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Abstract 
The article discusses Takens embedding for 2D and 3D visualization of 1D time series 

data. The paper considers the use of topological data analysis in conjunction with Takens 
embedding to analyze the output information of a dynamic system - a rigid body. 3D images 
of curves constructed from three components of the angular velocity vector of a rigid body for 
various values of the main moments of inertia are constructed. Three-dimensional images of 
the curves constructed on the basis of the Takens embedding for the component of the 
angular velocity of a rigid body for various values of the principal moments of inertia are 
constructed. Distances between 3D images of curves are determined by constructing 
persistent landscape functions. Using the method of topological data analysis in conjunction 
with Takens embedding for image comparison allows you to classify and identify images and 
output information of the instrumental composition.  

Keywords: topological data analysis, persistent homology, Takens embedding, rigid 
body dynamics. 

 

1. Introduction 
The article deals with Takens embedding for 2D and 3D visualization of 1D time series 

data. Topological data analysis (TDA) is a field of science in which the topological properties 
of data are analyzed. In recent years, interest has increased in the use of TDA methods [1, 2, 
3] and application in various fields of knowledge. TDA assumes that the data is in a form that 
can make a difference. Early contributions to the field of TDA were made by Edelsbrunner H. 
and Harer J. L. [1]. Zomorodian A. and Carlsson G. used the basis for the development of the 
TDA methodology: Persistent Homology [2, 3, 4]. The goal of TDA is to define informative 
topological properties and use them as descriptors. 

The key mathematical tool in topological data analysis is the persistent homology (PH) 
method [1, 4], which is used to extract topological information from data. Consider a way to 
form PH from data points in Euclidean space. The goal is to derive the topology from the final 
data. Consider r -balls (of radius r ) for topology reconstruction. It is expected that the r -ball 
model can represent the main topological structures. If r  is small, then the union of all r -
balls consists of non-intersecting r -balls. If the radii r  are too large, then the union becomes 
one spatial component. Persistent homology considers all values r  at the same time and 
provides an expression for topological properties. 

The TDA method can be used to extract knowledge from time series [5, 6, 7]. The states of 
dynamical systems change in time; in this case, time series are formed. The state of the 
system tx  at a point in time t  is a description of the system, and the evolution of the system 

in the state space is determined by the transition function  . Attractors determine the set of 
system states, to the points of which the trajectory is directed. n -dimensional manifold is a 
topological space M , for which each point x M  has a neighborhood homeomorphic to the 
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Euclidean space n
R . A smooth map 

1 2: M M → , where 
1M  and 

2M  are smooth manifolds, 

is an embedding of 
1M  in 

2M  if   is diffeomorphism from 
1M  to a smooth submanifold of 

2M ; then 
2M  is an embedding space with embedding dimension ( )2dim M . Takens 

embedding of coordinates [8] allows to transform a time series in a space of higher 
dimension, so that the topology of the original manifold that generates the values of the time 
series is preserved. The Takens method finds a function   that maps the manifold 

1M  into 

the manifold 
2M : 

1 2M M→ , where ( )2dim M  is the dimension of the embedding. 

Takens embedding allows you to transform time series data into meaningful point clouds 
to calculate persistent homology [8, 9, 10, 11]. In addition, the use of the sliding window 
method allows segmenting long time series into fragments, which makes topological features 
comparable within and between data sets. 

The Takens-embedded TDA method is widely used in chemistry and biological systems 
[12], signal theory [13], in the study of dynamic systems [14], etc. The use of the TDA method 
for comparing images [15, 16] makes it possible to classify and identify images (or signals of a 
different physical nature). 

In this paper, we consider the use of TDA together with the Takens embedding to analyze 
the output information of a dynamical system - a rigid body. 

Examples of rigid bodies are objects such as aircraft that contain control systems (eg, 
attitude control systems). The instrumental composition of control systems consists of 
sensitive elements and executive bodies. To measure the three components of the angular 
velocity vector of a rigid body, sensitive elements are usually used - angular velocity sensors 
(or a block of angular velocity sensors that generates information about the projections of the 
angular velocity vector of a rigid body on the axes of the main moments of inertia of a rigid 
body). 

3D images of curves constructed from three components of the angular velocity vector of 
a rigid body for various values of the main moments of inertia are constructed. 3D images of 
the curves built on the basis of the Takens embedding for the components of the angular 
velocity y  of a rigid body for various values of the main moments of inertia are constructed. 

Using the TDA method together with the Takens embedding to compare images (or signals of 
other physical nature) allows you to classify and identify information from sensors. 

2. Topological data analysis for time series analysis 
Geometry represented by data in metric space is not always up to date; sometimes more 

basic properties are of interest, such as the number of components, holes, or voids. Algebraic 
topology [17] fixes these properties by associating the vector spaces with them. The field 

coefficient homology assigns to a vector space ( )iH X  the space X  for each  0,1,2,...i  

such that ( )( )0dim H X  is the number of connected components in X , ( )( )1dim H X  is the 

number of holes in X , ( )( )2dim H X  is the number of voids in X  and ( )( )dim kH X  – the k

-th homology group in X  describes k -dimensional holes in X . 
A simplex is the n-dimensional analogue of a triangle or tetrahedron. A n -simplex is an 

n-dimensional polyhedron created by the convex hull of its 1n+  vertex. Let   be n -simplex. 
A vertex   is each of the 1n+  points used to define  , and a face   is the convex hull of any 
subset of vertices  . A simplicial complex is a topological space realized as the union of any 
set of simplices   with the following two properties: (1) any face of   the simplex also lies in 
 ; (2) the intersection of any two simplices   is also a simplex. 

The persistent homology method studies the qualitative aspects of the data by calculating 
their topological characteristics. It is robust to perturbations, is independent of the size and 
coordinates of the embedding, and can provide a representation of the qualitative 



 

characteristics of the data. The input data is a point cloud in metric space; for example 

 1,..., nX x x= , in Euclidean space d
R . To compare the topological space, simplicial 

complexes are constructed. 
After the calculation of simplicial complexes, features dominate in the space consisting of 

vertices, edges and polyhedra of higher dimensions. Then, using homology, characteristics 
such as components, holes, voids, and other higher-dimensional equivalent characteristics 
can be measured. The permanence of these functions is represented on persistent diagrams 
or persistent barcodes. 

Persistent homology captures how long topological features persist. The ranks of 
persistent homologous groups are presented in the persistence diagrams. This is multiset of 

points in 2
R  and is defined as [1]; persistent homology can be visualized by a persistence 

diagram (PD) ( ) 2, ,i i i iD b d i I b d=   R . Each point ( ),i ib d D , which is called a 

persistent homology generator, represents a topological property that represents a topological 

property that appears at 
ibX  and disappears at 

idX  in the r -ball model. A topological 

property with high persistence persi i id b= −  can be considered as a reliable structure, while a 

topological property with low persistence can be considered as noise. Persistent diagrams 
encode topological and geometric information about data points. 

Maximum persistence is defined as: 

( ) ( ),( ) ,maxPers max   
ii birth death DD death birth= −  

where 
iD  is the persistence diagram for the i -th homology. 

Dynamic systems are built from the state space. The system is considered dynamic 
because states can change over time. Dynamic systems can be either deterministic or 
stochastic. The dynamic system is described in the state space X , space of time T  and is 
determined by the transition function : X T X  → . The state 

1tx +
 is defined through the 

state 
tx  using the transition function ( )   : 

( ) ( )1 ;t tx x + =   , 

where 0,1,2t T=  . 

3. Takens embedding for Time Series Data 
Dynamic systems are used to model systems whose states change over time. The state 

tx  

at a point in time t  is a description of the system, and the evolution of the system in the state 
space is determined by the transition function  . Attractors determine the set of system 
states, to the points of which the trajectory is directed. The time series is determined by the 
observed states of the dynamical system. 

n-dimensional manifold is a topological space M , for which each point x M  has a 

neighborhood homeomorphic to the Euclidean space n
R . A smooth mapping 1 2: M M → , 

where 1M  and 2M  are smooth manifolds, is an embedding 1M  to 2M , if   is a 

diffeomorphism from 1M  to 2M  a smooth submanifold (embedding space). 

Takens embedding of coordinates allows you to reconstruct a time series in a higher 
dimensional space, so that the topology of the original manifold that generates the values of 
the time series is preserved. Takens suggested that d -dimensional manifold containing an 

attractor A  can be embedded in 2 1n+
R  [8]. The Takens method finds a function   that maps 

1 2M M→ , where is the nesting dimension ( )2dim M , which can be 2 1n+
R . 



 

Thus, the Takens embedding makes it possible to obtain a continuous transformation of 

the original manifold M  to dX R , where d  is the embedding dimension and X  is the 

trajectory matrix. Let  1 2, ,..., Nx x x x=  be a time series and X  be a trajectory matrix: 

( )

( )

( )

( )

( ) ( )

1 11 11 1

2 22 12 1

1 1

dd

dd

N N d N dN

x x xX

x x xX
X

x x xX





 

++ −+ −

++ −+ −

− − − −

  
  
  

= =   
  
     

 (1) 

where each point in space is represented by a string. A more formal definition is given in [10]. 

Suppose that ( ) ( )jx t v y=  for some 1,...,j n= , where ( ) ( ) ( )( )1 ,..., nv t v t v t=  is a curve on 

the manifold  . Suppose that ( )v t  visits every part of  , which means that ( )v t  is dense in 

  with respect to its topology. Then there exists 0, K Z   , where Z  denotes real numbers 

such that the corresponding vectors ( ) ( ) ( )( ), ,...,x t x t x t K + +  are on a manifold 

topologically equivalent to  . 
Example 1. Takens embedding example. 

Denote by 
( ), ,k m

X


 the reconstructed one-dimensional time series, where k  is the time,   

is the delay time, and m  is the dimension of the reconstruction. Let our one-dimensional time 

series be  0 12, ,
T

X x x= . Using (1) for a one-dimensional reconstruction with 

1 10, 1, 2k m= = = , we obtain a time series ( )

0 1

1 2

0,1,2

11 12

.

x x

x x
X

x x

 
 
 =
 
 
 

 

The definition of the Takens embedding dimension is based on the false nearest 
neighbors method [9]. The embedding property is that when the embedding dimension m  is 
too small, distant points in the original phase space are close points in the reconstructed 
phase space. These points are called false neighbors. When calculating the false nearest 
neighbor for each point 

ix , we look for the nearest neighbor jx  in m-dimensional space. 

After that, the ratio 
1 1i j

i

i j

x x
R

x x

+ +−
=

−
 is calculated. If the ratio 

iR  exceeds the specified 

threshold R , then the point is marked as a false neighbor. If the attachment size is high 
enough, the ratio iR  is zero. One way to calculate iR  is to embed the lag time series x  with 

delay   in a range of different embedding dimensions m . You need to find all nearest 
neighbors and calculate the percentage of neighbors left after expanding the extra 
dimensions. 

When evaluating the time delay  , two criteria are important: 1) the time delay   must 
be large enough so that the information about the value of x  at time n +  differs from the 
information already known from observing the value of x  at time n ; 2) the time delay   
should not be large enough so that the system does not forget about its initial state [11].  

4. Determination of distances between images 
To compare images, let's determine the distances between these images: the greater the 

difference between the images, the greater the distance between them; the distance between 



 

identical images is zero. Euclidean transformations of images should not change the distance 
between them. 

To determine the distance between images (or objects of other physical nature), a 
persistent landscape is used - a piecewise linear function, which is a generalization of a 
persistent diagram [18]. The persistent landscape rotates the persistence diagram so that the 
diagonal becomes the new axis x . The i -th order of persistence landscape produces a 
piecewise linear function of the i -th largest point value in the persistence diagram after 

rotation. For the pair ( ),p b d D=  , where D  are the persistence diagrams, the piecewise 

linear functions ( )  : 0,p t → R  are equal to: 

( )

, , ,
2

, , ,
2

0, otherwise.

p

b d
t b t b

b d
t d t t d

 + 
−   

 
 + 

 = −   
 





 (2) 

Then the persistent landscape (PL) function is defined as: 

:F →R R : ( ) ( )( )sup p
p D

F t t


=  . (3) 

Let's form the core of PL functions: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2

1

, , .k k

k

K D D t t dt   


= −

= =   (4) 

For the PL functions, we form the p -norm [18]: 

( )( )

1

1

,
p

p

kp
k

t dt 


= −

 
=  

 
   (5) 

where 1 p   . 

Distances between PL functions can be determined using the p -norm: 

( ) ( )

1

,
p

PL PL PL PL

k

p

k

kp
t t dt   



−

 




 = − 


−    (6) 

where 1 p   . 

Let X  and Y  be two persistence diagrams. A persistent diagram consists of a finite 
number of points above the diagonal. To this finite set we add an infinite number of points on 
the diagonal. Consider bijections  :  X Y →  and write sup (least upper bound) of the 

distances between the corresponding points for each. By measuring the distance between the 

points ( )1 2,x x x=  and ( )1 2,y y y=  with the norm: 

 1 1 2 2max ,x y x y x y


− = − − , (7) 

and taking inf (the largest upper bound) over all bijections, we get the Bottleneck distance 
between the diagrams (1): 

( ) ( )
:

, inf sup
X Y x X

W X Y x x


 → 

= − . (8) 

Wasserstein distance q -powers between X  and Y : 

( ) ( )

1

:
, inf ,

q
q

q
X Y

x X

W X Y x x



→



 
= − 
 

  (9) 



 

where 0q  . 

Example 2. An example of free motion of a rigid body. 

( )

( )

( )

1 2 3 1

2 1 3 2

3 1 2 3

,

,

.

A В C М

B С A М

C А В М

  

 

 

− − =

− − =

− − =

 

Components of the angular velocity vector will be taken equal to zero: 
1 2 3 0M M M= = = . 

a) Consider the case of a rigid body with the principal components of the inertia tensor: 
100.,  80.,  60.A B C= = =  

Initial values of the components of the angular velocity vector of a rigid body: 

0 0 0 0.2x y z  = = = . 

Step of integration of the system of differential equations: 4.h =  
Barcodes of 3D images of the evolution of the components of the angular velocity vector 

of a rigid body. 
Barcodes of dimension 0: 14[0.0, 0.05); [0.0, 0.1); [0.0, infinity). 
Barcodes of dimension 1: [0.1, 0.5). 
 

 
Figure 1. Components of the angular velocity vector of a rigid body for the case of principal 

moments of inertia 100.,  80.,  60.A B C= = = :  ;  ;  .x x z  − −− −  

 

 
Figure 2. 3D image of the evolution of the components of the angular velocity vector of a rigid 

body for the case of principal moments of inertia 100.,  80.,  60.A B C= = =  

 
b) Consider the case of a rigid body with the principal components of the inertia tensor: 
90.,  87.,  68.A B C= = =  



 

Initial values of the components of the angular velocity vector of the TT: 

0 0 0 0.2x y z  = = = . 

Step of integration of the system of differential equations: 4.h =  
Barcodes of 3D images of the evolution of the components of the angular velocity vector 

of a rigid body. 
Barcodes of dimension 0: 10[0.0, 0.05); 
Barcodes of dimension 1: [0.05, 0.45). 
Fig. 1 shows the graphs of the components of the angular velocity vector of a rigid body 

for the case of the principal moments of inertia 100.,  80.,  60.A B C= = =  

Fig. 2 shows a 3D image of the evolution of the components of the angular velocity vector 
of a rigid body for the case of the principal moments of inertia 100.,  80.,  60.A B C= = =  

 

 
Figure 3. Components of the angular velocity vector of a rigid body for the case of principal 

moments of inertia 90.,  87.,  68.A B C= = = :  ;  ;  .x x z  − −− −  

 

 
Figure 4. 3D image of the evolution of the components of the angular velocity vector of a rigid 

body for the case of principal moments of inertia 90.,  87.,  68.A B C= = =  

 
Barcodes of 3D images of the evolution of the components of the angular velocity vector 

of a rigid body. 
Barcodes of dimension 0: 10[0.0, 0.05); 
Barcodes of dimension 1: [0.05, 0.45). 
Fig. 3 shows the graphs of the components of the angular velocity vector of a rigid body 

for the case of the main moments of inertia 90.,  87.,  68.A B C= = =  

Fig. 4 shows a 3D image of the evolution of the components of the angular velocity vector 
of a rigid body for the case of principal moments of inertia 90.,  87.,  68.A B C= = =  

Bottleneck distance between 3D images (barcodes of dimension 1): 



 

   1 1 2 2max , max 0.1 0.05 , 0.5 0.45 0.05.x y x y x y


− = − − = − − =  

Example 3: Takens embedding for 
y  3D ( 1) 6m − = . 

a) Consider the case of a rigid body with the principal components of the inertia tensor: 
100.,  80.,  60.A B C= = =  

Barcodes of dimension 1:  )0.15,  0.65 . 

Figure 5 shows a visualization of the 3D image of Takens embedding of the angular 
velocity component for the case of principal moments of inertia: 100.,  80.,  60.A B C= = =  

 

 
Figure 5. 3D image of the embedding of the Takens component y  for the case of principal 

moments of inertia 100.,  80.,  60.A B C= = =  

 
b) Consider the case of a rigid body with the principal components of the inertia tensor: 
90.,  87.,  68.A B C= = =  

Barcodes of dimension 1:  )0.05,  0.6 . 

Figure 6 shows a visualization of the 3D image of Takens embedding of the angular 
velocity component for the case of principal moments of inertia: 90.,  87.,  68.A B C= = =  

 

 
Figure 6. 3D image of the embedding of the Takens component y  for the case of principal 

moments of inertia 90.,  87.,  68.A B C= = =  

 
Bottleneck distance between images (barcodes): 



 

   1 1 2 2max , max 0.15 0.05 , 0.65 0.6 0.1.x y x y x y


− = − − = − − =  

5. Conclusion 
The paper considers the Takens embedding for two- and three-dimensional visualization 

of one-dimensional time series data. 
The use of topological data analysis together with the Takens embedding to analyze the 

output information of a dynamic system - a rigid body is considered. 3D images of curves 
constructed from three components of the angular velocity vector of a rigid body for various 
values of the main moments of inertia are constructed. Three-dimensional images of the 
curves constructed on the basis of the Takens embedding for the component of the angular 
velocity of a rigid body for various values of the main moments of inertia are constructed. 

Using the TDA method in conjunction with the Takens embedding for image comparison 
allows you to classify and identify images (or signals of a different physical nature). 

The proposed TDA method, together with the Takens embedding, can be used for pattern 
recognition, data analysis in object control systems (for example, in an aircraft attitude 
control system). 

The advantage of the TDA method lies in the invariance with respect to the Euclidean 
transformations of the components of the output information of devices and in the increase in 
the amount of analyzed information (in relation to traditional topological methods) due to the 
use of information about barcodes. 
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