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A B S T R A C T   

In the contemporary, digitally–driven era, the prevalence of electronic devices has drastically escalated elec
tromagnetic (EM) pollution levels, marking a significant environmental challenge. Electrospun fiber composites 
of polyvinylidene fluoride (PVDF) and Barium hexaferrite (BHF) were analyzed for their potential usage in X- 
band electromagnetic shielding applications (EMSAs). Pure PVDF and BHF-PVDF fiber composite were manu
factured by needleless electrospinning. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), 
scanning electron microscopy (SEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), 
and EM measurements utilizing a vector network analyzer (VNA) are all used to describe the prepared samples. 
The XRD and FTIR analyses confirmed the successful incorporation of BHF into the PVDF matrix. The results 
show that adding PVDF to BHF in fiber form enhances the reflection loss (RL), indicating improved electro
magnetic shielding effectiveness (EMSE). The SEM analysis revealed that the fiber composite had a uniform fiber 
diameter distribution. In contrast, the TGA analysis demonstrated good thermal stability of the fiber composite. 
Polymer samples were evaluated to enhance gamma radiation and neutron particle attenuation. MCNP5 and Phy- 
X/PSD software were used to study semi-crystalline fluorocarbon polymer (PVDF) and barium hex ferrite 
BaFe12O19 (30 wt%) with PVDF (70 wt%). The MCNP5 programme simulated 0.015–15 MeV radiation atten
uation. Additionally, the Phy-X/PSD programme verified the simulated µ values for the chosen Mxenes materials. 
The MCNP-5 code and Phy-X/PSD results were agreed. The linear attenuation coefficients for the polymer 
samples ranged from 3.166 to 0.032 cm2.g− 1 for PVDF and from 73.960 to 0.113 cm2.g− 1 for PVDF and BHF- 
PVDF Fiber at photon energies from 0.015 to 15 MeV. Overall, the electrospun fiber composite of PVDF and 
BHF particles shows promise for EMSAs in the X-band range. The enhanced RL observed in our study suggests 
that these fiber composites could be used to protect against electromagnetic radiation (EMR) from electronic 
devices, which is increasingly concerning in today’s modern society.   
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Introduction 

In contemporary society, the ubiquity of electronic apparatuses has 
precipitated a pronounced escalation in electromagnetic (EM) interfer
ence. This phenomenon has recently been underscored as a paramount 
issue of academic and practical interest [1–6]. In the realm of material 
science, it is salient to note that diverse two/ three-dimensional (2D/3D) 
architectures, such as graphene, MXene, and conductive polymers, have 
been judiciously employed to enhance the microwave absorption 
properties [5,7–9]. 

The X-band microwave frequency spectrum, spanning from 8.2 GHz 
to 12.4 GHz, holds significant import. This range is prevalently engaged 
in pivotal endeavors encompassing radio transmissions, RADAR sys
tems, satellite operations, and extraterrestrial communication modal
ities [10]. Subjecting living entities, inclusive of humans, to 
electromagnetic radiation (EMR) within this frequency spectrum may 
precipitate detrimental biological consequences [4,11]. Consequently, 
an amplifying imperative exists for developing efficacious shielding 
substrates tailored to mitigate EMR spanning from 8.2 GHz to 12.4 GHz. 
Composites based on PVDF [12–15] and spinel/hexa-ferrites [16] or 
have shown promise in effectively shielding against EMR. PVDF, being a 
polar polymer [17], lends itself to transformation into fibers via elec
trospinning [18–20], making it a superior candidate for composite cre
ation. Its unique electroactive phases make PVDF suitable for EMR 
shielding applications [17]. 

Meanwhile, BHF, known for its distinctive magnetic properties and 
high Curie temperature, is ideal for formulating composites with high 
magnetic loss factors [21–26]. When combined within a polymer matrix, 
the resultant composite inherits magnetic and dielectric properties, 
optimally positioning it for effective EMR shielding [27–32]. Apart from 
their EM shielding capabilities, the unique characteristics of fibers have 
unlocked a wide array of opportunities across various technological 
applications. For instance, fibers can enhance antennas’ mechanical 
strength and facilitate antenna structure formation with high aspect 
ratios and anisotropic properties [33–35]. 

The effectiveness of these composites is critically dependent on the 
fabrication procedure. Needle electrospinning is a technique that elim
inates the use of a needle or wire and subjects a polymer solution to a 
high electric field [18,19,36]. This procedure results in fibers with di
ameters ranging from tens to hundreds of nanometers. The ability to 
create aligned fibers further escalates the anisotropic properties of the 
composite material [20,37]. Despite the demonstrated potential of 
PVDF–BHF composites and fiber composites for efficient EMR shielding 
within the X-band frequency range, efforts to refine these materials and 
their manufacturing methods continue. Such investigations aim to 
augment shielding efficiency against EMR across an extensive frequency 
range [38–40]. 

According to the literature [41], the authors prepared BHF/PVDF 
nanocomposite films for energy storage applications. It’s observed that 
the beta phase begins to diminish concurrently with an augmentation in 
the alpha phase, leading to a metamorphosis in the crystallinity of the 
nanocomposite when the BHF increases by more than 30%. Notably, the 
nanocomposite’s dielectric constant achieves its zenith at a 30% BHF 
concentration. Still, any increment beyond this concentration instigates 
a decline. Furthermore, post the threshold of 30% BHF, and there’s a 
stark escalation in the nanocomposite’s leakage current density, signi
fying a heightened conductive trajectory stemming from inter-particle 
interactions. The dimension of the core–shell architecture, a product 
of PVDF and BHF nanoparticles, inversely correlates with the BHF 
concentration in the nanocomposite. To encapsulate, surpassing the 
30% BHF concentration heralds a transformation in the PVDF-BHF 
nanocomposite’s attributes, encompassing its crystalline nature, 
dielectric constant, leakage current density, and particulate dimensions. 
So, 30% BHF was used in our study. 

This study delves into the impacts of fabricating BHF–PVDF com
posite fiber using a needleless electrospinning technique on its EM 

properties. Focusing specifically on its implications for EM shielding, we 
offer fresh insights into developing and optimizing these composite 
materials for mitigating EM pollution. 

Materials and methods 

Commercial PVDF (average molecular weight ~ 534000 by GPC 
powder) was purchased from Sigma-Aldrich. The conventional solid- 
state reaction method obtained barium hexaferrite BaFe12O19 (BHF). 
The desired stoichiometry was achieved by mixing powder containing 
high-purity Fe2O3 (Sigma-Aldrich, molecular weight = 159.69, purity ≥
96%) and BaCO3 (Sigma-Aldrich, molecular weight = 197.34, purity ≥
99%) [42,43]. Following their formation, the mixtures of oxides and 
carbonates underwent homogenization and mechanical activation 
through ball milling for 4 h at a rotational speed of 1000 revolutions per 
minute. After applying a 10 Ton press to the sample, it underwent a 
sintering process in an air environment for 4 h at a temperature of 
1200 ◦C. After the synthesis, the specimen underwent a gradual cooling 
process at 100 ◦C per hour and was subjected to dry milling. After 
acquiring the powder, it underwent a secondary compression. It was 
subjected to sintering at 1100 ◦C for 4 h in an ambient atmosphere. After 
the second sintering, the sample was ground again using agate mortal 
and ball milling to obtain fine powder for the characterizations and 
prepare 30 wt% BHF/70 wt% PVDF composite fiber by needleless 
electrospinning technique (made in China by Qingzi Nano model 
E03–001). The exact process was also used for preparing the pure PVDF 
fiber. To determine what elements were present in the produced sam
ples, an Empyrean Panalytical diffractometer was used to run XRD 
analysis at room temperature (10◦ ≤ 2θ ≥ 80◦, Cu-Kα, =1.54 Å). An FTIR 
spectrometer from the JASCO FT/IR4100 series was used to analyze the 
samples’ composition from 4000 to 400 cm− 1. Zeiss (EVO-10) scanning 
electron microscopes were used to examine the surface microstructure 
of all synthetic samples. TGA was conducted utilizing a Perkin Elmer 
TGA–4000 thermogravimetric analyzer (United States). Alumina cruci
bles contained 7.2 mg of PVDF fiber and 13.4 mg of BHF–PVDF fiber. 
The samples were subjected to a temperature scan from 50 to 800 ◦C at 
30 ◦C/min under a nitrogen atmosphere with a 20 ml/min flow rate. The 
magnetic characteristics of the produced samples were measured at 
room temperature using a Lake Shore model 7410-VSM and a magnetic 
field of up to 2 T. The following dimensions were used to compress the 
produced fibers: 22.86 × 10.16 × 2 mm3. The X-band EM shielding 
properties of the produced samples were investigated using a Rohde & 
Schwarz (ZVA67-VNA) equipped underwent full 2–port calibration with 
a rectangular waveguide WR-90 to measure electrical and magnetic 
parameters (photo of the used setup is provided in the supplementary 
file (Fig. S1)). The real and imaginary components of the permittivity (ε) 
and permeability (μ) were computed using the Nicolson-Ross-Weir 
method, with the transmission/reflection line technique and the 
observed S-parameters. The expression of microwave absorption in the 
prepared samples, which protects against electromagnetic interference 
(EMI), is denoted by the reflection loss (RL). The RL, expressed in 
decibels (dB), was determined for all prepared samples using the 
following equation [44,45]: 

RL(dB) = 20log
⃒
⃒
⃒
⃒
(Zin/Zo) − 1
(Zin/Zo) + 1

⃒
⃒
⃒
⃒ (1) 

where Zin and Zo are the input impedance of EMI shielding material 
and the impedance of free space, respectively. The following equation 
can calculate the input impedance (Zin/ Zo): 

Zin/Zo =

̅̅̅̅̅
μr

εr

√ (

tanh
[

j
2πfd

c
̅̅̅̅̅̅̅̅μrεr

√
])

(2) 

where εr and μr are the complex permittivity and permeability of the 
material used as the absorber shield, respectively, and d is the prepared 
samples’ thickness (~2 mm). c is the velocity of light in air. 
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MCNP simulation 

Monte-Carlo for nature particles code MCNP5 (MC) was used to 
simulate the irradiation of the examined polymer samples with a mono- 
energetic point source in the energy range of 0.015–––15 MeV. It pro
motes the flow of electrons, neutrons, and gamma rays while taking into 
account the laws of physics interaction (photo-electric (PEE), Compton 
scattering (CSE), and pair formation processes (PPE))[46,47]. As seen in 
Fig. 1(a,b), MC input files need precise data (e.g., source dimensions, 
source-to-detector distance, geometry, elemental chemical composition, 
etc.). X(a,b)., All parameters have been taken into account by the 
experimental system. MC input files were created in text format[46,48]. 
The cell described six components: radioactive source, primary (gamma 
rays’ collimator, cubic sample, secondary (-rays collimator, and detector 
for both components in a Text format file. The radioactive source was 
positioned inside the back of a lead collimator of the primary γ-rays with 
a 0.14 cm radius and 0.3 cm height and positioned 15 cm away from the 
detector. A γ-rays point source was identified as an SDEF mono- 
energetic beam for each input file in the 0.015 – 15 MeV energy 

range. A neutron source was described as a californium watt fission 
spectrum in the energy range of 1–12 MeV for fast removal cross-section 
attenuation. The samples were created as a cubic layer positioned in the 
distance between the source and the detector. In addition, the elemental 
composition and densities of the studied samples were created in the 
material card of the text file. The detector was configured inside a lead 
collimator of the secondary γ-rays. The command tallies F4:P, and F4:N 
determines the average track length of the incident γ-rays and neutrons 
emitted from simulated gamma and neutron sources. An outer lead 
shield surrounded the created (detector, source, collimators, and sam
ples). All the calculations are carried out on a core i5–2.3 GHz processor 
with several histories of NPS (107(for each file to achieve random sta
tistical errors of better than (1 %). 

Phy-X/PSD software 

The Phy-X/PSD software (PhX) is an online program that computes 
numerous variables related to the shielding and attenuation for the 
studied material compositions, dosimetry[49,50]. Many calculations 

Fig. 1. (a,b): (a) 2D view and (b) 3D dynamic view of the used radiation attenuation simulation system for the [XPbO:(45-X)B2O3] polymer samples.  

Fig. 2. XRD characteristics of PVDF fiber and BHF–PVDF composite fiber.  
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were performed using the PhX input file, including those for the linear 
attenuation coefficients (µ), the mass attenuation coefficients (µm), 
[51,52]. Also, the obtained results from PhX were used to be compared 
with the results obtained from MC to calculate the relative differences 
(Diff., %) as follows[53,54]: 

Diff .(%)|
MCNP5 − Phy − X

MCNP5
| × 100 (1)  

Results and discussions 

XRD discussion 

The composite material has been verified to contain both PVDF and 
BHF phases through XRD analysis, as shown in Fig. 2. The confirmation 
of BHF phase formation with space group (P63/mmc) in all samples 
under investigation was established through reference to the BHF 
database (ICDD cards no. 00–027–1029 and 00–007–0276) [55,56]. The 
primary peaks of BHF are observed at (110), (107), (114), (203), 
(205), (206), (217), and (2011), with corresponding 2θ (2Theta) 
values of approximately 30.5◦, 32◦, 34◦, 37◦, 40◦, 55◦, 56◦, and 63◦, 
respectively. The potential of PVDF is becoming increasingly attractive 
due to the high electrical activity of both β and γ–phases [55]. However, 
it is noteworthy that solely γ and α exhibit additional peaks at approx
imately 17.7◦, as depicted in the BHF–PVDF fiber specimen, rendering 
them readily distinguishable from the β–phase. The β–phase exhibits a 
distinct peak at approximately 2θ≈ 20◦, as evidenced by the two pre
pared samples. The XRD outcomes may cause ambiguity distinguishing 
between the α and γ–phases. At the same time, the FTIR findings (which 
will be elaborated on subsequently) can differentiate between the α and 
γ–phases. Consequently, the simultaneous utilization of both method
ologies would enable a precise differentiation among the primary stages 
(the exact phases) of PVDF [29,30,55]. The PVDF fiber specimen 
exhibited additional β and α–phases at 36◦ and 40◦, respectively. These 
phases were not observed in the BHF–PVDF fiber specimen. This 
occurrence can be attributed to the prevalence and existence of high
–intensity peaks originating from BHF [57,58]. Also, we can conclude 

from the XRD results that the β–phase is the most dominant phase in the 
prepared samples, and as evidenced by prior research [59–61], PVDF 
fibers fabricated through the electrospinning methodology exhibit a 
preference for the β–phase, attributed to the significant mechanical 
elongation and high electrical field inherent in this procedure. It is worth 
mentioning that XRD analysis of the pure BHF powder is provided in the 
supplementary file (Fig. S2). 

FTIR discussion 

Fig. 3 displays the FTIR transmission spectra of the prepared sam
ples, covering the range from 4000 to 400 cm− 1. The spectral feature 
observed at approximately 3440 cm− 1 is attributed to the vibrational 
mode associated with stretching O–H bonds in water molecules that are 
adsorbed onto the surface of PVDF [62]. The spectral peaks observed at 
2924 and 2854 cm− 1 are ascribed to the symmetric and asymmetric 
stretching vibrations of PVDF’s carbon–hydrogen (C–H) bonds [62]. The 
1417 and 1076 cm− 1 spectral peaks correlate with the CH2 wagging 
deformation [63]. The spectral peaks detected at 1417 and 1182 cm− 1 

correspond to the –CF2– and –C–F–functional groups, respectively [57]. 
The spectral samples exhibiting bands at approximately 1417, 1280, and 
840 cm− 1 indicate the β–crystalline phases. The bands observed around 
1182, 881, and 840 cm− 1 are attributed to the γ–phase, as previously 
reported in the literature [17,64]. The findings validate the presence of γ 
and β–phases in the prepared samples, and the β–phase is more domi
nant, as shown in the XRD results. The potential utility of the β–phase in 
EMSAs has been attributed to the non–zero dipole moment in the 
polymer chain [4]. The peaks observed at 597 and 440 cm− 1 indicate the 
metal–oxygen stretching vibration of BHF, as reported in the literature 
[65]. And based on the absorbance values obtained from the FTIR 
measurements, the proportion of the β-phase among the crystalline re
gion (Fβ) can be quantitatively calculated using the equation presented 
by Gregorio & Cestari [41,66]. Fβ is found to be 43.51% and 43.67 for 
PVDF fiber and BHF-PVDF fiber, respectively. From the results of Fβ, it 
seems that the β-phase fraction content remains almost constant in PVDF 
and BHF-PVDF fiber. The inclusion of BHF has no impact on the β-phase 

Fig. 3. FTIR spectra of PVDF fiber and BHF–PVDF composite fiber.  
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Fig. 4. SEM and average fibers diameter of PVDF fiber and BHF–PVDF composite fiber.  
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fraction, which can be attributed to the higher concentration of PVDF 
(70 wt%) compared to BHF (30 wt%). Therefore there is no ionic 
interaction between the PVDF and the BHF to produce a β-phase of 
PVDF. 

SEM discussion 

Fig. 4 provides the SEM images of both PVDF fibers and the 
BHF–PVDF composite fibers. The images successfully showcase the re
sults of the needles–based electrospinning technique used to fabricate 

Fig. 5. TGA analysis of PVDF fiber and BHF–PVDF composite fiber.  

Fig. 6. VSM results of PVDF fiber and BHF–PVDF composite fiber.  
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these fibers. The technique has created fine, uniform fibers with the BHF 
particles evenly dispersed throughout the PVDF matrix, crucial for 
achieving the targeted magnetic properties. The PVDF fibers have an 
average diameter of approximately 0.56 μm. In contrast, the composite 
fibers show a slightly increased diameter, averaging 0.59 μm. This 6% 
increase in diameter can be attributed to integrating the BHF particles 
into the PVDF fibers, marking the successful creation of a composite 
material. 

Furthermore, the SEM images demonstrate the encapsulation of BHF 
particles within the PVDF matrix. The effective embedding of BHF 
particles, a ferromagnetic material, within the PVDF fibers is expected to 
significantly impact the composite’s magnetic properties. As revealed in 
the SEM images, the uniform dispersion of these particles implies an 
even distribution of magnetic properties throughout the composite 
material, ensuring its consistent performance under a magnetic field 
[19,67]. Thus, these SEM findings confirm the successful synthesis of 
BHF–PVDF composite fibers and provide essential insights into the 
material’s morphology and potential magnetic behavior. 

TGA discussion 

The TGA was conducted to assess the thermal stability of the pre
pared samples. The TGA curves of the PVDF fiber and BHF–PVDF fiber 
are shown in Fig. 5. The PVDF fiber was subjected to two steps of 
degradation, the first at 230 ◦C to lose 5% of weight and the second at 
436.4 ◦C to lose 60% of weight, leaving a residual of 26.9% at 800 ◦C. 
The BHF–PVDF fiber deterioration began at 461 ◦C and reached a weight 
loss of 62% at 515 ◦C. The TGA results demonstrate that the creation of 
PVDF fiber, which is boosted again by the inclusion of BHF, increases the 
thermal stability of PVDF fiber [68]. It is worth mentioning that the TGA 
analysis of the pure BHF and PVDF powders is provided in the supple
mentary file (Fig. S3). 

VSM discussion 

Fig. 6 shows how the BHF powder and the BHF–PVDF fiber behave 
differently when exposed to a magnetic field at room temperature. The 
BHF powder is a ferromagnetic material because it has a saturation 
magnetization (Ms) of 58 ± 0.5 emu/g and a coercivity (Hc) of 0.39 ±

0.02 T. This shows that an external magnetic field aligns the magnetic 
dipoles in the BHF particles and makes them less likely to become 
magnetized again. 

Even though PVDF is not naturally magnetic, its hysteresis loops 
show that the BHF–PVDF composite has ferromagnetic properties. This 
event means that the BHF particles could cause magnetism in the PVDF 
matrix. The composite, on the other hand, has a lower saturation 
magnetization of 16 emu/g. This is likely because it has a nonmagnetic 
PVDF matrix and fewer magnetic BHF particles, which has a diluting 
effect. Still, the composite keeps the same coercivity value as the pure 
BHF particles. This shows that the BHF particles resist losing their 
magnetism, even when mixed with PVDF. BHF particles maintain their 
magnetic properties due to the inherent characteristics of BHF, like 
intrinsic magnetic nature, chemical stability, physical encapsulation, 
and high Curie temperature of BHF [21–26]. This is an excellent thing 
about the BHF–PVDF composite, making it even more likely to be used 
for EM shielding. Also, keeping a high Hc with decreasing Ms [69] when 
preparing composite fiber will lead to high anisotropy energy, 
enhancing the impedance matching and absorption of the studied 
sample [14,44]. 

EM properties discussion 

In the realm of microwave absorbers, both permittivity and perme
ability play integral roles in determining material behavior. The 
permittivity can be chiefly attributed to conductive and relaxation los
ses, encompassing polarization and electron hopping phenomena. On 
the other hand, permeability reflects a material’s magnetic response, 
often linked to magnetic dipoles and domain wall motion. The dipole 
and interfacial polarizations are of paramount significance, predomi
nantly shaping the microwave attributes. The former stems from func
tional groups exhibiting disparities in electronegativity, while the latter 
originates at heterojunction interfaces. 

Notably, imperfections, dislocations, and magnetic inhomogeneities 
augment the relaxation losses within these absorbers [70,71]. In Fig. 7, 
the real part of permittivity (εr) and permeability (μr) for both PVDF 
fiber and the BHF-PVDF composite fiber are presented in the frequency 
range from 8.2 to 12.4 GHz. The εr values for both materials are around 
2.5, exhibiting a frequency dispersion of approximately 2. This 

Fig. 7. Real part of permittivity and permeability of PVDF fiber and BHF–PVDF composite fiber.  
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dispersion suggests that the material’s response to the electric field 
component of the EM wave changes across the frequency range. The 
dispersion might be caused by factors such as the composite material’s 
interface polarization, the materials’ inherent dielectric properties, and 
the distribution of BHF particles in the PVDF matrix [72–74]. 

Interestingly, despite PVDF’s nonmagnetic nature, the BHF–PVDF 
composite fiber showcases a significant response to the electric field. 
This is likely due to the induction of magnetic properties in the PVDF 
matrix by the BHF particles. However, the μr for the BHF–PVDF com
posite fiber is around 1, affirming that PVDF does not exhibit magnetic 
properties. This value indicates that the magnetic field passes through 
the composite without substantial opposition, which is consistent with 
the nonmagnetic nature of the PVDF [75–77]. 

In this context, even though the composite’s saturation magnetiza
tion is lower than that of pure BHF particles, its permittivity and 
permeability values align well with desired properties for EM shielding 
materials. The balance between permittivity and permeability un
derscores the composite’s potential as an effective EM shield in the X- 
band frequency range. 

Fig. 8 illustrates the imaginary part of permittivity (εi) and perme
ability (μi), as well as the dielectric (tanδE) and magnetic (tanδM) losses 
for PVDF and the BHF–PVDF composite fiber across the frequency range 
from 8.2 to12.4 GHz. The BHF–PVDF composite exhibits an εi of around 
0.4, significantly less than the 0.8 observed for pure PVDF. This differ
ence reflects the impact of BHF particles on the complex permittivity of 
the composite, potentially reducing the capacity of the material to 
polarize in response to an applied electric field [55,75–77]. 

On the other hand, the BHF–PVDF composite fiber shows a μi of 
approximately 1, suggesting a discernible magnetic response induced by 
the BHF particles. This response is pivotal in establishing the 

composite’s interaction with the magnetic component of EM waves, 
ultimately contributing to its overall shielding effectiveness [14,44,78]. 

Examining the tanδE, the composite material’s value is around 0.4, 
double that of the PVDF fiber, which is 0.2. This higher dielectric loss 
indicates a more significant potential for the BHF–PVDF composite to 
attenuate EM waves through electric dipole relaxation. 

The tanδM for the composite is around 1, indicating that the 

Fig. 8. Imaginary part of permittivity (a), imaginary part of permeability (b), dielectric loss (c), and magnetic loss (d) of PVDF fiber and BHF–PVDF composite fiber.  

Fig. 9. Reflection loss (RL) of PVDF fiber and BHF–PVDF composite fiber.  
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BHF–PVDF composite fiber exhibits a robust magnetic relaxation. This, 
along with the observed dielectric loss, emphasizes the potential of the 
BHF–PVDF composite fiber for EMI shielding applications. The com
posite’s notable performance in managing electric and magnetic in
teractions could play a key role in preventing the propagation of EM 
waves, thereby enhancing its shielding performance [55,75–77]. It’s of 
significant scholarly interest to observe that both tanδE and tanδM 
manifest trends akin to those of εi [79] and μi, respectively. 

The absorptive capability of a material is a testament to its profi
ciency in assimilating electromagnetic waves. Conventionally, a 
Reflection Loss (RL) value less than − 10 dB signifies that the material 
can capture at least 90% of these waves. When these waves impinge 
upon the material’s surface, a portion penetrates its core while the 
remainder is reflected. In our research endeavors, the extent to which 
these waves infiltrate the material’s interior was quantified using 
impedance matching, as elucidated in Equations (1) and (2) [80,81]. 
Fig. 9 depicts the reflection loss (RL) for PVDF and BHF–PVDF composite 
fiber. The RL value emerges as a pivotal parameter in the discourse on 
materials suitable for EMSAs. Notably, diminished RL values indicate 
superior EM energy absorption and a consequential reduction in its 
reflection [79]. The RL of PVDF fiber is registered around − 5 dB, sug
gesting a considerable reflection of incident EM waves. Contrastingly, 
the BHF–PVDF composite fiber showcases a much lower RL. This pro
nounced reduction indicates that the composite absorbs incident EM 
wave energy more, bolstering its shielding capabilities. 

Moreover, it’s noteworthy that literature sources affirm the superior 

Table 1 
The linear attenuation coefficient (µ) was obtained using MCNP5 and Phy-X for 
the polymer samples.  

Energy, 
(MeV) 

The linear attenuation coefficient (µ, cm¡1) 
PVDF Fiber BHF-PVDF Fiber 
MCNP5 Phy- 

X 
Diff, 
(%) 

MCNP5 Phy-X Diff, 
(%) 

0.015  3.166  3.193  0.832 73.960 74.364  0.546 
0.03  0.651  0.665  2.175 11.215 11.292  0.686 
0.05  0.367  0.378  2.759 5.391 5.444  0.994 
0.08  0.292  0.298  1.999 1.999 2.036  1.829 
0.1  0.270  0.276  1.925 1.394 1.424  2.168 
0.2  0.216  0.220  1.697 0.712 0.729  2.378 
0.3  0.188  0.190  1.333 0.573 0.583  1.893 
0.4  0.169  0.170  0.975 0.503 0.509  1.355 
0.5  0.154  0.155  0.837 0.455 0.460  1.011 
0.6  0.142  0.144  0.818 0.420 0.423  0.825 
0.8  0.125  0.126  0.538 0.368 0.370  0.464 
1  0.112  0.113  1.391 0.327 0.332  1.331 
2  0.079  0.079  0.566 0.231 0.233  0.675 
3  0.063  0.064  0.529 0.189 0.190  0.618 
4  0.055  0.055  0.351 0.165 0.166  0.498 
5  0.049  0.049  0.284 0.150 0.151  0.404 
6  0.045  0.045  0.364 0.140 0.141  0.445 
8  0.040  0.040  0.180 0.128 0.128  0.355 
10  0.036  0.036  0.171 0.121 0.121  0.264 
15  0.032  0.032  0.102 0.113 0.113  0.158  

Fig. 10. (a-d) Influence of gamma-ray energy on linear attenuation coefficient obtained [a] From MC and Phy-X, and due to [b] Photo-electric,]c] Compton 
scattering, and [d] Pair production for the studied polymer samples vs. the photon energy. 
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RL performance of BHF–PVDF composite fiber compared to its fiber 
counterpart. This superiority can be ascribed to the inherent advantages 
of the fiber form, particularly the increased surface area that allows for 
more effective interactions with incident EM waves [44,78,82]. 

Interfacial polarization, a phenomenon occurring at the boundary 
between the PVDF matrix and the BHF particles, also plays a pivotal role 
in enhancing the RL of the composite fiber. This interfacial polarization 
disrupts the synchronization of the response to the incident EM waves, 
leading to an increase in energy absorption. 

In essence, Fig. 9 provides compelling evidence of the promising 
potential of BHF–PVDF composite fiber for EMSAs, as manifested by its 
significantly reduced RL, the advantages associated with its fibrous 
form, and the notable contribution of interfacial polarization. It is worth 
mentioning that the RL of BHF–PVDF composite fiber at different 
thicknesses was simulated by the Matlab program provided in the sup
plementary file (Fig. S4). 

Radiation shielding 

The linear attenuation coefficient (µ) values for the two polymer 
samples (PVDF and BHF-PVDF Fiber) within the energy range of 
0.015–––15 MeV were assessed using MCNP5 code and Phy-X software 
to assess the radiation attenuation characteristics. The relative differ
ence (Diff., %) between the results obtained from MCNP5 and Phy-X is 

listed in Table 1. The results showed good agreement with a maximum 
relative difference of 2.759 %. On the other hand, the linear attenuation 
coefficient (µ) of the two polymer samples decreases as the energy levels 
increase, a general trend observed across all materials. It is consistent 
with the behavior of radiation. This trend is particularly evident for the 
data where µ drops from 3.166 to 0.032 cm2.g− 1 for the PVDF sample 
and from 73.960 to 0.113 cm2.g− 1 for the PVDF and BHF-PVDF Fiber at 
photon energy range from 0.015 MeV to 15 MeV. 

On the other hand, Fig. 10(a) represents that there is a strong 
reduction in the µ values for all prepared samples due to PEE interaction, 
which has cross-section changes with E− 3.5

γ . Therefore, the interaction 
cross-section reduced strongly with the enrichment of photon values, 
which is associated with a similar reduction in the photon-electron in
teractions and µL values. The enrichment of the applied Eγ values be
tween 0.015 and 0.2 MeV causes a strong exponential decreasing trend 
from 3.166 to 0.216 cm2.g− 1 for the PVDF sample and from 73.960 to 
0.712 cm2.g− 1 for the PVDF and BHF-PVDF Fiber. Furthermore, the 
enrichment of Eγ values above 0.2 MeV causes an exponential decrease 
in the µ values in the Eγ interval of 0.3 to 4 MeV, as presented in Fig. 10 
(b). The exponential reduction is attributed to the CSE interaction with 
cross-section changes with E− 1

γ . This can be attributed to higher energy 
photons being less likely to interact with the atoms in the material due to 
their higher momentum[83]. Therefore, the probability of absorption 

Fig. 11. (a-c) (a) The half value layer (HVL), (b) the tenth value layer (TVL), and (c) the mean free path (MFP) for the studied polymer samples vs. the 
photon energy. 
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decreases associated with the increased probability of photons scat
tering with increasing energy. The enrichment in Eγ values was associ
ated with a smooth decrease in the cross-section with decreases in the 
number of photon-electron interactions followed by a smooth reduction 
in the µ values. Fig. 10(b) depicts a reduction in the µ values from 0.188 
to 0.055 cm2.g− 1 for the PVDF sample and from 0.572 to 0.165 cm2.g− 1 

for the PVDF and BHF-PVDF Fiber with raising the Eγ values between 
0.3 MeV and 4 MeV, respectively. Also, there is a little reduction due to 
the PPP interaction with cross-section changes with E2

γ . The µ drops from 
0.049 to 0.032 cm2.g− 1 for PVDF sample and from 0.150 to 0.113 cm2. 
g− 1 for the PVDF and BHF-PVDF Fiber with raising the Eγ values be
tween 5 MeV and 15 MeV as seen in Fig. 10(c). The µ values for the BHF- 
PVDF Fiber are the highest among the other materials, indicating that it 
is the most effective polymer material for attenuating radiation. 

Fig. 11(a) displays the fluctuation of the MFP vs. the photon energy 
for the chosen polymer samples. Based on the simulated µ values for a 
gamma-ray in the energy range of 0.015 – 15 MeV, the mean free path 
(MFP) of the examined materials was computed. Similar to the variance 
in µ values previously mentioned, the MFP values reflect an increasing 
trend, which varied from 0.316 to 31.027 cm2.g− 1 for the PVDF sample 
and from 0.014 to 8.828 cm2.g− 1 for the PVDF and BHF-PVDF Fiber. The 
BHF-PVDF Fiber may be better suited for radiation attenuation appli
cations due to the lowest values of the MFP. The HVL (HVL = ln(2)

μ ) and 

TVL (TVL = ln(10)
μ ) are commonly used to measure the effectiveness of 

radiation shielding[84]. These checks can also be used to estimate the 
shielding material’s thickness. Since radiation is attenuated as it travels 
through an increasingly small zone, radiation shielding efficacy im
proves with decreasing values of either parameter for a given photon 
energy. Typically, the HVL and TVL all go up and down in tandem. 
Fig. 11(b,c) presents the values of HVL and TVL. The HVL of the polymer 
samples increased as the values of µ decreased. Because of the opposite 
correlation between µ and HVL as well as TVL, the HVL values grew from 
0.219 to 21.506 cm2.g− 1 for the PVDF sample and from 0.009 to 6.119 
cm2.g− 1 for the PVDF and BHF-PVDF Fiber with raising the γe values 
from 0.015 MeV to 15 MeV, respectively as seen in Fig. 11b. The BHF- 
PVDF Fiber polymer sample has the lowest HVL values due to the high 
attenuation as well as the highest content of Ba and Fe. The fluctuations 
of TVL with photon energy are illustrated in Fig. 11c. The TVL values 
have the same trend as the HVL. The BHF-PVDF Fiber polymer sample 

has the lowest TVL values, indicating the high radiation shielding 
characteristics. 

The probability that neutrons will pass through a substance without 
reacting is shown by the FNRCS (

∑
R). PVDF and BHF-PVDF samples 

have FNRCS values of 0.105 and 0.259, respectively. Also, FNRCS have 
been compared with other samples that contained chromite, ferrite, 
magnetite, and barite[85], commercial attenuation glasses RS-253-G18, 
RS-360, and RS-520, as represented in Fig. 12 [85,86]. That comparison 
showed that the BHF-PVDF sample has higher FNRCS values than those 
compared. Therefore, we may deduce that polymer samples have better 
neutron attenuation properties. 

Conclusions 

This study has successfully synthesized and characterized an elec
trospun fiber composite of PVDF and BHF, demonstrating their potential 
for efficient EMSAs. XRD and FTIR analyses confirmed the successful 
incorporation of BHF particles into the PVDF matrix and the dominant 
presence of the β–phase of PVDF, known for its contribution to EMSE. 
The SEM analysis revealed the composite’s uniform fiber diameter dis
tribution, indicating the effective electrospinning process. The magne
tization loops further verified the ferromagnetic nature of the composite, 
with the BHF particles inducing ferromagnetism in the nonmagnetic 
PVDF matrix. Despite the composite’s lower Ms compared to pure BHF, 
its Hc remained the same, showcasing its strong resistance to demag
netization. The composite’s frequency–dependent permittivity and 
permeability showed notable dispersion, possibly due to interfacial po
larization and PVDF’s intrinsic nonmagnetic nature. The imaginary 
parts of permittivity and permeability, corresponding to dielectric and 
magnetic losses, also displayed unique characteristics. TGA results 
underscored the enhanced thermal stability of the composite, particu
larly with the inclusion of BHF, which commenced deterioration at 
higher temperatures compared to PVDF fiber alone. Lastly, regarding 
RL, the composite outperformed the pure PVDF fiber, particularly in the 
X-band range, further emphasizing its potential for EM shielding. The 
polymer samples PVDF and BHF–PVDF were assessed through the 
shielding qualities against gamma rays and neutrons of the synthesized 
polymer materials using the Monte Carlo simulation (MC) and Phy-X 
software in the gamma photon energy range of 0.015–15 MeV. Radia
tion shielding parameters, half value layer (HVL), tenth value layer 

Fig. 12. Comparison of The fast neutron removal cross-section (FNRCS) obtained from MCNP5 for the studied samples and commercial glasses used for shielding/ 
attenuation. 
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(TVL), mean free path (MFP) were calculated for the synthesized poly
mer samples. The µ values were varied from 3.166 to 0.032 cm2.g− 1 for 
the PVDF sample and from 73.960 to 0.113 cm2.g− 1 for the PVDF and 
BHF-PVDF Fiber at photon energy range from 0.015 MeV to 15 MeV. The 
BHF-PVDF Fiber polymer sample has the highest µ values and lowest 
HVL, TVL, and MFP values. Overall, this research offers valuable insights 
into the possibility of BHF–PVDF fiber composites in EMSAs, setting the 
stage for future studies to optimize these materials and broaden their 
applicability. 
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