∥0 = |γm|, where γm is its leading

coefficient, and so inequality (5.1) is contained in Theorem A.

Theorem 3. The following results hold.
1. For p = 0 the extremal polynomials for inequalities with α given by (1.17)

and (1.18), respectively, are precisely the polynomials for which the polynomials P2n ,
as defined by (2.1), lie in P0

2n ∪P∞
2n .

2. For 0 < p <∞ the extremal polynomials for inequalities (1.9) and (1.10) with
α given by (1.17) and (1.18), respectively, are precisely the polynomials c−ne

−int +
cne

int and c−n, cn ∈ C, respectively.

Proof. For the proof we use Theorem B. We will show that the polynomials

Λα
2n(z) =

n∑
k=−n

Cn+k
2n λkz

n+k, λk = |k|α,

and

Λ̃α
2n(z) =

n∑
k=−n

Cn+k
2n λ̃kz

n+k, λ̃k = |k|α(sign k)

(see (2.11) and (2.12)), for α given by (1.17) and (1.18), respectively, satisfy

(Λα
2n)‵(z) =

n−1∑
k=−n+1

Cn−1+k
2n−2 λkz

n−1+k ∈ P1
2n−2 (5.2)

and (
Λ̃α

2n

)‵(z) =
n−1∑

k=−n+1

Cn−1+k
2n−2 λ̃kz

n−1+k ∈ P1
2n−2. (5.3)

It is clear that (Λα
2n)‵ = Λα

2(n−1) and
(
Λ̃α

2n

)‵ = Λ̃α
2(n−1). If α ∈ N is even, then

the Riesz derivative of order α coincides, up to sign, with the classical derivative:
Dα

Rfn = ±f (α)
n , fn ∈ Tn. Hence, for such α, for any m ∈ N the polynomial Λα

2m

lies in P1
2m (see [6] and [17]). In a similar way, for odd α ∈ N the polynomial

Λ̃α
2m lies in P1

2m.
Next, Lemma 3 in [12] asserts that for any α ⩾ 2n−2 all zeros of the polynomials

Dα
Rhn and D̃α

Rhn (and, a fortiori, ofDα
Rhn−1 and D̃α

Rhn−1) lie on the period. Hence,
by (2.1) the polynomials Λα

2n and Λ̃α
2n, and also Λα

2n−2 and Λ̃α
2n−2, lie in P1

2m. This
proves (5.2) and (5.3). Now Theorem 3 follows from Theorem B.
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