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Abstract: Ceramics of the quasi-binary concentration section (0.1 ≤ x ≤ 0.2, ∆x = 0.025) of the ternary
solid solution system (0.5 − x)BiFeO3-0.5PbFe0.5Nb0.5O3-xPbTiO3 were prepared by the conventional
solid-phase reaction method. An X-ray study at different temperatures revealed that (0.5 − x)BF-
0.5PFN-xPT ceramics have a cluster morphology. Clusters have different modulation, crystal lattice
symmetry, and chemical composition. The presence of a cluster structure in a solid solution with
heterovalent substitution, consisting of regions rich in Ti+4, Nb+5, or Fe3+, has led to the appearance
of Maxwell–Wagner polarization in the studied ceramics. The study of the dielectric characteristics
revealed the relaxor-like behavior of the studied ceramics. The grain morphology, dielectric, pyro-
electric, and piezoelectric properties of the selected solid solutions were investigated. The highest
piezoelectric coefficient, d33 = 280 pC/N, was obtained in the 0.3BiFeO3-0.5PbFe0.5Nb0.5O3-0.2PbTiO3

ceramics. Study of the dielectric characteristics of all samples revealed relaxor ferroelectric behavior
and a region of diffuse phase transition from the paraelectric to ferroelectric phase in the temperature
range of 140–170 ◦C.

Keywords: dielectric properties; perovskites; multiferroics; piezoelectric properties; solid solutions

1. Introduction

In recent years, multiferroic materials have attracted considerable attention in the
scientific community due to the coexistence of ferroelectric, ferromagnetic, and ferroelastic
ordering in those materials [1,2]. The multiple types of couplings present in these materials
make them excellent candidates for a wide range of applications. Multiferroics can be
used in alternating and permanent magnetic field sensors [3,4], memory elements [5,6],
spintronic devices [7,8], artificial neural networks [9,10], and in other fields of modern
engineering. BiFeO3 (BF), which shows the rhombohedral perovskite structure (R3c) at
room temperature, belongs to this class of multiferroic materials owing to the coexistence
of ferroelectric (FE) and antiferromagnetic (AFM) orderings. The high ferroelectric Curie
temperature (TC~860 ◦C) and high antiferromagnetic Neel temperature (TN~370 ◦C) make
BF exhibit multiferroic properties at room temperature (RT); therefore, BF stands out from
other single-phase multiferroic materials [11–14]. However, because of numerous disad-
vantages, such as a very high coercive field, high conductivity, low piezoelectric properties,
and so on, the applications of BF single-phase material are still facing many large difficul-
ties [15,16]. Lead iron niobate PbFe0.5Nb0.5O3 (PFN) is another well-known multiferroic
with a perovskite-type structure having the general chemical formula A

(
B′0.5B′′0.5

)
O3 and

the diffuse phase transition from the paraelectric (PE) to the FE phase at TC~114 ◦C. FE
and AFM ordering coexist in it only below TN~−140 ◦C [17]. Like BF, PFN is characterized
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by increased electrical conductivity caused by the presence of ions of variable valence
(Fe2+/Fe3+) and oxygen vacancies in their structure. Nevertheless, modification [18,19] or
the creation of solid solutions [20,21] based on BF or PFN make it possible to stabilize the
structure and improve the characteristics of the obtained ceramics. In order to enhance
electric resistivity and multiferroic behavior, other ABO3 perovskite compounds, such as
PbTiO3, BaTiO3, SrTiO3, and PrFeO3, were combined with BF to form solid solutions with
spontaneous magnetization [22–26]. In this sense, PbTiO3 (PT), a well-known piezoelec-
tric compound that has a tetragonal distorted perovskite structure (P4mm space group)
and a ferroelectric phase transition at TC ∼490 ◦C, presents the necessary properties to
enhance the properties of BF [27,28]. Desirably, binary BF-PT ceramics are synthesized very
easily and display ferroelectric and antiferromagnetic properties at the same time. The
BF-PT system displays a high ferroelectric transition temperature (TC∼367 ◦C) in the mor-
photropic phase boundary (MPB) region and maintains weak antiferromagnetic ordering
at high temperatures (TN∼104 ◦C) [29], giving the BF-PT system considerable potential
for applications in high-temperature fields. However, there are still some shortfalls for
BF-PT, such as an extremely high coercive field (>150 kV/cm) and a low piezoelectric
coefficient of d33∼50 pC/N, much lower than other piezoelectric ceramics [30–32]. In this
regard, in recent years, considerable attention has been paid to obtaining new multiferroic
materials by creating solid solutions of ternary systems based on multiferroics [33–37].
One of the promising systems is the (1-x-y)BF-xPFN-yPT ternary system, in which, ac-
cording to the literature data [38,39] and our preliminary studies [40], there is MPB with
coexisting rhombohedral (Rh) and tetragonal (T) phases. As is known, materials with MPB
can demonstrate extreme properties and improve the electrophysical characteristics of the
studied ceramic. In this regard, it is important to establish the regularities of the formation
of structural, microstructural, dielectric, and piezoelectric characteristics of samples of
the ternary system (1-x-y)BF-xPFN-yPT in the region of the phase diagram with a high
PFN content. In this present work, we attempted to generalize the previous results of the
study of this ternary system and refine the crystal structure features that strongly affect the
ceramic macro responses.

2. Materials and Methods

Ceramic samples of the ternary system (0.5 − x)BF-0.5PFN-xPT (0.1 ≤ x ≤ 0.2, ∆x
= 0.025) were fabricated using conventional ceramic technology by double solid-phase
synthesis at temperatures T1 = 900 ◦C and T2 = 950 ◦C and holding times τ1 = τ2 = 10 h,
followed by sintering at Tsin = 1000 ◦C for 2 h. The initial reagents were Bi2O3, Fe2O3, PbO,
TiO2, and Nb2O5, with the content of the main substance not less than 99.95%. Samples for
sintering were pressed into disks with a diameter of 10 mm and a thickness of 1 mm. After
polishing, the electrodes were deposited onto the flat surfaces of the disks by stepwise
firing of the silver paste at 200 ◦C for 20 min, 500 ◦C for 30 min, and 800 ◦C for 20 min.

X-ray studies in the temperature range 20 ≤ T ≤ 300 ◦C were carried out using a
diffractometer ADP-1 (Bragg–Brentano focusing) with CoKα radiation. The temperature
rise rate was arbitrary, the accuracy of temperature stabilization in the chamber was ±2 ◦C,
and the isothermal exposure was 10 min. Changes in the structural parameters and phase
state of the ceramics were monitored by the diffraction peaks (111)c, (200)c, and (220)c. The
diffraction peak profile was approximated by the Lorentz function. The error in measuring
the parameters a, b, and c of the unit cell is ∆a = ∆b = ∆c =±(0.002–0.004) Å, the modulation
wavelength, λ, was calculated by the formula (1):

λ =

∣∣∣∣ 1
dhkl
− 1

dc

∣∣∣∣−1
, (1)

where dhkl and dc are the interplanar distances of the main peak and satellite, respec-
tively [41].

The study of the ceramic grain structure was carried out using the KEYENCE VK-9700
color laser scanning 3D microscope.
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Temperature dependences of the complex dielectric permittivity ε* = ε′ − iε′′ (ε′ and
ε′′ are the real and imaginary parts of ε*, respectively) were measured at 25–475 ◦C in
the frequency range 10 Hz–100 kHz using a computer-controlled broadband dielectric
spectrometer Novocontrol Concept 40 during continuous cooling or heating of the sample
at a rate of 2–3 ◦C/min. Samples were polarized at T = 125 ◦C in the polyethylene siloxane
fluid under applied fields of 3–6 kV/mm. Piezoelectric coefficients of the samples were
measured at f = 110 Hz using a quasistatic YE2730A d33 METER (APC International Ltd.,
Mackeyville, PA, USA). Dielectric hysteresis loops were obtained at room temperature
using a Sawyer–Tower circuit and oscilloscope. This allowed us to evaluate the residual
polarization PR and coercive field EC of the samples.

The pyroelectric effect was measured by the dynamic method as described else-
where [42]. Pyroelectric coefficient γ was determined by a dynamic technique using
sinusoidal temperature modulation at a frequency of 2–3 Hz. The pyroelectric response
was quantified by comparing it with a reference sample of the multicomponent PZT-based
ceramic PCR-11 with a known value of the pyroelectric coefficient. All measurements were
performed in the field-cooling and field-heating modes at a rate of 2–3 ◦C/min.

For the measurements of the small electric-field induced displacements and piezocoef-
ficients, we used a single-beam Michelson–Morley laser interferometer modified with
the lock-in amplifier and a PID feedback system described in [43,44]. External volt-
age was applied with an Agilent 33210A (Keysight Technologies, Santa Rosa, CA, USA)
signal generator.

3. Results
3.1. XRD Analysis

The results of an X-ray diffraction study of 0.3BF-0.5PFN-0.2PT ceramics in the tem-
perature range of 20–180 ◦C were presented in [45]. Therefore, in this paper, in the analysis
of the crystal structure, we will focus on samples with 0.1 ≤ x ≤ 0.175. It was shown in [46]
that the average structure of ceramics with 0.1 ≤ x ≤ 0.15 is cubic (C). However, the broad-
ening of the diffraction peaks in the X-ray diffraction patterns indicates the presence of
clusters with a symmetry other than C in the studied ceramic structure. The concentration
phase transition from the C to the T phase in the range 0.175 ≤ x ≤ 0.2 suggests that the
clusters have a tetragonally distorted crystal lattice.

Figure 1 shows X-ray diffraction patterns of the solid solutions (0.5− x)BF-0.5PFN-xPT
(0.1≤ x≤ 0.175) at the RT and diffraction peaks (200) and (220) at the different temperatures.
Diffuse scattering near diffraction peaks at some temperatures transforms into satellite
maxima, indicating the appearance of structure modulation. This is most noticeable in
solid solutions with x = 0.15 and x = 0.175. The features of X-ray diffraction patterns
include δ-like peaks, which, along with satellites, appear near diffraction reflections (dots
on Figure 1). The explanation for the observed effects was given in [47], where numerical
methods were used to study the intensity distribution of X-rays for a crystal consisting
of randomly located domains with displacement waves λ1 and λ2 propagating along
one of the crystallographic directions. It was shown by the authors of [47] that when
the initial phases of displacement waves in neighboring domains are matched by the
phase of the defect density wave (matching wave), δ-like peaks appear in the position
corresponding to the wave vector of the defect density wave. In this case, periodically
repeating crystallographic shear planes (CSPs) can be the cause of the defect density wave.
CSPs are always present in a perovskite-type structure containing variable valence ions in
B-positions (oxygen octahedra) [48–51]. In this case, the modulation wavelength calculated
from the position of the δ-like peak with respect to diffraction reflection is the distance
between CSPs, which, as shown in [52], are domain walls in ferroelectrics. The method
from [47] makes it possible to characterize the real structure of solid solutions. Since the
role of randomly located domains in ceramics can be played by clusters that differ in
chemical composition, crystal lattice symmetry, modulation pattern, and other properties.
The propagation of two modulation waves along one of the crystallographic directions in a
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polycrystalline object can occur simultaneously in several crystallites. Therefore, two or
more δ-like peaks can be expected in the X-ray diffraction pattern. Thus, a series of intense
δ-like peaks are present on the satellites of the 220 reflections on the X-ray diffraction pattern
of the ceramics with x = 0.175 (Figure 1d) at 80 ◦C. In the solid solutions with x = 0.1 and
0.125, the appearance of δ-like peaks is observed mainly near the 220 diffraction reflection
(modulation in the <110> directions), while in the solid solutions with x = 0.15 and 0.175,
they also appear near the 200 reflection (modulation in directions <100>). Peaks appear
near the reflection 220 in the temperature range 30–300 ◦C, near the reflection 200—in the
intervals 30–160 ◦C (x = 0.15) and 30–150 ◦C (x = 0.175). Near the 200 peaks at higher
temperatures, δ-satellites do not appear, but the modulation of the structure is retained.
Additional peaks corresponding to the difference or total wave vectors are not observed,
which corresponds to a structure with non-interacting, randomly located domains [47].
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Figure 1. X-ray diffraction patterns of the studied ceramics at RT. (a–d) Diffraction peaks (200) and
(220) with satellites at the different temperatures are shown in the insets.

The asymmetric position of the satellites relative to the diffraction reflection is another
feature of the diffraction patterns. This may be caused by the fact that the structure of solid
solutions includes regions whose crystal lattice consists of blocks of oxygen octahedra m× n
(m, n is the number of octahedra) formed by two sets of almost orthogonal crystallographic
shifts [48]. One of the structure-forming oxides of the studied solid solutions, Nb2O5,
has a similar crystal lattice (block). If m 6= n, then each of the CSP sets creates its own
displacement wave, which should lead to an asymmetric position of the satellites relative
to the diffraction reflection.

Table 1 shows the modulation wavelengths in the directions <100> and <110> at the
different temperatures. Wavelengths were calculated from satellites located on the smaller
angle θ side (s−) and on the bigger angle θ side (s+) relative to diffraction reflection. It was
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shown that the studied ceramics have a crystal lattice with sinusoidal modulation related
to the concentration wave. Even-order satellites λ2 = 1

2 λ1 confirm the presence of the
modulation (x = 0.125 at 100 ◦C, x = 0.15 at 150 ◦C). Asymmetric satellites are also observed
on X-ray patterns of solid solutions with x = 0.15 at 70 ◦C and 190 ◦C and with x = 0.175 at
120 ◦C and 190 ◦C. Two wavelengths λ = 82(83) Å and λ = 77(78) Å are repeated in all solid
solutions and probably correspond to the size of the domain, which is a block of oxygen
octahedral 20.5 × 19.

Table 1. Modulation wavelengths, λ, in the directions <100> and <110>.

x T, ◦C
λ, Å <100> λ, Å <110>

c− c+ c− c+

0.1

40
λ+1 = 331

λ+2 = 147

80 λ− = 109
λ−1 = 117

λ+ = 94
λ−2 = 77

0.125

100
λ−1 ≈ 163 λ−1 = 413

λ−2 = 82 λ−2 = 206

110
λ−1 = 120 λ−1 = 265

λ−2 = 82 λ−2 = 160

180 λ− = 78
λ−1 = 380

λ−2 = 178

0.15

70 λ− = 240 λ+ = 331

150 λ− = 83
λ+1 = 212

λ+2 = 105.5

190 λ− = 82 λ+ = 77

0.175

120 λ− = 190 λ+ = 212

190 λ− = 334 λ+ = 201

240

λ−1 = 372

λ−2 = 129

λ−3 = 83

δ-peak on
satellite three
λδ = 77

Thus, we assume that even-order satellites indicate sinusoidal (concentration) modu-
lation, the asymmetric position of the satellites is associated with two-wave modulation in
one of the <100> and <110> crystallographic directions, and the presence of δ-like peaks
indicates the matching of the initial phases of the displacement waves by the matching
wave. There are no satellites on the X-ray patterns corresponding to the sum and difference
wave vectors. This is typical for a cluster structure with randomly located nanodomains
that do not interact with each other. In each of the clusters of this structure, the electrical
properties change in accordance with their chemical composition, which directly affects the
smearing of the phase transition.

Figure 2 shows the temperature dependences of the width of the 200 and 111 peaks
at half maximum (FWHM) and the unit cell parameter of the solid solution (0.5 − x)BF-
0.5PFN-xPT. The existence of regions rich in titanium or niobium in the sample will lead
to the fact that the dependences a(T) in the <100> and <110> directions of the crystal
lattice will differ. Therefore, the cell parameter was calculated from the (200) and (220)
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diffraction peaks. The cell parameter constancy may be a sign of structural transformation
(restructuring) in the corresponding temperature interval [53]. The change of the diffraction
peaks at 111 and 200 FWHM makes it possible to suggest the symmetry of the region where
the phase transition occurs. Thus, upon T→ C transition, the FWHM of peak 200 decreases
since the multiplet 002, 200 becomes a single peak, while the FWHM of peak 111 does not
change. Upon Rh→ C transition, the FWHM of peaks at 111 decreases (the multiplet 111,
111 becomes a single peak), while the FWHM of peak 200 remains unchanged. During
the monoclinic-cubic transition, the FWHM of both peaks decreases since both multiplets
become single peaks. Table 2 shows the temperature ranges of the cell parameter constancy
and the anomalous behavior of the FWHM111(T) and FWHM200(T) dependences.
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squares) and the cell parameter a (central and bottom panels) calculated from diffraction peaks 200
(black dots) and 220 (white dots). On the bottom panel, the cell parameter scale is deliberately enlarged
and spaced apart in order to see the details of parameter changes in the <100> and <110> directions.

The dependences of the peaks 200 and 111 FWHM(T) in the sample with x = 0.1
(Figure 2a) have wide minimums in the intervals 80–120 ◦C and 100–130 ◦C, respectively,
that indicate the presence of the monoclinic phase at 80–130 ◦C. The first interval includes
the temperatures of two ferroelectric transitions in PFN at 80 ◦C and 120 ◦C. The wide
temperature range of the transition in the ternary system is possibly related to the spread
of the polarization rotation angle, similar to how it occurs in the single crystal of the binary
system 0.67Pb(Mg1/3Nb2/3))O3-0.33PbTiO3 [54], where the monoclinic phase with different
polarization rotation angles was found in the morphotropic region of the phase diagram.
In [54], the authors explained the spread of polarization rotation angles (5◦–35◦) by the
macro segregation and structure fluctuation generated in the process of cooling crystals to
room temperature in the Bridgman method. However, the reason for the increase in FWHM
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of both peaks above the phase transition temperature is not yet clear. Dependence a200(T)
is a series of constancy segments rising stepwise from room temperature to 140 ◦C and at
230–250 ◦C, a220 ≈ const at 60–80 ◦C and at 120–130 ◦C. A wider range of cell parameter
constancy (60–140 ◦C) as compared to the temperature range of the minimum half-widths
of the 200 and 111 peaks (80–130 ◦C) can be associated with the presence of clusters with
both T and R symmetry in the ceramics with x = 0.1.

Table 2. Temperature regions, ∆T ◦C, of the FWHM anomalous behavior and cell parameter constancy
of the solid solutions (0.5 − x)BiFeO3-0.5Pb(Fe0.5Nb0.5)O3-xPbTiO3.

x
∆T FWHM ∆T a = const

200 111 200 220

0.1 80–120 (wide low) 100–130 (wide low)

20–40
60–80

80–140

120–130
230–250

0.125
80–110 (max) 80–110 (halo) 80–90

100–180
160–170 (halo) 160–170 (max) 150–160

0.15 20–120 (decrease) 100–140 (halo)

110–150 60–110

210–220 140–150

260–300 260–300

0.175 20–170 (decrease) 140–170 (halo)
130–140 80–130

150–160 160–180

In the sample with x = 0.125 (Figure 2b), both dependences FWHM(T) have two max-
ima at the same temperatures of 100 ◦C and 160 ◦C (Table 2). An increase in the half-width
of the 111 and 200 diffraction peaks in the ranges of 80–110 ◦C and 160–170 ◦C can be
caused, firstly, by the transition through an intermediate monoclinic phase [55] with multi-
plet peaks 111 and 200, and, secondly, by the decrease of the coherent scattering regions at
the morphotropic transition or miniaturization of the average domain structure [56]. As a
result, this leads to a broadening of the diffraction peaks.

In the sample with x = 0.15 and 0.175 FWHM of peak 200, the temperature decreases to
120 ◦C and 170 ◦C, respectively, due to a decrease in the degree of cell distortion in clusters
with tetragonal symmetry. The halo of the FWHM 111 peak is observed in the intervals of
100–140 ◦C (x = 0.15) and 130–170 ◦C (x = 0.175). Its appearance is most likely associated
with the T→K transition in clusters through an intermediate monoclinic phase and/or with
the miniaturization of the average domain structure [56]. The dependence a(T) in ceramics
with x = 0.175, calculated from two diffraction lines, differs only at low temperatures, with
a200 sharply increasing in the range of 50–100 ◦C while a220 increasing gradually. This may
be due to the fact that the Ti-rich regions with tetragonal distortion have a more mobile
structure than the Nb-rich regions. As mentioned above, the structure of the latter consists
of blocks formed by two sets of almost orthogonal crystallographic shifts and, therefore,
is not as mobile as in titanium-rich regions. A wide range of temperature anomalies
is most likely caused by different concentrations of lead and titanium in the clusters.
This concentration determines the c/a value and the FE → PE transition temperature.
Table 2 shows that the intervals a = const for a200 and a220 overlap and coincide with the
temperatures of the FWHM anomalies. Consequently, phase transitions with a change in
symmetry in clusters occur in the structure of ceramics with x = 0.15 and 0.175, just as in
the samples described above.

Thus, close X-ray analysis showed that (0.5 − x)BF-0.5PFN-xPT ceramics have a
cluster morphology. Clusters differ in modulation character, crystal lattice symmetry,
chemical composition, and, consequently, electrical characteristics and FE→ PE transition
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temperatures. Such morphology with heterovalent substitution, consisting of regions rich
in Ti+4, Nb+5, or Fe3+, can lead to the appearance of Maxwell–Wagner polarization at the
grain boundaries.

3.2. Microstructural Characterization

Figure 3 shows photographs of the microstructure of the studied ceramics. The
grain structure of sample x = 0.1 is inhomogeneous and consists of large crystallites in
the form of irregular polyhedra. The split occurs both along the grain boundary and
along the grains themselves, which indicates approximately equal strength of grains and
grain boundaries (or intergranular interlayers). The crystallite size varies from ~15 µm to
~25 µm. With an increase in the PT concentration, the average grain size sharply decreases
to 10 µm (Figure 3b). The cracking passes through the intergranular spaces. It indicates
that the grains have become stronger than the boundaries. In addition, traces of fluxes
and intergranular interlayers can be observed in the sample with x = 0.125, indicating
a change in the sintering method—from solid-phase to sintering with the participation
of a liquid phase (LP). Low-melting Bi-containing compounds of eutectic origin formed
during the synthesis can be the main components of this LP. Another possible source of the
appearance of the LP is the relatively low-melting lead oxide with a melting point of 838 ◦C
(in the composition 0.5 PbO–0.5 TiO2 [57]). This is confirmed by the fact that with a further
increase in the PT concentration, the number of fluids increases. A further increase in the
concentration of PT (0.15 ≤ x ≤ 0.2) leads to a decrease in the size of grains of all types,
an increase in the number of fluxes, and some strengthening of ceramics (Figure 3c–e).
Grain refinement can also be associated with an increased heterogeneity of the crystal
structure, which stimulates recrystallization processes with the simultaneous formation of
many centers of primary recrystallization with a reduced mass capacity. Grain and strength
characteristics have been discussed in more detail in [45].
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3.3. Dielectric and Piezoelectric Characteristics

There are two maxima on the dependencies of ε′/ε0(T) in the temperature ranges
130–170 ◦C and 250–400 ◦C. In all samples, the temperature of both maxima (Tm1 and Tm2)
shifts to higher temperatures as f increases, which is typical for relaxor ferroelectrics. The
degree of smearing and the values of permittivity at the maximum point of the second one
are much higher than those of the first one. The second maximum is most likely associated
with the effects of Maxwell–Wagner polarization and relaxation of charge carriers at grain
boundaries. Additionally, the first one (Figure 4a) corresponds to the phase transition from
the ferroelectric to the paraelectric phase, which occurs in clusters of the T phase (in objects
with 0.1 ≤ x ≤ 0.15) and in the MPB (x = 0.175, 0.2). On the whole, the studied samples
demonstrate the behavior of relaxor ferroelectrics with a phase transition in the region of
140–170 ◦C. The dielectric loss tangent (tanδ) at temperatures above 240 ◦C begins to rise
sharply due to the increase in conductivity (Figure 4b).
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It was possible to observe the piezoelectric characteristics that were stable over time
in several samples of the studied ceramics. The value of d33 increases with increasing PT
concentration. The highest piezoelectric constant is ~280 pC/N for 0.3BF-0.5PFN-0.2PT
ceramic. The remanent polarization and coercive field in this sample are ~12 µC/cm2 and
~9 kV/cm, respectively. Compared to the (1-x)BF-xPT system, the EC of 0.3BF–0.5PFN-0.2PT
ceramics is reduced to make the samples easier to be poled [58].

4. Discussion

When approximating the Tm1(f ) dependence in the whole frequency range, we used
the Vogel–Fulcher relation (2) (Figure 5):

f = f0e
Ea

k(Tm1−Tf ) , (2)

where f0 is the frequency of attempts to overcome a potential barrier Ea, k is the Boltzmann
constant, and Tf is the Vogel–Fulcher temperature, interpreted as the temperature of “static
freezing” of electric dipoles or transition to the state of a dipole glass.
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The calculated values of Eact and Tf for all samples lie in the ranges (0.15–0.45) eV
and (100–120) ◦C, respectively. The obtained results indicate that the studied samples are
relaxor ferroelectrics. The smearing of the phase transition in the studied ceramics can be
associated with the presence of non-interacting clusters with different modulation, crystal
lattice symmetry, and chemical composition identified by X-ray analysis.

The calculated values of the Burns temperature (Tb) determined from the (ε′/ε0)−1(T)
dependences, corresponding to the temperature of the polar nanoregions, exceeded the
Tm1 values by more than 100 ◦C. This indicates that the FE phase clusters in the studied
ceramics disappear only at T > 240 ◦C.

The fact that the first maximum in the dependences ε′/ε0(T) corresponds to a phase
transition is also confirmed by measurements of the piezoelectric modulus in the low
fields and the pyroelectric coefficient γ (Figure 6). As an example, Figure 6 shows the
temperature dependences of these parameters for the 0.325BF-0.5PFN-0.175PT ceramics. At
a temperature of 145–150 ◦C, the pyrosignal disappears, i.e., the polarization of the sample
vanishes, which most likely corresponds to the Curie temperature in this composition. The
figure clearly shows the maximum temperature dependence of the low-field piezoelectric
coefficient d33 for all compositions, which is shifted towards low temperatures from the TC.
The presence of this maximum and its value indicate the “predisposition” of each sample
to the polarization process in order to obtain the maximum piezoelectric coefficient d33.
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5. Conclusions

Ceramic samples of solid solutions of the ternary system (0.5− x)BiFeO3-xPbFe0.5Nb0.5O3-
xPbTiO3 (0.1 ≤ x ≤ 0.2, ∆x = 0.025) were prepared by the conventional solid-phase reaction
method. Using X-ray studies, it was found that at 0.10 ≤ x ≤ 0.15, the objects have a
cubic crystal structure containing segregations (clusters) with tetragonal symmetry of the
crystal lattice, and at x = 0.175, 0.20, a morphotropic phase boundary with coexisting T
and C phases is formed. An X-ray study at different temperatures revealed that (0.5 −
x)BF-0.5PFN-xPT ceramics have a cluster morphology. These non-interacting clusters have
different modulation, crystal lattice symmetry, and chemical composition. However, to
unambiguously confirm the presence of clusters, it is necessary to use additional methods,
such as SFM and TEM, which will be undertaken in future work. We assume that the
presence of a cluster structure in a solid solution with heterovalent substitution, consisting
of regions rich in Ti+4, Nb+5, or Fe3+, has led to the appearance of Maxwell–Wagner
polarization in the studied ceramics. The study of the dielectric characteristics revealed the
relaxor-like behavior of the studied ceramics. A diffuse phase transition, which corresponds
to the first maximum on the ε′/ε0(T) dependences, occurs in the range 140–170 ◦C in the
clusters of the T phase (0.10 ≤ x ≤ 0.15) and in the tetragonal part of the MPB (x = 0.175,
0.20). The phase transition at these temperatures is confirmed by X-ray studies as well as
by measurements of the pyroelectric coefficients γ and the piezoelectric modulus in weak
fields. The second maximum on the ε′/ε0(T) dependences is associated with the effects of
Maxwell–Wagner polarization and relaxation of charge carriers at the grain boundaries. In
the samples from MPB, it was possible to observe high and stable piezoelectric responses.
The maximum values of the piezoelectric modulus were observed in the 0.3BF-0.5PFN-0.2PT
ceramics (~280 pC/N). The results show that 0.325BF-0.5PFN-0.175PT and 0.3BF-0.5PFN-
0.2PT ceramics are promising materials for future investigation in consideration of their
dielectric and piezoelectric properties.
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