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Abstract—The features of the structure and phase composition of corrosion-resistant austenitic chromium–
nickel steel (16.80 wt % Cr, 8.44 wt % Ni) subjected to carburizing in electron beam plasma at temperatures
of 350 and 500°C, frictional treatment with a sliding indenter, and a combination of frictional treatment and
plasma carburizing have been considered. It has been established that plasma carburizing results in the for-
mation of a modified surface layer consisting of carbon-saturated austenite and carbides (Cr23C6, Fe3C); in
this case, the formation of γC-phase occurs only at a temperature of 350°C. The depth of a modified layer
increases with an increase in the carburizing temperature. It has been shown that it is useful to perform com-
bined frictional treatment and plasma carburizing at a carburizing temperature of 350°C, since in this case
the deformation-induced structure formed as a result of frictional treatment is preserved, and the precipitated
carbides remain highly dispersed. In this case, frictional treatment should provide the formation of the deep-
est possible diffusion-active layer with a dispersed structure.

Keywords: corrosion-resistant austenitic steel, plasma carburizing, frictional treatment, structure, phase
composition
DOI: 10.1134/S0031918X23600483

INTRODUCTION

There are many ways to harden the surface of aus-
tenitic steels. Surface deformation treatments and var-
ious types of chemical surface modification are the
most widely used. Frictional treatment [1–8] can be
highlighted among the methods of strain hardening of
austenitic steels that are prone to adhesion upon con-
tact interaction. Together with efficient hardening, fric-
tional treatment of austenitic steels makes it possible to
obtain high-quality low-roughness surfaces with negli-
gible amount of material-continuity defects. In this
case, the depth of the hardened layer can reach 500 μm.
Among the known methods of chemical modification,
low-temperature (below 550°C) plasma surface treat-
ments are of great interest, in particular, plasma carbu-
rizing [9–16] and plasma nitriding [17–19]. These
plasma treatments make it possible to obtain austenite
in the steel structure supersaturated with carbon (γC)
or nitrogen (γN) with increased hardness, which con-
tributes to effective hardening and improving the ser-
vice characteristics of austenitic chromium–nickel
steels. However, as a rule, the depth of the hardened

layer does not exceed 100 μm. It should be noted that
plasma carburizing and nitriding are usually per-
formed using glow discharge facilities. However, there
are alternative ways to generate plasma. For example,
the use of low-energy electron beams [16, 17] makes it
possible to efficiently generate high-density plasma
(1010–1012 cm–3) and obtain a required temperature of
treated objects with no use of external heating, which
is a significant advantage.

The attention of researchers to combined treat-
ments including strain hardening and chemical modi-
fication of the steel surface has significantly increased
in recent years [20–29]. In particular, this makes it
possible to obtain a higher depth of hardening with a
higher quality of the hardened surface. For example,
the use of frictional treatment before plasma nitriding
makes it possible to reduce the roughness parameter
Ra of the formed surface of austenitic steel by several
times [26]. It should be emphasized that there is no
information in the literature on the use of combined
treatment of austenitic chromium–nickel steels,
which includes carburizing in electron beam plasma
with preliminary frictional treatment. Thus, the use of
496
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Table 1. Treatment modes of AISI 321 steel

Sample no. Treatment mode

1 Quenching (HT)

2 Plasma carburizing at T = 350°C (PC350)

3 Plasma carburizing at T = 500°C (PC500)

4 Frictional treatment (FT)

5 Frictional treatment + plasma carburizing 
at T = 350°C (CT350)

6 Frictional treatment + plasma carburizing 
at T = 500°C (CT500)

Fig. 1. The experimental setup for carburizing: (1) hollow
cathode, (2) hollow anode, (3) mesh of the plasma anode,
(4) samples, (5) isolated table, and (6) collector.
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Table 2. Plasma carburizing modes of AISI 321 steel (T is
the heating temperature, I2 is the beam current, U2 is the
accelerating voltage, Ji is the ion current density)

T, °C I2, А U2, V Ji, mA/cm2

350 2.9 200 3.4

500 4.3 310 5.0
this combined treatment is not only practically substan-
tiated, but is also of considerable scientific interest.

The aim of this work was to study the structure and
phase composition of austenitic AISI 321 steel sub-
jected to carburizing in electron beam plasma at tem-
peratures of 350 and 500°C, to frictional treatment
with a sliding indenter, and to combined frictional
treatment and plasma carburizing.

EXPERIMENTAL
The material under study was commercial corro-

sion-resistant austenitic AISI 321 steel with the following
chemical composition (wt %): 0.05 С, 16.80 Cr, 8.44 Ni,
0.33 Ti, 1.15 Mn, 0.67 Si, 0.26 Mo, 0.13 Co, 0.03 Nb,
0.31 Cu, 0.036 P, 0.005 S, and Fe for balance. The
studied samples of 40 × 25 × 10 mm were cut out from
sheet steel using electroerosive cutting on a FANUC
Robocut α-0iE machine. Before subsequent treatment,
the samples were subjected to quenching from 1100°C
with water cooling, mechanical grinding, and electro-
lytic polishing in sulfur-phosphorus electrolyte with
the composition 100 mL H2SO4 + 400 mL H3PO4 +
20 g CrO3. The prepared samples were subjected to
frictional treatment, plasma carburizing, or combined
treatments, as a result of which a set of studied samples
was obtained (Table 1).

Carburizing of samples was performed in argon–
acetylene (Ar + C2H2) plasma of a low-energy electron
beam. A two-stage source of a wide electron beam
(D = 100 mm) with a meshed plasma cathode was
used. Figure 1 shows the experimental setup for carbu-
rizing. At the initial stage, a glow discharge was ignited
in an argon atmosphere (30 cm3/min), then an accel-
erating voltage (U2) was applied between the mesh and
discharge chamber. A bias voltage (–350 V relative to
the discharge chamber) was applied to the table with
the samples, and the samples were subjected to ion
purification and heating for 30 min. Next, acetylene
(1.5 cm3/min) was let into the chamber and the beam
parameters were set (current I2, voltage U2), which
provided heating of the samples to the required tem-
perature (T = 350 and 500°C). The samples were held
in the steady state for 6 h. The main technological
parameters of carburizing are presented in Table 2.

The frictional treatment of samples was performed
using a laboratory setup in an oxidation-free argon-
flow medium with reciprocating sliding of a semi-
spherical indenter made of synthetic diamond with
semi-sphere radius R = 3 mm along the steel surface at
the average sliding speed V = 0.065 m/s under the load
P = 392 N and single scanning of the sample surface
with indenter displacement d = 0.1 mm for each dou-
ble pass.

The structure of AISI 321 steel after different treat-
ment modes was studied using a Tescan VEGA II
XMU scanning electron microscope (SEM). X-ray dif-
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
fraction (XRD) analysis was performed on a PANalyti-
cal Empyrean diffractometer in CuKα radiation. The
phase composition, angular position 2θ of lines, and
integral width B of lines were determined.
24  No. 5  2023
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Fig. 2. X-ray diffraction patterns of the surface of AISI 321 steel: (a) after quenching, after plasma carburizing at temperature T
of (b) 350 and (c) 500°C, (d) after surface frictional treatment, after frictional treatment and plasma carburizing at temperature
T of (e) 350 and (f) 500°C.
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RESULTS AND DISCUSSION

The microstructure of quenched AISI 321 steel is
fully austenitic with the titanium carbide TiC inclu-
sions [2, 7, 30, 31]. XRD analysis showed that there is
no α phase in the structure of quenched steel (Fig. 2а,
Table 3). After plasma carburizing at a temperature
Т = 350°C, a 25 μm-thick modified layer is formed on
the surface of AISI 321 steel, which is clearly seen on
the transverse section (Fig. 3a). The presence of this
layer is commonly related to the formation of carbon-
supersaturated austenite γC [11], which is confirmed

by the XRD data (Fig. 2b, Table 3). These data show
that after carburizing at Т = 350°C, the maxima of
austenite lines are shifted towards smaller diffraction
angles, i.e., the γC phase with an increased lattice

parameter aγ is formed. The determination of carbon

content XC in the γC phase using the dependence aγ =

a0 + 0.044XC [32] (where a0 = 3.607 Å, aγ = 3.668 Å)

resulted in XC = 1.39 wt %. Carburizing at Т = 350°C
PHYSICS OF META
also results in the formation of chromium carbide

Cr23C6. Precipitation of carbides leads to depletion of

neighboring austenite regions of carbon, which is con-

firmed by a weak peak of the γ phase in the diffraction

pattern (Fig. 2b). It is important to emphasize that the

precipitation of secondary phases in the AISI 321 steel

was previously observed upon chemical modification

of the surface with similar parameters (temperature

and holding time) [23, 28]. In particular, the forma-

tion of Cr–N and Fe–N chemical bonds after plasma

nitriding at Т = 350°C was shown for the first time in

[28] using X-ray photoelectron spectroscopy (XPS).

An increase in the plasma carburizing temperature

to T = 500°C results in a depth of the modified layer of

at least 45–50 μm due to enhanced diffusion of carbon

into the steel surface at a higher treatment temperature

(Fig. 3b); however, the layer is not as pronounced as

after carburizing at T = 350°C (Fig. 3a). A large num-

ber of dispersed particles are observed within this layer
LS AND METALLOGRAPHY  Vol. 124  No. 5  2023
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Fig. 3. SEM images of the structure of the surface layer of AISI 321 steel after plasma carburizing at temperature T of (a) 350 and
(b) 500°C Arrows “C” indicate carbides.
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(Fig. 3b), which, according to XRD, are chromium
carbide Cr23C6 and cementite Fe3C (Fig. 2c). The for-

mation of carbides leads to a shift of the maxima of the
austenite lines towards larger diffraction angles (Table 3)
and to a decrease in the carbon content in austenite, as
a result of which the γC phase is not formed. We note

that the integral width В(111)γ of the X-ray line of aus-

tenite increases with an increase in the plasma carbu-
rizing temperature. The increase in the line width is
caused by crystal lattice microdistortions, which can
be caused by both the increased carbon content in the
lattice and the growth in the density of crystal struc-
ture defects due to relaxation of thermal stresses by
deformation upon cooling after carburizing [30, 31].
An increase in the carburizing temperature leads to an
increase in thermal stresses; therefore, after carburiz-
ing at Т = 500°C, the width В(111)γ is slightly larger than
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1

Table 3. The volume contents Vα and Vγ of α and γ phases, d
width В of X-ray lines (111)γ and (110)α in the surface layer o

Note. The volume contents Vα and Vγ are given without taking into 

Treatment mode Vγ, vol % Vα, vol % 2θ

HT 100 –

PC350 100 –

PC500 100 –

FT 28 72

CT350 28 72

CT500 100 –
after carburizing at Т = 350°C (Table 3), even despite
the lower carbon content in austenite after carburizing
at Т = 500°C.

The frictional treatment results in the formation of
a 20–25 μm-thick deformed layer on the surface of
AISI 321 steel containing elongated crystals (Fig. 4).
At a depth of more than 25 μm, a structure of deformed
austenite is observed with a large number of slip bands
within the initial austenite grains (Fig. 4). According to
the data of X-ray diffraction analysis, frictional treat-
ment is accompanied by the formation of deformation-
induced martensite in the surface layer of the AISI 321
steel in the amount of Vα = 72 vol %, as well as a sharp

increase in the width В(111)γ from 16.0 to 100.7 min and

a shift of the maxima of austenite lines towards larger
diffraction angles as a result of an intensive deformation
effect on the treated surface (Fig. 2d, Table 3).
24  No. 5  2023

iffraction angle 2θ of X-ray lines (111)γ and (110)α, integral
f AISI 321 steel after different treatment modes

account the content of carbide phase.

(111)γ, deg 2θ(110)α, deg В(111)γ, min В(110)α, min

43.55 – 16.0 –

42.69 – 17.3 –

43.62 – 22.2 –

43.72 44.48 100.7 37.3

43.67 44.48 78.0 40.9

43.60 – 16.6 –
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Fig. 4. SEM images of the structure of the surface layer of AISI 321 steel after frictional treatment.
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The combined treatment, including frictional
treatment and plasma carburizing at a temperature of

Т = 350°C, is accompanied by the precipitation of dis-

persed particles in the surface layer of steel (Figs. 5a, 5b),
which are chromium carbide Cr23C6 (Fig. 2e). We note

that carbides are observed at a depth less than 25 μm,

i.e., the highest diffusion activity is exhibited by the

layer with a highly dispersed structure. Therefore, fric-
tional treatment should provide the formation of the

deepest possible diffusion-active layer. The amount of
the α phase after such a combined treatment does not

decrease and is preserved at a level of Vα = 72 vol %,

but the width В(110)α increases from 37.3 to 40.9 min

(see Table 3). Taking the defect structure of deforma-

tion-induced martensite into account, the indicated

increase in the width В(110)α can be due to the satura-

tion of the α phase with carbon in the course of carbu-
rizing. The width В(111)γ, on the contrary, decreased

from 100.7 to 78.0 min (Table 3), which may be due to
the recovery in cold-worked austenite when heating in

the course of carburizing.

The combined treatment including frictional treat-
ment and plasma carburizing at a temperature of Т =

500°C was accompanied by the precipitation of a

higher amount of larger particles in a 20–25 μm thick
layer; the number of these particles in the underlying

layers was considerably less (Figs. 5c, 5d). According
to the XRD analysis, these particles are chromium

carbide Cr23C6 and cementite Fe3C (Fig. 2f). In this

case, there is no α phase in the steel structure, and the

width В(111)γ sharply decreased from 78.0 to 16.6 min

and became almost equal to the width of the

quenched-steel line (Fig. 2f, Table 3), which indicates
that recrystallization occurred. We note that the com-

bined treatment does not significantly affect the posi-
PHYSICS OF META
tion of the maxima of the α-phase lines; the maxima
of the austenite lines shift towards smaller angles with
increasing carburizing temperature and come close to
the positions of the maxima of the quenched-steel
lines (Table 3) due to the recovery in cold-worked aus-
tenite and recrystallization.

CONCLUSIONS

The structure and phase composition of the auste-
nitic AISI 321 steel subjected to frictional treatment
and carburizing in electron beam plasma at tempera-
tures T = 350 and 500°C have been studied.

It has been established that plasma carburizing
results in the formation of a modified surface layer
consisting of the carbon-enhanced austenite and car-
bides. The phase composition after carburizing at T =
350 and 500°C can be determined as γC + γ + Cr23C6

and γ + Cr23C6 + Fe3C, respectively. The depth of the

modified layer grows with an increase in the carburiz-
ing temperature and is 25 μm at T = 350°C and no less
than 40–45 μm at T = 500°C.

Frictional treatment results in the formation of a
deformation-induced austenitic–martensitic struc-
ture in the surface layer of the AISI 321 steel. The
phase composition after the combined treatment
including frictional treatment and carburizing at T =
350 and 500°C can be determined as α' + γ + Cr23C6

and γ + Cr23C6 + Fe3C, respectively.

It has been shown that it is useful to perform the
combined frictional treatment and plasma carburizing
at a carburizing temperature Т = 350°C, since in this
case the deformation-induced structure formed as a
result of frictional treatment is preserved and the pre-
cipitated carbides remain highly dispersed. In this
LS AND METALLOGRAPHY  Vol. 124  No. 5  2023
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Fig. 5. SEM images of the structure of the surface layer of AISI 321 steel after frictional treatment and plasma carburizing at tem-
perature T of (a, b) 350 and (c, d) 500°C. Arrows “C” indicate carbides.
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case, frictional treatment should provide the forma-
tion of the deepest possible diffusion-active layer
with a dispersed structure.
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