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Abstract—This paper considers an optimal movement routing problem with constraints. One such
constraint is due to decomposing the original problem into a preliminary subproblem and a final sub-
problem; the tasks related to the preliminary problem must be executed before the tasks of the final
subproblem begin. In particular, this condition may arise in the tool control problem for thermal cut-
ting machines with computer numerical control (CNC): if there are long parts among workpieces, the
cutting process near a narrow material boundary should start with these workpieces since such parts
are subject to thermal deformations, which may potentially cause rejects. The problem statement
under consideration involves two zones for part processing. The aggregate routing process in the orig-
inal problem includes a starting point, a route (a permutation of indices), and a particular track con-
sistent with the route and the starting point. Each of the subproblems has specific precedence condi-
tions, and the travel cost functions forming the additive criterion may depend on the list of pending
tasks. A special two-stage procedure is introduced to apply dynamic programming as a solution
method. The structure of the optimal solution is established and an algorithm based on this structure
is developed. The algorithm is implemented on a personal computer and a computational experiment
is carried out.
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1. INTRODUCTION
In applied problems, it is often necessary to choose the sequence of certain tasks under various con-

straints. As a result, substantial differences arise even when formulating these problems compared to the
natural prototype, the traveling salesman problem (TSP); [1–7] and other publications. Several circum-
stances, including the presence of constraints, required a special theory for solving applications-oriented
routing problems. For example, we refer to [8–10].

As it turned out [8, Section 4.9], the precedence conditions, natural for engineering applications, can
serve for reducing computational complexity; this fact was established theoretically. In addition, the main
constraint in this paper (also, see [11, 12]) works “positively” as well. This can be observed, e.g., from the
results of [11, Section 10].

We mean the problem statement in which the entire set of tasks for sequential execution is divided into
two (disjunctive) subsets: the execution of tasks belonging to the second subset can be started only after
completing all the tasks from the first subset. (Note that this problem may have specific precedence con-
ditions and the travel cost functions forming the additive criterion may depend on the list of pending
tasks.) Such a situation occurs in the shaped thermal cutting of parts on CNC machines. The matter con-
cerns the possibility of effective heat rejection, which is motivated by thermal deformation considerations.
(More details can be found in [10, Section 1.3], including the rules of part stiffness and sheet stiffness.)
These considerations particularly lead to the idea of zone cutting ([10, Section 1.3.3]); in connection with
the implementation of this idea, we note the constructs [12, Section 12] on a multistage modification of
the dynamic programming-based procedure.
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Omitting the details (see [10, Ch. 1]), we discuss one typical case of two zones. Consider the pre-cut-
ting of long parts (see [11, Section 10]); these are parts with one of the dimensions exceeding at least
10 times another [10, p. 46]. Such workpieces are subjected to maximum thermal deformation. Therefore,
if the workpieces are near a narrow material boundary, the cutting process should be started with them: in
this case, there will be quite “a lot” of solid metal near the tool cut-in and switch-out points. The natural
implementation of this principle is to form a zone that includes long (and perhaps some other) parts. This
zone should be associated with the preliminary problem. The remaining parts form the second (final)
zone. Of course, this solution is the simplest only in terms of zone cutting, but we consider it in more
detail, continuing the constructs of [11, 12] and accompanying algorithmic design with theoretical justi-
fications. In particular, the framework presented in [11, 12] will be supplemented by some properties of
the preliminary problem.

Note that the decomposition of the original problem into a set of two subproblems can be reduced to
imposing new precedence conditions. In this case, a “standard” optimal routing problem (in the sense of
[8, 13, 14]) arises, which has a well-known structure of the optimal solution. However, in problems of
appreciable dimension, one faces difficulties with computational implementation, quite understandable
due to the NP-hardness of TSP. The decomposition approach [11, 12] allows overcoming these difficulties
to a large extent without losing optimality; see the results of the computational experiment in [11, 12].
Hence, it is reasonable to study the decomposition approach in detail, especially in view of publications
on shaped sheet cutting on CNC machines (in particular, see [10, 15–18]). Here, we focus on the modi-
fication with the pre-cutting of long parts under the localized precedence conditions for the preliminary
and final subproblems.

2. GENERAL CONCEPTS AND NOTATIONS. PROBLEM STATEMENT

In the sequel, we use the following abbreviations: DP (dynamic programming), FS (feasible solution),
TSP (Traveling Salesman Problem), RP (routing process), and OP (ordered pair). The problems investi-
gated in this paper, traditionally regarded as intractable, require a thorough formalization for developing
optimal procedures. This is all the more essential under constraints that arise in engineering applications
and considerably complicate the problem statement compared to TSP-like problems, more traditional in
discrete optimization. Therefore, we summarize general definitions, including some results of set theory.
They are crucial for the correct formulation of the problem.

We use the conventional set-theoretic symbolism (quantifiers, connectives, etc.) and the notations ∅
(empty set) and  (equality by definition). A family is a set whose all elements are sets. As usual [19,
Ch. II, Section 2], the expression {a ∈ A | …} means the set of all elements a ∈ A with the property …; this
convention is widely used below.

Any two objects x and y are assigned an unordered pair {x; y} : {x; y}, i.e., a set containing x and y only.

An object z is assigned the singleton {z}  {z; z} containing z. A set is an object; therefore, following [19,

Ch. II, Section 3], any two objects u and  are assigned their OP (u, )  {{u}; {u; }} with the first u and
second  elements. If h is an OP, we denote by pr1(h) and pr2(h) the first and second elements of h, respec-

tively, h = (pr1(h), pr2(h)). Any three objects x, y, and z are assigned their (ordered) triplet (x, y, z)  ((x, y), z)
[20, Ch. 1, Section 3] with the first x, second y, and third z elements. Thus, strictly speaking [20, Ch. 1,
Section 3], an ordered triplet is defined as a special-form OP (a convention accepted in set
theory); sometimes, this will be utilized below.

We denote by (H) and '(H) the families of all and all non-empty subsets of an arbitrary set H,
respectively, and by Fin(H) the family of all non-empty finite subsets of H; Fin(H) ⊂ '(H). For a
finite set H, we have Fin(H) = '(H). If A, B, and C are three sets, then [20, Ch. 1, Section 3] A ×

B × C  (A × B) × C; therefore, for x ∈ A × B and y ∈ C, we have (x, y) ∈ A × B × C. For any non-empty
sets S and T, we denote by TS the set of all mappings (functions) from S into T (see [19, Ch. II, Section 6]);
the expressions h ∈ TS and h : S → T are identical. The value of a mapping at a certain point of the defi-
nitional domain (here, the set S) is denoted in a traditional way: for g ∈ TS and s ∈ S, we have g(s) ∈ T.
For non-empty sets S, T, and C ∈ '(S) and a mapping h ∈ TS,
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is the image of C under the action of h. We follow conventional notations for multivariate functions; note that
ψ(h, l) = ψ(pr1(h), pr2(h), l) ∈ Q is defined for non-empty sets S, T, P, and Q, a mapping ψ ∈ QS×T×P, and

points h ∈ S × T and l ∈ P. As Q, we often use   {ξ ∈  | 0  ξ}, where  stands for the real line. If H

is a non-empty set, then [H]  ( )H is the set of all nonnegative real-valued functions on H.

In the sequel,   {1; 2; …} ∈ ( ) and   {0} ∪  = {0; 1; 2; …} ∈ ( ); for K ∈ ( ) and
m ∈ , we have K  m  {k + m : k ∈ K} ∈ ( ). For p ∈  and q ∈ ,

(The case  = ∅ is not ruled out.) Note that  = ∅ and  = {k ∈  | k ≤ m} for m ∈ . For a non-
empty finite set K, |K| ∈  is the cardinality of K and  = {j ∈  |  j ≤ |K|} is a nonempty discrete interval
of . If m ∈ , then (bi)[ ] is the (non-empty) set of all permutations [21, Ch. 5] of the discrete interval

; for α ∈ (bi) [ ], α–1 ∈ (bi)[ ] is the permutation inverse to α:

Any mappings defined on finite subsets  are called tuples, according to the notion of an image of
non-empty subsets of the definitional domain. In particular, this applies to permutations. We often adopt
the index representation of mappings, particularly tuples (an indexed family; see [22, Сh. 1, Section 1]).
The symbols  and  indicate tuple gluing operations.

Following tradition in set theory [19], a set consisting of OPs is called a relation.

2.1. Problem Statement

In the sequel, X is a non-empty set, X0 ∈ Fin(X) is the set of possible starting points of the processes
under consideration, and n ∈ N, n  4; the sets

(2.1)

called megalopolises, and the relations

(2.2)

are fixed. For each j ∈ , the elements of the relation  are OPs, including the arrival point at the meg-
alopolis Mj and the departure point from Mj;  is the set of all OPs of this form. Concerning X0 and the
megalopolises (2.1), we assume that

(2.3)

Conditions (2.3) are typical for the routing problems discussed. As   {Mi :i ∈ } we obtain the fam-
ily of megalopolises of the original problem to be visited from some point of X0. Let  be implemented as
the sum of two non-empty subfamilies. To introduce them, we fix a number N ∈  and assume that

(2.4)

(The latter property in (2.4) can be easily verified in view of (2.3).) Each of the families (2.4) contains at
least two megalopolises. Defining the families (2.4), we consider the problem of visiting megalopolises
from  as the set of two interconnected subproblems: the problems of visiting megalopolises from  and

, respectively. In this regard, for j ∈ , we suppose that
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(see (2.2)). From (2.4) it follows that  = {M(j) : j ∈ }. Within this approach, let us accept an
appropriate convention: the precedence conditions, possibly present in the -problem, are localized in
the - and -problems. Taking these considerations into account, we introduce the sets

their elements (OPs) are called address pairs. In each such pair, the first element is called the sender and
the second one the recipient. From this point onwards, we assume that

(2.5)

Conditions (2.5) usually hold in practical problems; see the discussion in [8, Part 2]. For example, in
the case of sheet cutting, the following traditional requirement is reduced to this condition: if the part to
be cut has inner contours, they must be cut before the outer (enclosing) contour; see [8, Remark 2.2.1].

Remark 1. Introducing   {(pr1(z) + N, pr2(z) + N): z ∈ K2}, as K1 and  we obtain two subsets of
 × . It is possible to consider the case in which K1 ⊂  and  ⊂ , where  ⊂  × , and  ∈

(  × ) can be treated as the aggregate set of address pairs and used to define the aggregate prece-

dence conditions. If an OP  ∈  is such that   pr1( ) ∈  and   pr2( ) ∈ , under the
decomposition into the - and -problems, will automatically be visited before . (In other words,

no special consideration of  as an address pair is required.) If  ∈  has the property   pr1( ) ∈ 

and   pr2( ) ∈ , the problem with the precedence conditions defined through  will be infeasible
when solving the - and -problems sequentially. Therefore, within the problem statement with the
decomposition into the - and -problems, a natural case is  = K1 ∪ : no additional consideration
of the cross precedence conditions is required if the aggregate problem is feasible under this decomposi-
tion.

Let   (bi)[ ] and   (bi)[ ]; then, according to [8, formulas (2.1.5) and (2.2.53)], [10,
formula (4.4.6)], and (2.5),

(2.6)

(2.7)

Thus, under conditions (2.5), we have non-empty sets of precedence-feasible routes (index permuta-

tions) in the - and -problems. Now, let   (bi)[ ] (the set of all routes of the aggregate problem).
For α ∈  and (β ∈ , a (glued) route α  β ∈  is given by the rule

(2.8)

Here, the matter concerns gluing special-form permutations (shift gluing). Below we will introduce
another gluing operation, not for permutations but for fragments of tracks. For this reason, a different
notation will be used there. In (2.8), in particular, it is possible to use routes from the sets (2.6) and (2.7).
Considering this aspect, we obtain

(2.9)

The routes from P (2.9) are treated as feasible in the -problem (based on the sequential solution of
the - and -problems). Following [11, formulas (2.11)–(2.13)], we naturally arrive at the tracks
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ẑ K k̂
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described by [11, formula (2.14)]. To this end, let   (X × X . According to [11, formulas (2.11)–(2.13)],
for x ∈ X0 and γ ∈ P, the tracks of the bundle

(2.10)

start from the point x (in the notations of [11, 12], from (x, x); this difference is nonessential) and are con-
sistent with γ. In addition, for x ∈ X0,

(2.11)

is the set of all feasible solutions (FSs) in the -problem with the starting point x, i.e., feasible in the
( , x)-problem. Finally,

(2.12)

is the set of all FSs in the -problem, called routing processes (RPs). For substantive details, see [11, 12].
Following [11, formula (2.17)], for j ∈ , we introduce the sets

with the property  ⊂  × Mj ⊂ Mj × Mj], see (2.2). For j ∈ , it is obvious that

(2.13)

Here, the sets used in the final problem are simply renumbered. In view of (2.13), we also suppose [11,

formula (2.18)] that  is the union of all sets M(i), i ∈ . Finally, let   '( )] the sets from 
are called lists. Following [11, formula (2.19)], we have

(2.14)

Also, we fix the real-valued functions

(2.15)

Note in this regard that for γ ∈ P and τ ∈ , γ1( ) ∈  is an image of the discrete interval  under
the action of γ. The values of c serve to estimate external movements; the values of c1, …, cn, to estimate
internal work associated with visiting megalopolises; the values of f, to estimate the terminal state. One of
the arguments of the functions c, c1, …, cN is the list of pending tasks. This dependence may arise in the
sheet cutting problem when considering possible thermal deformations of the parts during cutting by
introducing penalties. Speaking about the general problem statement, we emphasize that the dependence
on the list of pending tasks may also arise for other reasons. (For example, in the sequential disassembly
of nuclear facilities in case of accidents, only those objects radiate that are not dismantled at the moment.)
Now, let us proceed to constructing the additive criterion. Following [11, formula (2.21)], for x ∈ X0, γ ∈ P, and
(zt  ∈ [x], we have

(2.16)

Of course, see (2.11), the value of (2.16) is defined for x ∈ X0 and (γ, (zt ) ∈ [x]. For x ∈ X0, we intro-
duce the ( , x)-problem

(2.17)
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Its optimum [x] ∈  and the non-empty set (sol)[x] of all its optimal solutions are given by

(2.18)

(2.19)

In (2.17), the total travel cost of external movements, internal works, and terminal state implementa-
tion is optimized; in the case of sheet cutting, these types of travel cost are associated with non-cutting
stroke, cutting in the operating mode, and, e.g., tool “parking,” respectively. In the simplest case, the
components mentioned can be characterized by the execution times of the corresponding operations.
Generally, we obtain a minimization problem for the additive criterion (2.16) in the class of FSs defined
each as a route-track OP; (2.19) is the set of all optimal route-track OPs in the mentioned sense. We admit
the possibility of varying x ∈ X0. As a consequence, the -problem (the original problem) arises:

(2.20)

Problem (2.20) is assigned the global optimum  and the non-empty set SOL of all optimal RPs:

(2.21)

(2.22)

(In (2.21), we take advantage of (2.12) and (2.18).) The elements of the set (2.22) represent optimal
RPs. They are triplets, in contrast to the elements of (2.19). With the dependence

(2.23)

we associate the starting point minimization problem:

(2.24)

In this problem, the criterion is given by (2.23) and the optimum coincides with  (see (2.21)); the
optimum set has the form

(2.25)

In (2.24), the starting point is optimized provided that, in the case of its particular choice, the FS (the
route-track OP) is also selected optimally. As a result, the global maximum is reached.

Proposition 1. If x ∈  and (γ, (zt , x) ∈ (sol)[x], then (γ, (zt , x) ∈ SOL.
The proof is obvious by combining (2.19), (2.22), and (2.25). Indeed, in (2.21), we sequentially reach

the minimum, first in the FS of the elements (2.11) under a fixed starting point and then in the starting
point itself (see (2.24) and (2.25)).

3. PRELIMINARY AND FINAL ROUTING PROBLEMS

As already noted, to solve problem (2.20), we actually decompose it into the set of the -and
-problems. This decomposition will be optimal in some sense: we find (2.21) and some RP from the

set (2.22). Let us discuss this optimal method (see [11, 12]) on a substantive level after formulating the par-
tial problems mentioned. The statement of the -problem depends on the set of parameters defined
when solving the -problem. For this reason, we first discuss the -problem (the upper-level problem
or the final problem). However, its statement incorporates an object related very simply to the -prob-
lem. We begin with this object, i.e., the set of starting points in the -problem. Letting
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we obtain \  ∈ '( ) by [8, formula (4.9.9), Proposition 4.9.3]. Then

(3.2)

is the set of all possible starting points of the -problem in which M(1), …, M(n–N) form the family of meg-
alopolises to be visited (see (2.14)).

The set X00 plays the role of “input variable” for the -problem. Right after obtaining X00 (3.2), this
problem is well defined in terms of the set of parameters. It is solved by determining the necessary frag-
ments (layers) of the Bellman function (the optimal solution of the -problem is postponed). As a
result, we find the value (optimum) function defined on X00. This function then determines the terminal
component of the additive criterion in the -problem, therefore representing the “output variable” for
the -problem. The -problem participates in constructing the criterion of the -problem (the pre-
liminary problem). Hence, it is possible to solve the -problem (the criterion is completely defined).
Now we construct the layers of the Bellman function of this problem and, in particular, the value function
defined on X0. According to [12], this is sufficient to find  and the optimal starting point. Next,
the -optimal FS is standardly built for this point and its f inish point is fixed. The -optimal
solution is then implemented from this point as a route-track OP and is subsequently glued with
the -optimal solution to form the optimal FS of the aggregate problem with a fixed starting point.
Complementing the component wise glued FS with the latter, we finally obtain the optimal RP. This is
the general scheme of the study, applied below. Now, let us recall some concepts related to the final prob-
lem.

For j ∈ , with the megalopolis M(j) we associate a relation  such that

(3.3)

(see (2.13)). The set  consists of all feasible routes in the -problem. Let *  (X × X ; for x ∈ X00

and β ∈ ,

(3.4)

is the bundle of tracks in the -problem that start from the point x and are consistent with β. From (2.13)
and (2.14) it follows that M(j) ⊂ X for j ∈ ; in addition, X00 ⊂ X due to (2.14) and (3.2). From (2.13),

(2.14), (3.3), and (3.4), we obtain pr1(zτ) ∈  and pr2(zτ) ∈ X for x ∈ X00, β ∈ , (zt  ∈ [x], and

τ ∈ . Therefore, see (2.13), c(pr2(zτ – 1), pr1(zτ), K) ∈  and cN + β(τ)(zτ, K) ∈ , where K ∈ ,

are defined for x ∈ X00, β ∈ , (zt  ∈ [x], and τ ∈ . In view of (3.4), for x ∈ X00,

(3.5)

is the set of all FSs in the ( , x)-problem, i.e., the -problem with the starting point x. Let * 
'( ) (the family of all non-empty subsets of ); for K ∈ *, we have the list

(3.6)

in the original problem. Obviously (see [11, formula (4.9)]), the value

(3.7)
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for x ∈ X00, β ∈ , and (zt  ∈ [x]. To derive expressions similar to [14, formula (3.16)] for these
values, we introduce a transformation of travel cost functions. To this end, we first define

(3.8)

with the properties * ⊂  and X* ⊂ X (i.e., consider (2.13), (2.14), and (3.2)). Then, we define c* ∈
[X* × * × *] by the rule

(3.9)
(see (2.15) and (3.6)). Formulas (3.8) and (3.9) determine the travel cost of external movements in the

-problem (see (3.7)). For j ∈ , we define  ∈ [  × *] by the rule

(3.10)

Formula (3.10) determines the travel cost of internal works in the -problem. Finally, the terminal
component of the additive criterion coincides with f (see (2.15)). Thus, (c*, , …, , f) is the tuple of
real-valued travel cost functions in the -problem. In this case, for x ∈ X00, β ∈ , and  ∈

[x], the expression (3.7) reduces to

(3.11)

thereby defining the additive criterion of the -problem. For x ∈ X00, we obtain the ( , x)-problem

(3.12)

with an optimum [x] ∈  and a (non-empty) set (sol)*[x] of all optimal solutions:

(3.13)

(3.14)

Formula (3.13) determines an important function [⋅] of the form

(3.15)

The expressions (3.14) and (3.15) can be treated as the resultants of the -problem. Using (3.15), we
construct the additive criterion of the -problem.

Let   (X × X ; for x ∈ X0 and α ∈ ,

(3.16)

is the bundle of tracks in the -problem that start from the point x and are consistent with the route α.
We introduce the sets

(3.17)

for which  ⊂  and  ⊂ X (see (2.14)). For x ∈ X0, we define the set of all FSs in the ( , x)-problem
(the -problem with the starting point x):

(3.18)
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Note a quite obvious and important property for “binding” the -problem to the -problem: if x ∈ X0,
α ∈ , and (zt  ∈ [x], then

(3.19)
(For details, see [11, Proposition 3.3].) Now we sequentially introduce the travel cost functions forming
the additive criterion in the -problem. We begin with the terminal component, actually identifying it
with the function *[⋅] (3.15). Precisely, assuming that  is the union of all sets Mi, i ∈ , we define

f ∈ [ ] by the rule

(3.20)

The second expression in (3.20) is insignificant; it ensures consistency with [14]. Let   '( ) (the
family of all non-empty subsets of ). In view of (2.15), we define  ∈ [  ×  × ] by the condi-
tions

(3.21)

For j ∈ , the function  ∈ [  × ] is given by the rule

(3.22)

Thus, formulas (3.20)–(3.22) determine the tuple (c, , …, , f) of the real-valued travel cost func-
tions in the -problem. For x ∈ X0, α ∈ , and (zt  ∈ [x], let (see (3.20)–(3.22))

(3.23)

these expressions take into account (3.19) and (3.20). For x ∈ X0, we define the ( , x)-problem as

(3.24)

with an optimum [x] and a (non-empty) set (sol [x] of all optimal solutions:

(3.25)

(3.26)

Then x  [x] : X0 →  is the value function [⋅] in the -problem, with the starting point as the
argument. For separate consideration, we take the problem

(3.27)

with an optimum  ∈  and a (non-empty) set  ∈ Fin(X0) of all optimal starting points:

(3.28)

(3.29)

Thus, we have two interconnected subproblems for the decomposition-based solution of the original
problem.
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4. SOLUTION STRUCTURE AT THE FUNCTIONAL LEVEL:
A SUBSTANTIVE DISCUSSION

This brief section outlines an optimal solution scheme for the (original) -problem corresponding to
the constructs of the previous two sections. We describe the logical chain only (in fact, an algorithm at the
functional level).

Stage 1. Using (3.2), determine the set X00 of possible starting points in the -problem.
Stage 2. Form the -problem as the system of the ( , x)-problems (3.12), where x ∈ X00; determine

the value function *[⋅] (3.15), used to construct the terminal component of the additive criterion in the
-problem (see (3.20)).
Stage 3. Form the -problem as the system of the ( , x)-problems (3.24), where x ∈ X0; determine

the value function [⋅] and the optimum  in Problem (3.27) and some (optimal) starting point x0 ∈
; also, determine the optimal solution of the ( , x0)-problem from the set (3.26), where x = x0, call-

ing it the -solution.
Stage 4. Choose the finish point x00 of the -solution, an element of X00 (see (3.19)), as the starting

point in the -problem. Then, construct the optimal solution of the ( , x00)-problem, thereby obtain-
ing the -solution.

Stage 5. Glue the - and -solutions (separately their routes and tracks), thereby obtaining the
optimal RP with x0.

We emphasize the equality  =  which was established in [11, 12]. It serves for implementing  eas-
ily when seeking the global optimum and the optimal starting point only (i.e., if the optimal RP itself is
not so important). In this case, Stages 1 and 2 are retained, and Stage 3 is reduced to finding the value
function [⋅]. (Minimizing this function on X0 gives the required value  and the starting point imple-
menting it.)

Note that the broadly understood DP is the apparatus to implement Stages 1–4.
Let us introduce the natural gluing procedure for tracks. This procedure differs from permutation glu-

ing: it operates tracks, quite different objects. In this regard, we introduce a new designation. First, assume
that for z' ∈  and z'' ∈ *, the tuple z'  z'' ∈  is given by the rule

(4.1)

In particular, z' and z'' in (4.1) can be tracks. According to [11, Proposition 6.4], x ∈ X0 α ∈  β ∈ 

z' ∈ [x] z'' ∈ [pr2(z'(N))]

(4.2)

Obviously, see (3.19), pr2(zN) ∈ X00 for x ∈ X0, α ∈ , β ∈ , and (zt  ∈ [x]. In this context, we

also recall [11, Proposition 6.5]: if x ∈ X0, α ∈ , β ∈ , (zt  ∈ [x] and a tuple  ∈ * is
given by the rule

then

(4.3)

In view of (4.2) and (4.3), we establish the following result (see [12, Theorem 1]):

(4.4)
Note that (3.28) and [12, formula (6.12)] must be considered in (4.4). Let us present another result

concerning the logical chain (1)–(5).
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Proposition 2. Assume that x0 ∈ , (ξ, (yi ) ∈ (sol [x0], and (η,  ∈ (sol)*[pr2(yN)]. Then
the solution

(4.5)

is such that

(4.6)

Proposition 2 is proved in Appendix. In fact, it provides an explicit method for constructing the opti-
mal RP.

Really, let all conditions of Proposition 2 be true (those imposed on x0, (ξ, (yi ), and (η,
)). In this case, due to (2.12), (4.5), and x0 ∈ X0 (see (3.29)), we obtain

(4.7)

(a feasible RP with the property (4.6)). By (2.22) and (4.6), we have

(4.8)

i.e., the optimal RP has been built. Note also that [x0] =  due to (2.18), (2.21), and (4.4)–(4.6); con-
sequently, x0 ∈  (see (2.25)). In the next sections, we discuss the implementation of Stages 1–5 in the
light of (4.4) and (4.8).

In addition to the framework [11, 12], we mention several properties similar to the one of Proposition 2 in
terms of gluing constructs. These properties are important for the further application of DP.

Proposition 3. If x ∈ X0, (ξ, (yi ) ∈ [x], and (η, ) ∈ D*[pr2(yN)], then

In essential part, the proof is common to that of Proposition 2.

Corollary 1. If x ∈ X0, (x, (yi ) ∈ [x], and (η, ) ∈ (sol)*[pr2(yN)], then

Corollary 2. If x ∈ X0, (ξ, (yi ) ∈ (sol [x], and (η, ) ∈ (sol)*[pr2(yN)], then

Proposition 4.  = .
The proof of this result is given in Appendix. From (4.4) and Proposition 4 it follows that the resulting
-problem reproduces the most important elements of the original -problem: the global opti-

mum (2.21) and the optimal set (2.24). Note another useful property on the coincidence of value func-
tions, which is, however, not employed in further considerations.

Proposition 5. If x ∈ X0, then [x] = [x].
It is established by analogy with Proposition 4.

5. THE FINAL PROBLEM
This section discusses the exact implementation of Stages 1–5 using the broadly understood DP; see

[13, 14] and other publications. We begin with solving the -problem, following Stage 2 and adhering
to the algorithmic presentation similar to [13, 14]. The matter concerns constructing the layers of the Bell-
man function involving precedence conditions. Note that these constructs have been repeatedly used by
us before. Here, they are described in a fairly brief form with the necessary references. First of all, for
pending tasks from the list, we introduce the crossing-out operator I* acting in * by the rule: for K ∈ *

and Ξ*[K]  {z ∈ K2 | (pr1(z) ∈ K) & (pr2(z) ∈ K)}, the set I*(K) ∈ * is
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(5.1)
(The definition of I* (5.1) agrees with [8, formulas (2.2.27) and (2.2.28)].) The operator I* serves to deter-
mine substantial lists of pending tasks [13, 14]. Let

(5.2)

the sets representing elements of the family (5.2) are called substantial lists in the -problem. For s ∈
, let   {K ∈  | s = |K|}. Then  = { } (singleton) and, for   {pr1(z) : z ∈ K2},

In addition, for s ∈ , we have

(5.3)
(see [14, formula (4.6)]). Formula (5.3) defines the following recurrence procedure

(5.4)
A regular step of the procedure (5.4) is implemented using (5.3).

The sets , s ∈ , being available, we construct the layers of the state space, denoted by ,
, …, . Note that

(5.5)

where  is identified with the union of all sets M(j), j ∈ \ . In addition, let

(5.6)

Consider the construction of  for s ∈ . First, for each K ∈ , we sequentially construct

(i.e., implement the procedure (K) → [K] → [K]). Second, let

(5.7)

Each layer , j ∈ , is a non-empty set (see [8, Proposition 4.9.3]). Note an important prop-

erty [11, formula(5.5)] as follows: for s ∈ , (x, K) ∈ , j ∈ I*(K), and z ∈ .

(5.8)
(Also, see [8, Proposition 4.9.4].)

The next step is constructing the layers of the Bellman function: , , …, . We use the Bellman
equation (see [23, Theorem 5.1]) and the contractions of the resulting Bellman function to the layers of
the state space. These constructs can be reduced to the recurrence procedure

(5.9)

In this case,  ∈ [ ] is given by the rule

(5.10)
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In view of (5.8), a regular step of this procedure is implemented as follows: for s ∈ , we deter-
mine  ∈ [ ] based on  ∈ [ ] according to the rule [11, formula (5.6)], i.e.,

(5.11)

For the final function  ∈ [ ], we have

(5.12)

Remark 2. If *[⋅] needs to be determined without constructing the optimal routing process in the -
problem, the procedure (5.9) can be implemented with rewriting the layers. (Note the construct in [24]
for a somewhat different problem.) In this case, for s ∈ , computer’s memory contains the layer 
of the Bellman function; after determining , it is eliminated and replaced by the layer . If s ≤ N – 2,
then the layer  is used to construct . This simple circumstance follows directly from (5.11) and saves
memory resources; see [25].

After constructing , we proceed to solving the -problem using (5.12). So, we pass to Stage 3 and
determine the terminal component of the additive criterion based on (3.20).

6. THE PRELIMINARY PROBLEM

Let us find the function f through (3.20) and (5.12). (Now, it is substantial that

hence, f can be explicitly determined.) Further constructs are similar to those for the -problem and are
given in the short form. The matter concerns implementing DP in the spirit of [13, 14] (based on the con-
structs from [8, Section 4.9]).

We introduce the crossing-out operator  acting in : for K ∈  and

the set (K) is

(6.1)

Consider the construction of substantial lists of pending tasks in the -problem. Let

(6.2)

the sets representing elements of the family (6.2) are called substantial lists in the -problem. For s ∈
, let

Obviously,  = { } (singleton). For   {pr1{z) : z ∈ K1}, we have  = {{t}: t ∈ \ }. It is
evident that, for s ∈ .

(6.3)

Formula (6.3) defines the recurrence procedure

(6.4)

−1, Nn
*
sv +5 *

sD −1
*
sv +5 −1

*
sD

Δ
−∈ ∈

 = + + ∀ ∈ ( ) 1 1 2*( )
* * * *( , ) min min *( , pr ( ), ) ( , ) (pr ( ), \{ }) ( , ) .

js j s sj K z
x K x z K c z K z K j x K D

I
cv v

M

−*
Nnv +5 −* NDn

−= − ∀ ∈ 00**[ ] ( , 1, ) .NV x x N x Xn nv

V } 2

−1, 1N −1
*
sv

*
sv *

sv

*
sv +1

*
sv

−*
Nnv }1

Δ
−= − ∀ ∈ 00*( ) ( , 1, ) ;Nx x N x Xnf nv

} 2

I N N

ΔΞ = ∈ ∈ ∈1 1 2[ ] { | (pr ( ) ) & (pr ( ) )},K z z K z KK

I

Δ= ∈ Ξ2( ) \{pr ( ) : [ ]}.K K z z KI 

}1

Δ= ∈ ∀ ∈ ∈  ∈1 1 2{ | (pr ( ) ) (pr ( ) )};K z z K z KK G N

}1

1,N

Δ= ∈ ={ | | |}.s K s K G G

G
N 1,N 1K̂

Δ= G
1 1,N 1K̂

2,N

− = ∈ ∈1 { \{ } : , ( )}.s sK j K j KI  G G

−→ → →G G G  
1 1... .N N
AUTOMATION AND REMOTE CONTROL  Vol. 84  No. 5  2023



556 A. G. CHENTSOV, P. A. CHENTSOV
(A regular step of the procedure (6.4) is implemented using (6.3).) The sets , s ∈ , being available,
we construct the layers of the state space, denoted by , , …, . Letting

(6.5)

yields the extreme layers of the state space. If s ∈ , then for K ∈  we first sequentially determine

(6.6)

(i.e., implement the procedure (K) → (K) → [K]). The layer  is given by the rule

(6.7)

Thus, all layers , , …,  have been built. According to [8, Proposition 4.9.3], all these layers are
non-empty sets. Note that for s ∈ , (x, K) ∈ , j ∈ (K), and z ∈ ,

(6.8)
The construct (6.6)–(6.8) is used for obtaining the layers of the Bellman function: we sequentially

determine the functions  ∈ [ ],  ∈ [ ], …,  ∈ [ ], coinciding with the contractions of
the Bellman function to the layers of the state space. In addition,

(6.9)

If s ∈  and the function  has been built, then due to (6.8), the function  ∈ [ ] is such that

(6.10)

Thus, we have designed the following recursive procedure:

(6.11)
A regular step of the procedure (6.11) is described by (6.10). In addition,

(6.12)
This property follows from the fact that all functions in (6.11) are the contractions of the Bellman func-

tion; also, see (6.5). The function  being available, we determine (see (3.28) and (3.29))  and the
point from . In view of (3.28), (4.4), and (6.12), we have

(6.13)

whereas the point x0 ∈  (see (4.4), Proposition 4) is obtained from the following condition: the point
x0 ∈ X0 is such that

(6.14)
Formulas (6.13) and (6.14) yield the global optimum and the optimal starting point without construct-

ing the RP. Therefore, a considerable part of Stage 3 is implemented. Note that the logic of Remark 2 fully
applies to the procedure (6.11): the variant with overwriting the layers can be used to find  and x0. As a
matter of fact, we have the uniform glued procedure

(6.15)
where gluing is given by (6.9).
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Now let us construct the optimal RP under the assumption that all functions in (6.15) are available.
(In other words, the procedure (6.15) has been implemented with all these functions stored in computer’s
memory.) Following (3), we first determine the -solution. Well,  ∈  and x0 ∈  (see (6.13) and

(6.14)). Considering (4.4) and Proposition 4, let y0  (x0, x0); by the choice of x0,

(6.16)

(see (6.5)). From (6.10) and (6.14) it follows that

(6.17)

In view of (6.16) and (6.17), we choose ξ1 ∈ ( ) and y1 ∈  so that

(6.18)

The relations (6.8) and (6.16) imply (pr2(y1), \{ξ1}) ∈ . According to (6.10), we therefore have
the equality

(6.19)

Considering (6.19), we choose ξ2 ∈ ( \{ξ1}) and y2 ∈  so that

(6.20)

in this case, by (6.8), (pr2(y2), \{ξ1; ξ2}) ∈ . Due to (6.18) and (6.20), we have the equality

(6.21)

Remark 3. For N = 2, the optimality of the OP ((ξi , (yi ) in the ( , x0)-problem is easily
derived from (6.21).

In the general case N ≥ 2, the procedures similar to (6.18) and (6.20) should be continued until exhaust-
ing . As a result, we will construct the tuples ξ  (ξi  ∈  and (yi  ∈ [x0] with the property

(6.22)

Then, see (3.18), (ξ, ) ∈ [x0]. Furthermore, according to (3.25), (3.28), (4.4), and (6.22),

and consequently,  = [x0] =  = . From (3.26) we obtain the property

(6.23)

On the other hand, since [x0] = , from (3.29) it follows that x0 ∈ . Hence (see (6.23)),

(6.24)

Thus, the -solution (6.23) has been built and Stage 3 is complete.
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7. THE COMPOSITION SOLUTION OF THE AGGREGATE PROBLEM: 
THE OPTIMAL ROUTING PROCESS

This section finalizes Stages 4 and 5. Recall that pr2(yN) ∈ X00 by (3.19). In view of this fact, letting x00

pr2(yN) yields

(7.1)

Note that the functions , , …,  are known; also, we emphasize (5.12). Due to (7.1),

 ∈ X00 × X00. In addition, according to (5.6),

(7.2)
Considering (5.11) and (7.2), we obtain the equality

(7.3)

In view of (7.3), we choose η1 ∈ I*( ) and  ∈  so that

(7.4)

where (pr2( ), \{η1}) ∈  by (5.8). From (5.11) we obtain the equality

In view of this relation, we choose η2 ∈ I*( \{η1}) and  ∈  so that

(7.5)

where (pr2( ), \{η1; η2}) ∈  by (5.8). Note that conditions (7.4) and (7.5) imply

(7.6)

(Obviously, for n = N + 2, formula (7.6) ensures the optimality of the solution ( , ) in the

( , x00)-problem; there is an analogy with Remark 3.) In the general case N ∈ , the choice pro-
cedures (precisely, the ones for solving the local optimization problems) similar to (7.4) and (7.5) should

be continued until exhausting . As a result, we will construct the tuples η   ∈  and
 ∈ [x00] for which (see (5.12))

(7.7)

Then (η, ) ∈ D*[x00] (see (3.5)), and the relations (3.14) and (7.7) imply

(7.8)
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In view of (7.1) and (7.8), the natural property is

(7.9)

Considering (6.24) and (7.9) and Proposition 2, we obtain

and (see (4.6))  = . Due to (2.12), (3.29), and (6.24), the triplet

is the optimal RP, i.e., (4.8) holds. Thus, implementing the two-stage procedure

gives the optimal RP (4.8). In addition, x0 ∈  by Proposition 4, i.e., x0 is the optimal starting point in
the sense of (2.24).

8. A COMPUTATIONAL EXPERIMENT (THE PRE-CUTTING OF LONG PARTS)
We consider an illustrative example: the sheet cutting of parts on CNC machines. In this section, X =

[0, a] × [0, b], where a > 0 and b > 0 are two given values. By assumption, a cutting plan is specified for
the sheet X. There are n pairwise disjunct contours to be cut. Megapolises are assigned to contours accord-
ing to the standard rule: for each contour, an equidistant is specified, on which possible cut-in points and
the corresponding tool switch-off points are located. External movements (between megalopolises and
from the starting point to megalopolises) are performed in the non-cutting (idle) mode, i.e., “fast.” Move-
ments from a cut-in point to the starting point on a contour and, after the cut finish, to the tool switch-
off point are implemented in the operating (work stroke) mode, i.e., “slowly.” We optimize the total time,
excluding the cutting time of the contours, which is the same for all variants of solving the problem. How-
ever, we consider possible thermal deformations through penalties for violating the requirements for effi-
cient heat rejection; see [14, Sections 5, 6]. Such an approach leads (see [14, Section 6]) to the travel cost
functions that depend on the list of pending tasks.

The precedence conditions in the aggregate problem are determined by considerations related to the
nesting of contours and parts. For example, if a part has inner contours, they must be cut before an outer
contour; a similar requirement applies to the cutting of nested parts (see [10, Section 1.3.2]). Thus, the set

 of aggregate address pairs is defined (Remark 1). However, we suppose that the family  of megalop-
olises is divided into the disjunct sum of the subfamilies  and  (Section 2) provided that  includes
the megalopolises corresponding to the contours of long parts (Section 1). Note that there are other ways
to select contours for priority cutting; for example, see [10, Section 1.3.3]. By assumption, the constraint

 is reduced to a variant defined by the sets K1 and  of Remark 1, where  is due to a rational choice
of K2. These considerations can easily be implemented based on nesting rules (roughly speaking, using the
distribution over the volumetric parts and their contours). Of course, constructing  and  requires
preliminary work to implement the precedence conditions corresponding to the - and -problems.
Let this (rather uncomplicated) stage of the problem formulation be complete.

We allow the choice of different starting points in the interest of optimizing the additive criterion, spec-
ifying a required final set X0 only. As a rule, X0 is a subset of the boundary of the sheet X. This set is simul-
taneously the set of possible starting points in the -problem. The set X00, which plays the same role for
the -problem, is generated by the algorithm in Stage 1.

Computational experiment. The computations were performed on a personal computer with an
Intel i5-11300H processor, 8 GB RAM, and Windows 11 (64-bit) OS. The program was developed in the
C++ language with the MinGW compiler and the Qt interface library. Let us present the experimental
data: 42 contours, 24 parts, and 20 address pairs. (Due to limited space, we omit here the coordinates of
contour points, cut-in points, the starting points of contour cut, and tool switch-off points.) All contours
were divided into two clusters. The first included the contours of 7 long parts (19 contours); the second
one, the contours of 17 compact parts (23 contours). For the sake of simplicity, let X0 be a singleton cor-
responding to the origin of coordinates. The values of f correspond to the calculated non-cutting stroke
time when the tool returns to the origin (the more comprehensible case of the closed problem). In the
example, the thermal constraints described in [14, Sections 5, 6] were taken into account. The matter con-
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Fig. 1. The result yielded by the algorithm.
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cerns the formation of special cut completion domains with obtaining a threshold that characterizes the
share of solid metal in each such domain. Precisely, a cut completion domain has a length of 100 mm and
a width of 25 mm. The threshold for using the penalty is equal to 0.5 of the area of the cut completion
domain.

Figure 1 shows the placement of the parts to be cut on the sheet and the process track obtained during
the computational experiment. The rhombus at the origin of the coordinates is the starting and finishing
point. Square boxes are cut-in points. Crosses are tool switch-off points. The pluses on the contours are
the starting and finishing points of cutting. The non-cutting stroke track is a set of separate lines: the line
from the starting point to the cut-in point for the first contour, the lines from the tool switch-off point for
the previous contour to the cut-in point for the next contour, and the line from the tool switch-off point
for the last contour to the movement finish. The cutting track is a set of lines, each consisting of a line from
the cut-in point to the point where the contour begins to be cut, the contour itself, and the line from the
cut-out point to the tool switch-off point.

The statement of this particular problem was described in detail in [14, Sections 5, 6]; here, we briefly
recall the key aspects. As already noted, the total time is optimized (measured in seconds). All penalty
constants coincide with 1000000. The result obtained, a value of 97.724 for , is significantly less than
this constant. Hence, all heat rejection constraints were satisfied. (See the general considerations on this
topic at the beginning of the section.) The computing time was 7 min 8 s, which is quite acceptable from
the practical point of view; furthermore, 42 contours correspond to the problem of significant dimension.
We emphasize that for problems of smaller dimension, DP without decomposition requires significantly
higher time for computations: for N = 30 and |K| = 20, the computing time in [26, Section 5] was 51 min
58 s (the standard cutting version). Thus, the approach adopted in this paper considers technological con-
straints and can be used in applications.

Note finally that research related to sheet metal cutting on CNC machines was comprehensively sur-
veyed in [26, Introduction].

9. CONCLUSIONS
This paper has developed a method for solving an optimal routing problem with a dedicated system of

first-priority tasks. The study is based on decomposing the original problem into the preliminarily and
final optimal subproblems and using the broadly understood dynamic programming in each of them. This
approach allows solving routing problems of significant dimensions in a reasonable time. A possible appli-

V
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cation of the method is tool control during the shaped sheet cutting of parts with zoning on CNC
machines.

APPENDIX

Proof of Proposition 2. In view of (4.2),

Since  ∈ P, we obtain (4.5), i.e.,
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Hence, considering (A.2), we can write

(A.7)

where  = [x0] =  by the choice of (ξ, (yt ) and (3.26). Using (4.4) and (A.7), we derive
the chain of equalities

according to the definition of (ωt , the property (4.6) is the case, where (4.5) holds due to (A.1).

Proof of Proposition 4. Let  ∈ , i.e.,  ∈ X0 and [ ] =  (see (4.4)). Using (3.27), we choose
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