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It has been shown that while feature selection algorithms are able to distinguish between 
relevant and irrelevant features, they fail to differentiate between relevant and redundant and 
correlated features. To address this issue, we propose a highly effective approach, called Nested 
Ensemble Selection (NES), that is based on a combination of filter and wrapper methods. The 
proposed feature selection algorithm differs from the existing filter-wrapper hybrid methods in 
its simplicity and efficiency as well as precision. The new algorithm is able to separate the relevant 
variables from the irrelevant as well as the redundant and correlated features. Furthermore, 
we provide a robust heuristic for identifying the optimal number of selected features which 
remains one of the greatest challenges in feature selection. Numerical experiments on synthetic 
and real-life data demonstrate the effectiveness of the proposed method. The NES algorithm 
achieves perfect precision on the synthetic data and near optimal accuracy on the real-life 
data. The proposed method is compared against several popular algorithms including mRMR, 
Boruta, genetic, recursive feature elimination, Lasso, and Elastic Net. The results show that NES 
significantly outperforms the benchmarks algorithms especially on multi-class datasets.

1. Introduction

The aim of feature selection is to reduce the number of features under consideration. It can lead to better interpretability of the 
model, lower computational load, lower chance of overfitting, and enhanced model accuracy. Ideally, all possible feature subsets 
should be considered before choosing the best one. However, given 𝑛 features there are 2𝑛 possible subsets which becomes an 
intractable problem even for moderate values of 𝑛. Thus, there exist many heuristics that attempt to find the optimal subset without 
going through the exhaustive search. While some feature selection algorithms have shown good results, there remains a significant 
room for improvement.

It has been shown that feature selection algorithms can often differentiate between the relevant and irrelevant features. On the 
other hand, the algorithms fail to distinguish the relevant variables from the redundant and correlated variables [27]. To address 
this issue, we propose a two-step approach that combines filter and wrapper methods to achieve high precision with relatively 
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low computational complexity. The proposed method, called Nested Ensemble Selection (NES), can effectively separate the relevant 
features from all the rest including irrelevant, redundant, and correlated features. The results of numerical experiments show that 
the proposed algorithm correctly identifies all the relevant features in synthetic datasets. In addition, the algorithm achieves near 
optimal results on real-life data.

There exists a trade-off between the precision and speed of feature selection algorithms. While enlarging the search space of 
feature subsets increases the likelihood of finding the optimal subset, it requires longer computing times. To overcome this challenge, 
we leverage a key observation that it is possible to quickly separate the relevant features from the irrelevant ones using a filter 
approach. Filter approaches operate on small search spaces thereby providing a fast method for evaluating feature importances. 
However, filter methods are not effective at distinguishing between the relevant and redundant and correlated features. Therefore, in 
the second stage of our algorithm, we employ a wrapper method that searches through the space of all subsets of a fixed size. Since 
the wrapper method is applied on the filtered features the computing times are exponentially reduced compared to the original set 
of features. As a result, we obtain an algorithm that performs a detailed search but on a reduced subset of features.

One of the key issues in feature selection is determining the number of features to be selected. Although there exist several 
techniques that attempt to help choose the optimal number of features, it remains a largely open, and perhaps unanswerable, 
question [39]. Nevertheless, at least in the case of the datasets considered in our study, the proposed approach provides a robust 
heuristic for identifying the optimal number of features. In particular, we are able to definitively determine the optimal subset size 
by studying the plot of the out-of-bag accuracy. The key advantages of the proposed method are summarized below:

1. Achieves perfect precision in identifying the relevant features (Table 9).

2. Provides an effective mechanism for identifying the number of relevant features.

3. Applies to both binary and multi-class datasets.

The paper is structured as follows. In Section 2, we present a brief overview of the current literature related to feature selection. 
In Section 3, we provide the details of the proposed feature selection algorithm. In Section 4, we present the results of numerical 
experiments evaluating the performance of the proposed algorithm. Section 5 concludes the paper.

2. Literature

Feature selection is key component in data science and machine learning applications in multiple fields including gene expression 
[4], intrusion detection [25], internet of things [35], and others. Given its importance, there exist many algorithms for feature 
selection in the literature. The existing approaches can be grouped into three major categories: filter, wrapper, and embedded 
methods. Filter methods use a univariate metric such as mutual information [41] or 𝜒2 [26], while wrapper methods use a classifier 
to evaluate individual features. Embedded methods such as lasso perform automatic feature selection as part of the learning process.

A filter method based on neighborhood multi-granulation rough sets is proposed in [52] that uses a novel self-information 
measure for initial preprocessing followed by Fisher score to delete uncorrelated features. Another filter method called the Highest 
Wins was proposed in [33] for intrusion detection. The similarity between the expected and observed probabilities is quantified 
to generate feature scores in [47] which are used to evaluate feature importance. Normalized cross-covariance operator is used in 
[51] to measure nonlinear dependency between the dependent and independent variables. The maximum-relevance and minimum 
redundancy algorithm is an extension of the filter method which aims to maximize the mutual information a between feature 
subset and the dependent variable while minimizing the within-subset mutual information [37]. It has become one of the popular 
approaches in feature selection used both in academia [49] and industry [54]. The abundance of feature selection algorithms creates 
an issue for choosing the best approach. In [10], the authors compare 14 filter algorithms using 11 survival datasets and find that a 
simple variance based algorithm outperforms the more sophisticated techniques.

Support vector machines (SVM) are one of the popular base models for wrapper methods [6,19]. An alternative wrapper method 
based on XGBoost classifier was proposed in [5]. Similarly, the authors in [46] combine XGBoost together with random forest and 
SVM to develop a wrapper method that is successfully applied to meteorological data.

Recently it has become increasingly popular to use nature inspired optimization techniques such as black widow optimization 
[21], seagull optimization [14], dispersed foraging swarm optimization [22], and others to feature selection. Another popular tactic 
has been to combine several approaches into a single hybrid method [1]. A number of methods have been proposed that combine 
individual filter scores into a vector as a single meta-score [2,24]. The magnitude of the vector is used as a feature importance. 
In [15], the authors combine the ReliefF algorithm together with Principal Component Analysis to reduce dimensionality before 
applying the bagging classifier in network traffic data. The results show that feature selection can improve classification accuracy. A 
graph-theoretic method based on a two-step procedure that combines filter and wrapper methods was proposed in [13] to classify 
micro-array data. Beyond single-label learning feature selection has also been applied in other contexts such as multi-label, multi-

view, unsupervised, and label distribution learning [31,40,53,55].

The proposed feature selection algorithm differs from the existing filter-wrapper hybrid methods in its simplicity and effectiveness. 
The existing hybrid methods can be divided into 3 main categories: genetic, filter-driven, and fuzzy-based approaches. Genetic feature 
selection algorithms employ a heuristic to simultaneously optimize both filter and wrapper fitness functions [9,18,38]. Recent studies 
have tried to take this approach further by combining several genetic algorithms to search for the optimal feature subset [50]. While 
genetic algorithms can be appropriate in some cases, the added complexity of the algorithms does not justify the incremental 
2

improvements. In filter driven hybrid methods, innovative filter algorithms are utilized. The proposed filter algorithms employ new 
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Table 1

The hyperparameter settings of the ensemble classifiers.

Parameter Random Forest Extra-trees

Number of base trees 100 100

Max depth 2 None

Bootstrap Yes Yes

Split criterion Gini Gini

fitness functions to achieve more accurate selection [53]. Unfortunately, little theoretical justification is provided for the new fitness 
functions which raises the issue of reliability. Fuzzy-based hybrid algorithms attempt to apply the concepts of fuzzy logic to feature 
selection [3,48]. As with the previous approaches, the added complexity of the fuzzy-based methods does not justify the incremental 
improvements in performance.

3. Nested ensemble selection

The proposed algorithm is based on the key observation that it is often possible that a feature selection algorithm efficiently 
discards the irrelevant features using a filter method. Since the filter method is computationally fast, it allows to reduce the feature 
space in a short amount of time. Afterwards, it remains to discard the redundant and correlated features which are left undetected 
by the filter method. Thus, the proposed method consists of two main stages:

1. Apply ensemble-based filter method (Equation (1)) to obtain individual feature scores. Select the top 20 features based on the 
scores and thereby discard the majority of the irrelevant features.

2. Apply random forest-based backward sequential search method on the top 20 features until the stopping criterion is achieved to 
discard the remaining redundant and correlated features.

3.1. Ensemble tree models

Tree-based ensemble classifiers play a crucial role in the proposed feature selection algorithm. In particular, random forest and 
extra tree classifiers are used to evaluate individual feature importances during the filtering stage. Random forest is an ensemble 
classifier that consists of a collection of trees. Each tree is fitted on a bootstrap sample of the data. The final model is constructed 
by aggregating the predictions of all the base trees [11]. Extra-trees classifier differs from random forest in the way each base tree is 
built. When searching for the best split to separate the samples of a node, random splits are drawn for each randomly selected feature 
and the best split among those is chosen [16]. As with most ensemble methods, the goal is to reduce overfitting. The parameter 
settings of the classifiers used in our study are provided in Table 1.

3.2. Feature importance

Tree-based classifiers allow us to measure the reduction in impurity from splitting the data on a feature. We employ Gini index 
to calculate the impurity given by the following equation

𝐺 =
𝐾∑

𝑘=1
�̂�𝑚𝑘(1 − �̂�𝑚𝑘),

where �̂�𝑚𝑘 represents the proportion of training observations in the 𝑚th region that are from the 𝑘th class. Then feature importance 
is calculated as the total decrease in node impurity that results from splits over that variable, averaged over all trees in the ensemble 
[23]. The final feature score is obtained by taking the average of feature importances from random tree and extra tree classifiers:

𝑠(𝑓𝑘) =
1
2
(𝑟(𝑓𝑘) + 𝑒(𝑓𝑘)), (1)

where 𝑠(𝑓𝑘) is final the score of the 𝑘th feature, 𝑟(𝑓𝑘) and 𝑒(𝑓𝑘) is the reduction in node impurity based on random forest and 
extra-trees classifiers, respectively.

3.3. The algorithm

The proposed feature selection algorithm, called Nested Ensemble Selection (NES), is illustrated in Fig. 1. It consists of two main 
stages. In the first stage, we calculate feature importances using random forest and extra-trees classifiers as discussed in Section 3.2. 
The individual feature scores obtained in the first stage are used to filter the top 20 features to be used for further analysis in the 
next stage. It has been shown that the top features selected via individual feature scoring are likely to contain the relevant features. 
In addition to the relevant variables, the top 20 features are also likely to contain the redundant, correlated, and a few irrelevant 
features. Thus, the goal of the second stage of feature selection is to separate the relevant variables from the rest of the top 20 
3

features.
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Fig. 1. The Nested Ensemble Selection algorithm. First, the top 20 features are filtered using Equation (1). Then, sequential backward selection is applied based on 
RF until the stopping criterion.

Table 2

The details of the data used in the empirical testing.

Dataset Relevant Redundant Correlated Irrelevant Total Samples Target

ORAND 3 3 2 92 100 50 binary

ANDOR 4 4 2 90 100 50 binary

ADDER 3 3 2 92 100 50 4-class

LED-16 16 16 2 66 100 180 36-class

KDD na na na na 39 145,586 23-class

In the second stage, we perform a more detailed search among the top 20 features that are selected in the first stage. In particular, 
we perform a backward sequential feature selection. At each iteration, the least important feature is removed from the feature subset. 
The least important feature is determined based on the out-of-bag accuracy of random tree classifier. Concretely, for a given set of 
features of size 𝑛, we calculate the out-of-bag accuracy of a random forest classifier for all possible subsets of size 𝑛 − 1. The subset 
with the highest accuracy is chosen for the next iteration of the sequential search. The process is continued until only two features 
remain.

The heuristic for identifying the optimal size of the feature subset is based on the observation that there must be a significant 
reduction in classification accuracy whenever a relevant feature is removed from the dataset. Conversely, the classification accuracy 
should change little when an irrelevant or a redundant feature is removed from the subset. The use of backward elimination process 
provides an added robustness to the proposed approach as it is less likely to miss a relevant feature. Thus, the stopping criterion for 
the recursive feature elimination is given by a significant drop in the out-of-bag accuracy of a random forest classifier. We employ a 
visual approach to identify the optimal size of the feature subset. To this end, we consider the graph of the out-of-bag accuracy over 
the subset size obtained during the sequential search. The point of the sharpest decline in accuracy is considered as the size of the 
optimal subset. As demonstrated in the numerical experiments, the proposed approach produces consistent results with respect to 
different types of data. In each of the considered datasets, the graph of the out-of-bag accuracy shows a clear decline which indicates 
the stoppage of the backward elimination.

4. Numerical experiments

In this section, we test the performance of the proposed feature selection algorithm on several synthetic datasets with known 
relevant features and a real-life dataset. The results show that the NES algorithm correctly identifies all the relevant features in 
synthetic data. It also selects the top features in the real-life data that produce the same accuracy as the full set of features.

4.1. Data

We employ 4 synthetic datasets: ORAND, ANDOR, ADDER, and LED-16 that are described in [27]. Each dataset consists of 100 
features and contains different combinations of relevant, redundant, correlated, and irrelevant features. The use of synthetic data 
allows us to judge exactly the correctness of the selected features. In addition, we employ an intrusion detection dataset (KDD 99) 
4

based on a simulated military network environment [43]. The details of the datasets are presented in Table 2.
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The ORAND dataset contains three relevant features 𝑋1, 𝑋2, and 𝑋3. The target variable 𝑌 is calculated via the following formula:

𝑌 =𝑋1 ∧ (𝑋2 ∨𝑋3).

The ANDOR dataset contains four relevant features 𝑋1, 𝑋2, 𝑋3, and 𝑋4. The target variable 𝑌 is calculated via the following formula:

𝑌 = (𝑋1 ∧𝑋2) ∨ (𝑋3 ∧𝑋4).

The ADDER dataset has three inputs 𝑋1, 𝑋2, and 𝑋3 and produces two outputs 𝑌1 and 𝑌2. The outputs are calculated according to 
the following formulae:

𝑌1 =𝑋1 ⊕𝑋2 ⊕𝑋3

𝑌2 = (𝑋1 ∧𝑋2) ∨ (𝑋3 ∧ (𝑋1 ⊕𝑋2)).

By combining the values of 𝑌1 and 𝑌2 into a single target variable 𝑌 = (𝑌1, 𝑌2), we obtain a 4-class target variable: 𝑌 =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

The LED-16 dataset is based on the 16-segment display configuration (Fig. 6). which allows the display of all 26 letters of the 
English alphabet as well as all the digits 0-9. Each segment represents a binary feature: on/off. The target variable is the alpha-

numeric value displayed by the segments. The complete details of the synthetic datasets including the source code are available in 
[27,28].

4.2. Benchmarking

We benchmark NES against several popular feature selection algorithms: maximum relevance minimum redundancy algorithm 
(mRMR), Boruta, genetic feature selection, Lasso, Elastic Net, and recursive feature elimination (RFE). mRMR is a highly recognized 
algorithm that is used both in industry and academia [8,49]. It is a sequential forward feature selection algorithm. At each iteration, 
the feature with the highest relevance with respect to the target variable and the lowest redundancy with respect to the already chosen 
subset of features is selected. The relevance and redundancy can be computed using different metrics though mutual information is 
the most frequently used approach for categorical data. The implementation of the mRMR algorithm used in our study is obtained 
from [32].

The Boruta algorithm is a well-known wrapper method that compares the importance of the original features to the importance 
of shadow features [30,44]. The shadow features are defined as randomized copies of the original features. Features that have 
higher importance than the highest ranked shadow feature are selected. The selection process is repeated several times. The final 
determination of statistically significant features is made based on the binomial distribution of the hits. The implementation of the 
Boruta algorithm used in our study is obtained from [20].

Genetic algorithms represent stochastic optimization framework inspired by the processes in evolutionary biology and have 
gained a large attention in recent years [29,42,45]. Genetic feature selection algorithms often consist of 5 main stages - initialization, 
fitness assignment, selection, cross-over, and mutation. The last 4 stages are repeated several times to mimic evolutionary cycles. 
The appropriate implementation of the genetic algorithm using cross-validation is obtained from [12].

Recursive Feature Selection (RFE) is a popular technique for feature selection that iteratively ranks and selects the most important 
features. It starts with the set of all features and uses a chosen estimator to evaluate feature importance. The estimator is often chosen 
to be Support Vector Machines and feature importance is measured by the coefficient value in the estimated model [19]. The least 
important features are removed, and the model is retrained. The process continues until a specified number of features is selected.

Lasso is a well known regularization technique that is used in various machine learning models. In classification, it can be used 
to select relevant features and reduce model complexity by adding a penalty term to the logistic regression cost function [17]. The 
penalty term is the 𝐿1 norm (sum of absolute values) of the regression coefficients multiplied by a regularization parameter 𝜆. The 
𝐿1 norm encourages sparsity in the coefficient vector, which means it pushes the coefficients of irrelevant features towards zero, 
effectively performing feature selection.

Elastic Net is another commonly used regularization technique for feature selection [7]. It combines both 𝐿1 (Lasso) and 𝐿2
(Ridge) regularization penalties to address the limitations of each method and provide a more flexible approach to feature selection. 
It can handle situations where there are correlated features or when the number of features is larger than the number of samples.

4.3. Experimental setup

In the numerical experiments, the proposed NES algorithm is compared to the benchmark methods mRMR, Boruta, Genetic, RFE, 
Lasso, and Elastic Net. The benchmark methods are employed using mostly their default settings as per the original source. The 
details of the benchmark methods are provided in Table 3. The code for the numerical experiments is publicly available on GitHub 
[34], where more details regarding the settings are provided.

Each method is applied to the datasets in Table 2 and the optimal feature subsets are selected. In the case of the synthetic datasets, 
where the relevant features are known, the precision and recall are calculated directly based on the selected feature subsets. Precision 
is calculated as follows:
5

Precision = Relevant Selected
Total Selected

,
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Table 3

The source and the settings of the benchmark algorithms.

Algorithm Source Settings

NES Section 3 [34]

mRMR Mazzanti (2022) [32] default

Boruta Homola (2022) [20] default

Genetic Calzolari (2022) [12] default

RFE Scikit [36] LinearSVC, default

Lasso Scikit [36] LinearSVC, C=0.1, default

ElasticNet Scikit [36] LogisticRegression, C=0.2, l1_ratio=0.5

Fig. 2. The two-stage NES algorithm for ORAND dataset.

where Relevant Selected is the number of relevant features selected and Total Selected is the total number of features in the dataset. 
Note that the datasets contain a redundant copy of each relevant feature, so it is acceptable for an algorithm to select a redundant 
feature instead of the corresponding relevant feature. However, in case both the relevant feature and its redundant copy are selected, 
only the relevant is counted. Recall is calculated as follows:

Recall = Relevant Selected
Total Relevant

,

where Total Relevant is the total number for relevant features in the dataset.

The precision and recall score can be used to calculate the balanced F1-score given by the following equation:

F1-score = 2 ⋅ Precision ⋅Recall

Precision+ Recall
.

In case of KDD, the data is first split into train and test subsets. The train set is used to select the relevant features. Then, random 
forest classifier is trained using the selected features in the train set. Finally, the trained classifier is evaluated on the test set using 
the selected features. The precision, recall, and F1-score metrics are calculated based on the results of the test set.

4.4. Results

4.4.1. ORAND

We begin our discussion with results using the ORAND dataset. In applying the NES algorithm, first, we calculate the individual 
feature importances using random forest and extra-trees classifiers based on Equation (1). As shown in Fig. 2a, while the individual 
feature scores are able to distinguish between the relevant and the majority of the irrelevant variables, they fail to separate the 
relevant variables from redundant and correlated features. Thus, in the second stage of the selection process, we perform backward 
sequential feature selection using the top 20 features that are selected based on the individual scores in Fig. 2a. In particular, at each 
iteration, the least important feature - determined based on the out-of-bag accuracy of random tree classifier - is removed from the 
feature subset.

As shown in Fig. 2b, there is a sharp drop in accuracy between subset size 3 and 2. It indicates that 3 is the optimal size of the 
feature subset. Indeed, the ORAND dataset contains 3 relevant and 3 redundant variables (Table 2). Thus, the proposed approach is 
able to detect the correct size of the optimal subset. It remains to validate that NES selects the correct features in the optimal subset. 
To be sure, the proposed method selects two relevant variables 1 and 2 together with the redundant variable 6. However, variable 
6 corresponds to the relevant variable 3. Therefore, in fact, the NES algorithm correctly selects all three relevant variables in the 
dataset.

The comparison of the features selected by NES and those selected by the benchmark algorithms mRMR, Boruta, Genetic, RFE, 
Lasso, and Elastic Net is presented in Table 4. Note that both mRMR and RFE provide feature rankings. For instance, feature 3 is 
ranked second by mRMR. On the other hand, Boruta, Genetic, Lasso, and Elastic Net provide selected features in no particular order. 
As shown in Table 4, while mRMR, correctly ranks the relevant features at the top, it also assigns high ranking to several irrelevant, 
6

correlated, and redundant features. Similarly, Lasso and Elastic Net correctly identify the relevant features but also select irrelevant, 
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Table 4

Comparison of the selected features by NES and the benchmark 
algorithms on the ORAND dataset.

Algorithm Selected features

Relevant 1, 2, 3

NES 1, 2, 3

mRMR 1, 3, 2, 4, 42, 7, 8, 39, 94, 31

Boruta 1, 4, 7, 8

Genetic 4, 13, 24, 87

RFE 2, 15, 11, 1, 35, 4, 9, 29, 95, 54

Lasso 1, 2, 3, 4, 5, 6, 8, 24

ElasticNet 1, 2, 3, 4, 5, 6, 7, 8, 24, 42

Fig. 3. The two-stage NES algorithm for ANDOR dataset.

Table 5

Comparison of the selected features on the ANDOR dataset.

Algorithm Selected features

Relevant 1, 2, 3, 4

NES 1, 2, 3, 4

mRMR 9, 3, 1, 2, 50, 4, 52, 5, 10, 6

Boruta 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Genetic 3, 4, 50

RFE 9, 8, 20, 10, 5, 4, 2, 3, 7, 15

Lasso 1, 2, 3, 5, 6, 7, 8, 9, 10, 42, 50, 52

ElasticNet 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 42, 50, 52

correlated, and redundant features. The Boruta algorithm selects a limited number of features, but only one of the selected features 
is relevant. Similarly, the Genetic algorithm is able to identify only one of the relevant variables.

4.4.2. ANDOR

The feature scores for the ANDOR dataset are presented in Fig. 3a. It can be seen that the relevant features tend to score higher 
than the irrelevant features. However, the redundant and correlated feature scores are as high as the relevant features. Therefore, we 
select the top 20 features for downstream analysis.

The accuracy of subsets in the backward sequential search is presented in Fig. 3b. There is a sharp drop in accuracy between 
subset size 4 and 3. It indicates that the optimal size of feature subset is 4. Since there are in fact 4 relevant features in the ANDOR 
dataset, our approach correctly identifies the size of the optimal subset. Furthermore, the selected subset contains features 1, 2, 4 
and 7. The features 1, 2, and 4 are relevant. Feature 7 is a redundant feature which corresponds to the relevant feature 3. Thus, the 
proposed approach selects the correct features.

The comparison of the features selected by NES and those selected by the benchmark algorithms is presented in Table 5. We 
observe that none of the benchmark algorithms provide a prefect selection. While the mRMR and Boruta algorithms do select the 
relevant features, they also assign high ranking to several irrelevant, correlated, and redundant features. Similarly, Lasso and Elastic 
Net select the relevant but also several extra features. While RFE ranks the relevant features in the top 10, it fails to assign them the 
highest level of importance. The Genetic algorithm selects a small group of features and correctly identifies two relevant variables.

4.4.3. ADDER

The feature scores for the ADDER dataset are presented in Fig. 4a, where it can be seen that there is a significant difference 
between the relevant and irrelevant features. On the other hand, there is no difference between the relevant and redundant features. 
Moreover, the correlated features attain the highest scores. Therefore, a second stage of selection is required to separate the relevant 
7

variables from the redundant and correlated variables.
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Fig. 4. The two-stage NES algorithm for ADDER dataset.

Table 6

Comparison of the selected features on the ADDER 
dataset.

Algorithm Selected features

Relevant 1, 2, 3

NES 1, 2, 3

mRMR 7, 94, 77, 8, 31, 67, 1, 3, 2, 4

Boruta 1, 2, 3, 4, 5, 6, 7, 8

Genetic 4, 8, 17, 34, 78

RFE 6, 5, 4, 3, 1, 2, 14, 8, 86, 47

Lasso 1, 7, 8, 59, 77, 88, 98

ElasticNet 1, 4, 6, 7, 8, 85, 98

The second stage of feature selection is illustrated in Fig. 4b, where we observe a sharp drop in accuracy between subset size 3 and 
2 which implies that the optimal size of feature subset is 3. Indeed, the ADDER dataset contains 3 relevant variables. Furthermore, 
the optimal chosen subset of size 3 consists of the redundant features 4, 5, and 6 which correspond to the relevant features 1, 2, and 
3. Thus, the proposed NES algorithm selects all the correct features.

The comparison of the features selected by NES and those selected by the benchmark algorithms is presented in Table 6. As in the 
previous datasets, none of the benchmark algorithms provide a prefect selection. In particular, the mRMR algorithm ranks several 
irrelevant features ahead of the relevant variables, while Boruta selects all the redundant and correlated features together with the 
relevant variables. The Genetic algorithm selects a small group of features, but is able to identify only one relevant feature. RFE 
performs relatively well by ranking the relevant features at the top. Similarly, Elastic Net correctly identifies all the relevant features 
albeit with a few extra variables.

4.4.4. LED-16

The LED-16 dataset is significantly different from the previous datasets. In particular, it is a multi-class dataset with 32 different 
values of the target variable. It has 16 original features. The relevant features have different levels of relevance in that they affect 
different number of target values. The feature scores for the LED-16 dataset are presented in Fig. 5a, where it can be seen that the 
relevant features have significantly higher scores than the irrelevant features. However, the redundant and correlated features have 
high scores that are similar to the relevant features.

The results of the backward sequential feature selection are presented in Fig. 5b, where we observe a decrease in accuracy begin-

ning at subset size 10 which indicates the optimal subset size. In fact, there are 14 relevant variables, so our approach underestimated 
the true size of the optimal subset. On the other hand, all the features selected in the optimal subset of size 10 are relevant, i.e., no 
redundant, correlated, or irrelevant features are selected in the final subset. Finally, test results show that the accuracy of the selected 
subset (0.9417) is equal to the accuracy of the full feature set (0.9417). So while NES did not identify all the relevant variables, it 
selected the most relevant features.

The features selected in the optimal subset are presented in Fig. 6. It can be seen that all the high frequency display segments are 
selected by the NES algorithm. Note that A1 and A2 have identical activations, i.e., they light up simultaneously. Segments D1 and 
D2 also activate simultaneously except for a single character display. Thus, A1 and D1 are practically redundant features.

The comparison of the features selected by NES and those selected by the benchmark algorithms is presented in Table 7. The 
mRMR and Boruta algorithms rank all first 32 features equally at the top. In other words, while the algorithms separate the relevant 
features from the irrelevant features, they fail to distinguish the relevant features from the redundant and correlated features. The 
Genetic algorithm achieves high precision by selecting only 1 irrelevant variable, but at the same time it fails to identify 5 relevant 
features. Similarly, RFE performs well by achieving perfect precision. However, it is not able to capture 4 relevant variables. Lasso and 
Elastic Net achieve mixed results with moderate precision and recall. The results of the LED-16 dataset demonstrate the advantage 
8

of the NES algorithm in multi-class settings.
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Fig. 5. The two-stage NES algorithm for LED-16 dataset.

Fig. 6. The LED-16 display segments.

Table 7

Comparison of the selected features on the LED-16 dataset.

Algorithm Selected features

Relevant 2, 3, 4, 6-16

NES 2, 3, 4, 6-10, 12, 14

mRMR 1-32

Boruta 1-34

Genetic 2, 3, 6, 7, 9, 15, 20, 24, 26, 83

RFE 24, 20, 11, 14, 9, 17, 12, 19, 13, 18

Lasso 9, 10, 19, 21, 23, 24, 33, 34, 35, 55

ElasticNet 3, 5, 6, 7, 8, 9, 10, 23, 25, 26, 33, 34, 73

4.4.5. KDD

The final dataset used in our study is the well-known KDD dataset which simulates network intrusions in a military environment 
[43]. There are 39 features and 23 target classes. It is a highly imbalanced dataset that is heavily dominated by normal and neptune

classes. Class membership ranges from 2 (spy) to 87,832 (normal) instances. The dataset is split into train and test subsets (70/30). 
The train set is used to select the important features, while the test set is used to evaluate the accuracy of the trained classifier based 
on the selected features.

The feature scores for the KDD dataset are presented in Fig. 7a. It can be seen that while some features have high scores (27, 28, 
31, 32, 36, 37), other feature scores are nearly zero (1, 7, 9, 11, 14-20). The results of the backward sequential feature selection are 
presented in Fig. 7b, where we observe a decrease in accuracy beginning at subset size 7 which indicates the optimal subset size. 
The features selected in the optimal subset are: service, src_bytes, dst_host_count, dst_host_diff_srv_rate, dst_host_same_src_port_rate, 
dst_host_serror_rate, dst_host_rerror_rate.

Comparison of the features selected by NES and those selected by the benchmark algorithms together with the corresponding 
accuracy on the test set is presented in Table 8. The results show that the accuracy of the NES-selected subset (0.9983) is close to that 
of the full feature set (0.9989). For comparison, the accuracy of the top 10 features selected by mRMR is lower by 1.4% (0.9844). 
Similarly, the Genetic algorithm achieves lower accuracy than NES by 1.5%. While the Boruta algorithm achieves the same accuracy 
as NES, it selects almost the entire set of features which is not practical. Similarly, Lasso and Elastic Net achieve nearly the same 
accuracy as NES but using a large number of features. The results show that NES performs well on the KDD dataset. The 7 features 
9

selected by the NES algorithm achieve almost the same accuracy as the full feature set.
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Fig. 7. The two-stage NES algorithm for KDD dataset.

Table 8

Comparison of the accuracy of the selected features.

Algorithm Number of selected 
features

Accuracy

Full set 39 0.9989

NES 7 0.9983

mRMR 10 0.9844

Boruta 34 0.9983

Genetic 9 0.9834

Lasso 23 0.9985

ElasticNet 23 0.9985

4.5. Discussion

To evaluate the proposed NES algorithm, we conducted numerical experiments on 5 datasets. The proposed algorithm was 
benchmarked against several popular existing algorithms: mRMR, Boruta, Genetic, RFE, Lasso, and Elastic Net. The precision and 
recall of the features selection algorithms are presented in Table 9 and 10. The precision is calculated as the number of relevant 
variables selected divided by the total number of variables selected. The recall is calculated as the number of relevant variables 
selected divided by the total number of relevant variables.

As shown in Table 9, NES achieves perfect precision on all four synthetic datasets. In other words, NES does not select any 
extraneous features. It is a remarkable result given that the datasets also contain redundant and correlated features. Similarly, the 
proposed method achieves perfect recall on the ORAND, ANDOR, and ADDER datasets. In other words, NES is able to identify all the 
relevant features in the data. The results indicate that the proposed approach is particularly well suited for low dimensional target 
variables.

In the LED-16 dataset, NES selects 10 of the 14 relevant features (recall 0.71). On the other hand, the feature subset selected by 
the algorithm has the same test accuracy (0.9417) as the full features set (0.9417). So while NES does not capture all the relevant 
features it still achieves the same classification accuracy as the full feature set. Note that the algorithm did not select any extraneous 
variables (precision 1). As mentioned in the previous section, LED-16 dataset contains features of varying importance (Fig. 6a) so it 
is likely that the algorithm could not identify the feature with low importance.

In the last experiment, we employed the KDD dataset where the relevant features are unknown. Since the nature of the features 
is unknown, we rely on the test accuracy to evaluate the selected feature subset. As shown in Table 9, NES selected 7 features that 
produce test accuracy that is very close to that of the full feature set. The results show that the algorithm selected the optimal, or 
near optimal, subset of features.

Comparison of NES against the benchmark algorithms in Table 9 reveals that the greatest advantage of the proposed method is its 
precision. In particular, mRMR, Boruta, Lasso, and Elastic Net do not exceed precision level of 0.50 on any of the tested datasets. In 
other words, more than half of the selected features are extraneous. Similarly, the precision of the Genetic algorithm ranges between 
0.2 and 0.67. RFE is able to achieve relatively high precision albeit only on a single dataset. On the other hand, NES achieves perfect 
precision all four synthetic datasets. As shown in Table 10, the recall levels of NES, mRMR, and Boruta are near perfect, while the 
Genetic algorithm fails to recall more than half of the relevant features. The RFE, Lasso, and Elastic Net algorithms attain mixed 
recall levels.

The results of F1-score presented in Table 11 demonstrate the effectiveness of the NES algorithm. The proposed method achieves 
the highest F1-score on every dataset. Since F1-score is based on the combined values of precision and recall, it reflects the overall 
performance of the algorithms. We conclude that NES significantly outperforms all the benchmark methods.

It is important that a distinction is made between the existing and the proposed method. To be sure, there are significant 
differences between the proposed NES method and other current feature selection techniques. The distinction is two-fold. First, 
the proposed approach is algorithmically new in its simplicity and the use of double feature importance scoring which reduces 
10

the variance of the results. Unlike other ensemble methods that employ multi-stage processes to execute the algorithm, the NES 
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Table 9

The precision on the four synthetic datasets and accuracy on the KDD dataset of the features selection 
methods.

Dataset NES mRMR Boruta Genetic RFE Lasso ElasticNet

ORAND 1.0 0.3 0.25 0.25 0.20 0.38 0.30

ANDOR 1.0 0.4 0.4 0.67 0.40 0.33 0.31

ADDER 1.0 0.3 0.375 0.2 0.30 0.14 0.28

LED-16 1.0 0.44 0.41 0.6 0.90 0.50 0.46

KDD* 0.9983 0.9844 0.9983 0.9834

Table 10

The recall levels of the feature selection algorithms.

Dataset NES mRMR Boruta Genetic RFE Lasso ElasticNet

ORAND 1.0 1.0 0.33 0.33. 0.67 1.0 1.0

ANDOR 1.0 1.0 1.0 0.5 1.0 1.0 1.0

ADDER 1.0 1.0 1.0 0.33. 1.0 0.33 0.67

LED-16 0.71 1.0 1.0 0.43 0.64 0.36 0.43

Table 11

The F1-score of the feature selection algorithms.

Dataset NES mRMR Boruta Genetic RFE Lasso ElasticNet

ORAND 1.0 0.30 0.08 0.08 0.13 0.38 0.30

ANDOR 1.0 0.40 0.40 0.34 0.40 0.33 0.31

ADDER 1.0 0.30 0.38 0.07 0.30 0.04 0.19

LED 0.71 0.44 0.41 0.26 0.58 0.18 0.20

algorithm proposes an uncomplicated, two-stage algorithm that is easy to deploy. Furthermore, the balanced scoring system based 
on the reduction in impurity using the random forest and extra-trees classifiers provides a stable scoring mechanism. Second, the 
proposed algorithm is different in its superior performance. The empirical tests (Tables 9-11) demonstrate that the NES algorithm 
is significantly more accurate than the popular benchmark algorithms. It is particularly effective in discarding the redundant and 
correlated features.

5. Conclusion

In this paper, we proposed a novel ensemble-based feature selection algorithm called Nested Ensemble Selection (NES). The NES 
algorithm differs from the existing filter-wrapper methods in its simplicity and efficiency as well as near-perfect accuracy. Extensive 
empirical testing against several popular benchmark algorithms demonstrated the superiority of the proposed method, especially in 
multi-class datasets.

The proposed method was tested on 5 different datasets. The results showed that NES is capable of achieving outstanding and 
desirable results both in identifying the relevant features as well as classification accuracy (Tables 9 and 10). For comparison, NES 
was benchmarked against mRMR, Boruta, Genetic, RFE, Lasso, and Elastic Net algorithms and demonstrated vastly superior precision. 
In addition, NES provides a robust mechanism for determining the size of the optimal feature subset based on the graph of the test 
accuracy.

As a future research avenue, extending NES to regression problems can be explored. Since the main components of NES, namely 
random forest and extra-trees classifiers, do exist for regression tasks it would be logical to research this in the future. The filter-

wrapper technique can be used in other application where the complexity of the problem can be reduced.
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