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Abstract: We report the gamma-ray shielding properties of
five different lithium silicate glasses based on the (40 - x)
Li,0-10Pb30,-50Si0, nominal composition. Transmission
factor values and some basic shielding parameters such
as linear (u) and mass attenuation coefficients (u/p), half-
value layer, tenth value layer, and mean free path (MFP)
values of the investigated glass samples are determined in
a large photon energy range. Using the G-P fitting method
at various MFP values, the exposure buildup factor and
energy absorption buildup factor values of the examined
glasses are also calculated. Based on the findings, it can be
concluded that the S5 glass specimen, which exhibits the
greatest Ag,0 additive and density among the various glass
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samples, represents a favorable choice for the purpose of
shielding against gamma radiation.
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1 Introduction

Lithium silicate glass is a type of glass that contains lithium
oxide (Li,0) and silicon dioxide (SiO,) as its primary com-
ponents [1,2]. It is also known as lithium disilicate glass or
simply lithium glass. Lithium silicate glass has several
desirable properties that make it useful in a variety of
applications such as dentistry and electronics [3-7]. For
instance, it has a low coefficient of thermal expansion,
meaning that it can withstand rapid temperature changes
without cracking. It is also highly resistant to chemical
corrosion and has excellent mechanical strength. In den-
tistry, lithium silicate glass is used to create restorative
dental crowns, bridges, and veneers. It is a popular choice
because it can be milled and polished to a high degree of
precision, resulting in a natural-looking tooth restoration
that is both durable and biocompatible [8-11]. In electro-
nics, lithium silicate glass is used as a substrate for thin-
film transistors and other microelectronic components
[12-15]. Its thermal and chemical properties make it a
good choice for applications where high temperatures
and harsh chemicals are present. Meanwhile, the literature
suggests that the production of glass materials for the pur-
pose of radiation protection is becoming more widely
recognized [16-21]. Through the manipulation of glass den-
sities, while maintaining optimal optical properties, sev-
eral studies have facilitated the development of numerous
novel and auspicious glass materials. Radiation shielding
glasses are to protect workers and devices from ionizing
radiation. They are mostly made with heavy glasses that
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contain a specific number of oxides, which absorb harmful
radiation before it can reach the living biological tissue.
Radiation shielding glasses are used in a variety of facil-
ities, where exposure to ionizing radiation is a concern,
such as medical imaging facilities, dental clinics, and veter-
inary clinics [22-30]. It is important to note that radiation
shielding glasses are not a substitute for other forms of
personal protective equipment, such as lead (Pb) aprons
or other shields. They are designed to work in conjunction
with these other forms of protection to ensure maximum
safety for the wearer. The primary goal of radiation pro-
tection is to limit the dose of radiation that a person
receives to a level that is considered safe. This is done
through a combination of administrative controls (such
as limiting the amount of time a person spends near a
radiation source), engineering controls (such as shielding
or containment), and personal protective equipment (such
as radiation shielding garments or eyewear) [31-34]. The
level of radiation exposure that is considered safe depends
on a variety of factors, including the type of radiation, the
duration of exposure, and the age and health of the person
being exposed. Regulatory agencies such as the Interna-
tional Atomic Energy Agency and the Nuclear Regulatory
Commission establish guidelines and regulations for safe
levels of radiation exposure [35-37]. In addition to pro-
tecting individuals who are working with or around sources
of radiation, radiation protection is also important in the
event of a radiological emergency, such as a nuclear acci-
dent. Emergency responders and other personnel may use
specialized equipment and procedures to minimize the
spread of radiation and protect themselves and others
from exposure. The objective of this investigation is to ana-
lyze the impact of lithium silicate glasses and structurally
modified alterations on radiation absorption characteristics,
as documented in previous research, with a focus on scruti-
nizing certain crucial properties. Considering the promising
features of lithium silicate glasses for shielding applications
such as high durability against chemical corrosion and excel-
lent mechanical strength, the acquisition of data from the
study has the potential to enhance comprehension of the
gamma-ray absorption characteristics exhibited by these
beneficial glasses.

2 Materials and methods

A thorough investigation was done on the gamma-ray shielding
capabilities of five different glasses with the chemical formula
(40 - x)Li,0-10Phs0,-50Si0, (Where x = 0-0.4 mol%). Studies
have been done on the effects of adding a modest concentration
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Table 1: Chemical properties of the investigated glasses [38]

Sample Weight fraction (mol%) Density p
code (+0.001)
(g/cm?®)

(40 - 10Pb;0, 50Si0, xAg.0
X)Lizo

S1 40.0 10 50.0 0.0 3.998

S2 39.9 10 50.0 0.1 4.027

S3 39.8 10 50.0 0.2 4.031

S4 39.7 10 50.0 03 4.038

S5 39.6 10 50.0 04 4.083

of Ag,0 to lithium silicate glasses on gamma shielding. The
codes for the five different lithium silicate glass samples that
were used are S1, S, S3, $4, and S5. According to the referenced
research [38], the densities of glass samples S1, S2, S3, S4, and S5
were 3,998, 4,027, 4,031, 4,038, and 4,083 g/cm3 (Table 1). The
technical information and estimated parameters for nuclear
radiation shielding are shown here. Phy-X PSD software was
used to determine the radiation attenuation parameters of the
samples [39].

2.1 Investigated gamma-ray shielding
parameters

The linear attenuation coefficient (1) is a measure of how
strongly a material attenuates or weakens a beam of radia-
tion as it passes through the material. It represents the
fraction of the incident radiation that is absorbed or scat-
tered per unit length of the material. The linear attenua-
tion coefficient is dependent on both the type of radiation
and the material it is passing through. Different types of
radiations, such as gamma rays or X-rays, may have dif-
ferent linear attenuation coefficients in the same material
due to their different energies and interaction mechanisms
with the material. The linear attenuation coefficient is typi-
cally measured in units of inverse length, such as cm™ or
m It can be calculated using the following formula [40]:
L
1
==

In|

M

where p is the linear attenuation coefficient, I is the inten-
sity of the incident radiation, I is the intensity of the trans-
mitted radiation, and d is the thickness of the material. The
linear attenuation coefficient is an important parameter in
radiation shielding calculations, as it is used to determine
the amount of radiation that will be absorbed or scattered
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by a particular material and the thickness required to
achieve a desired level of radiation protection. Like the
linear attenuation coefficient, the mass attenuation coeffi-
cient (uy,) is dependent on both the type of radiation and
the material it is passing through. Different types of radia-
tions, such as gamma rays or X-rays, may have different
mass attenuation coefficients in the same material due to
their different energies and interaction mechanisms with
the material. We calculated the (u,,) values of the glass
samples using the obtained u values to determine their
density-independent radiation attenuation properties [41]:

Um o 2)

The half-value layer (HVL) is a measure of the pene-
tration power of a beam of radiation through a material.
It is defined as the thickness of the material required
to reduce the intensity of the radiation to half of its original
value. The HVL depends on the energy of the radiation
and the material it is passing through. Materials with
high atomic numbers and densities, such as lead, typically
have a smaller HVL [42] for a given type of radiation
compared to materials with lower atomic numbers and
densities, such as water or air. The build-up factor is a
correction factor used in radiation shielding calculations
to account for the additional scattering of radiation that
occurs within a shielded material. As a beam of radiation
passes through a material, it interacts with the atomic and
molecular structures of the material, causing some of the
radiation to be scattered in different directions. The build-
up factor (energy absorption build-up factor [EABF] and
exposure build-up factor [EBF]) considers this scattered
radiation and provides a correction factor to the shielding
thickness required to achieve a desired level of radiation
protection. The build-up factor is dependent on both the
energy and type of radiation and the material it is passing
through [43-45]. It is typically measured experimentally
using a radiation detector and a series of shielding mate-
rials. The gamma-ray transmission factor (TF), also known
as the gamma-ray transmittance, is a measure of the frac-
tion of incident gamma radiation that passes through a
material without being absorbed or scattered. It is
expressed as a percentage and can be used to calculate
the intensity of gamma radiation that will be transmitted
through a given thickness of material. The gamma-ray TF is
dependent on both the energy of the gamma radiation and
the material it is passing through. Higher-energy gamma
radiation typically has a higher TF than lower-energy
gamma radiation for a given material, while denser mate-
rials with higher atomic numbers typically have a lower TF
than lighter materials for a given energy of gamma
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radiation. The gamma-ray TF can be calculated using
the following formula:

T= [i] % 100%, (3)
Iy
where T is the gamma-ray TF, I is the intensity of the
transmitted gamma radiation, and I, is the intensity of
the incident gamma radiation.

The gamma-ray TF is an important parameter in radia-
tion shielding calculations, as it is used to determine the
thickness and density of materials required to achieve a
desired level of radiation protection. In general, a higher
gamma-ray TF means that less shielding material is required
to achieve the desired level of radiation protection. Previous
studies in the literature can be used to find the technical
and theoretical details concerning the crucial gamma-ray
absorption parameters calculated in this work [46-50].

2.2 Monte Carlo simulation through
MCNPX code

MCNPX (Monte Carlo N-Particle eXtended) [51] is a com-
puter code used for simulating the transport of particles
through matter, particularly in the fields of nuclear engi-
neering and health physics. It is a widely used Monte Carlo
radiation transport code developed by the Los Alamos
National Laboratory (NM, USA). MCNPX is designed to simu-
late the behavior of particles, such as neutrons, photons, and
electrons, as they interact with matter. It uses Monte Carlo
methods to simulate the trajectories of individual particles
through the material, considering various physical pro-
cesses, such as scattering and absorption. MCNPX can model
complex geometries and materials and can be used to cal-
culate radiation dose rates, neutron fluxes, and other radia-
tion transport-related quantities [51]. MCNPX is widely used
in nuclear engineering, radiation protection, medical phy-
sics, and other fields that involve radiation transport. It has
been validated against experimental data and is a highly
reliable tool for simulating the transport of particles through
matter. The present investigation involves the modeling of
five distinct samples of lithium silicate glass in the form of
discs, based on their respective elemental composition and
density. The F4 Tally Meshes were positioned both frontally
and backward to the absorber glass that was modeled [51],
thereby yielding the mean gamma flux measurement.
Figure 1a depicts a two-dimensional representation of the
modeled structure, while Figure 1b displays a tri-dimen-
sional view of the two-dimensional configuration. The ratios
of primary and secondary gamma-ray flux values were
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Figure 1: (a) 2-D view of the designed MCNPX simulation setup. (b) 3-D illustration of the designed MCNPX setup (2-D and 3-D views are obtained from

MCNPX Visual Editor VisedX22S).

determined using the setup, and subsequently, the TF values
were computed as outlined in the previous section. The
study did not utilize the bit cut-off technique. The mode
for tracking radiation has been configured to exclusively
detect photons, while the tracking of neutrons and electrons
has been deactivated. The simulation’s efficiency was attempted
to be enhanced, and the error rate was kept minimal by
inhibiting the tracking of particles that do not impact the
calculations. Furthermore, LENOVO P620 has been utilized
for simulating operations in a workstation of general purpose.

3 Results and discussions

A key consideration in electromagnetic radiation shielding
against types like gamma rays and X-rays is the density of
the materials that are used. This is because the incident
radiation interacts more closely with the surrounding elec-
trons due to the large mass, increasing the likelihood that it
will be absorbed. Figure 2 displays the densities of the five
distinct lithium silicate glasses that were tested in this
study. The figure illustrates how, depending on the glass
composition, the density of the S1-S5 samples changed
visibly. The S5 glass with a 0.4 mol% Ag,0 addition has
the greatest density of these five lithium silicate glasses
(Table 1). Linear attenuation coefficients (u) refer to a shielding
parameter depending on density. The linear attenuation coef-
ficients () of the examined lithium silicate glasses are shown
in Figure 3a as a function of energy. All glass samples obtained
their highest u values in the low energy range, as seen in
the figure. This is due to a quantitative excess of absorption

per unit distance exposed to low-energy photons interacting
with the glass. The Compton scattering phenomenon stands
out as the predominant kind of interaction, which varies as
energy levels increase. Gamma- or X-ray photons may spend
part of their energy in this area on the ionization process in
addition to going through a series of interactions before
having all their energy absorbed. The fact that less energy is
emitted per unit of distance in this region compared to the
low-energy field, along with an increase in the penetrating
qualities of energetic photons, maybe the cause of the lower
m values in this region. The lithium silicate glass with
0.4mol% Ag,0 doped, however, had the highest u value
among the examined lithium silicate glasses. The same
applies to the values of mass attenuation coefficients (uy,),

4.083

4.038

4.031

4.027

Glass Density (g/cm®)

3.998

S1 S2 S3 S4 S5

Glass Type

Figure 2: Variation of glass densities under investigation.
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Figure 3: Variations of (a) linear and (b) mass attenuation coefficients with photon energy (MeV) for all S1-S5 glasses.

a parameter independent of density. The energy-dependent
variations of the yy, values for the S1-S5 glasses are shown
in Figure 3b. The sample that removed the most gamma rays
in this case, quantitatively and in terms of its atomic struc-
ture, was the 0.4mol% Ag,0-doped S5 sample. The varia-
tions in the HVL values for S1 to S5 samples according to
the energy change are shown in Figure 4a. HVL values,
which exhibited a negligible trend in the area of low energy,
tended to increase concurrently with an increase in energy.
This is because low-energy photons’ limited penetrating prop-
erties allow them to be slit quantitatively at extremely thin
layers. However, the increasing thickness value required to
halve the corresponding gamma rays increase along with the
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increased penetrating capacity with the increase in energy.
This also applies to the tenth value layer (TVL) values in
Figure 4b. Among the eyeglasses inspected, sample S5 had
the lowest HVL and TVL values. This has a constant associa-
tion with the HVL value’s linear attenuation coefficient
values. Since HVL and TVL values are a reversal function
of the linear attenuation coefficient, minimal HVL and TVL
values were obtained for S1 with maximum linear attenua-
tion coefficient values. These findings indicate that the S5
sample will, at the minimal material thickness values, give a
quantitative halving of the gamma rays changing in the
0.015-15MeV energy range. The important finding relates
to the S5 sample’s more significant protective capabilities.
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Figure 4: Variations of (a) half and (b) TVL (cm) with photon energy (MeV) for all S1-S5 glasses.
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The term “mean free path” (MFP) refers to the typical dis-
tance that must be traveled by a gamma ray within a given
material in order to undergo two consecutive interactions.
The diminution of this parameter toward its minimum level
denotes a smaller gap between the two interactions, leading
to an increased efficacy of the absorption process. The MFP
values obtained for the S1-S5 glasses exhibit energy-depen-
dent variation trends, as illustrated in Figure 5. The MFP
curve exhibits analogous traits to the HVL and TVL data
in principle. The S5 sample exhibits minimal MFP values.
This suggests that the mean displacement of a single gamma
ray during two successive interactions will fall within the
sample S5. The build-up factor is a crucial metric that can be
established for materials utilized in radiation protection.
The build-up factor may be defined with respect to indivi-
dual energy levels and diverse MFP values. The value repre-
sents a metric that quantifies the frequency of collisions
between photons during the interaction process occurring
within the material. The extent to which a material absorbs
photons is closely linked to the magnitude of the number of
interactions the photons undergo. An elevated collision rate
within a material can enhance the absorption process of
energetic photons, thereby increasing their efficacy. On
the other hand, if there is an absence or insufficiency of
collisions within the material, the photons with high energy
will be unable to transfer their energy, leading to an inef-
fective absorption process. The build-up factor is a metric
that expresses the proportion of photons that have under-
gone collision versus those that have not, within a given
material. The comparison of EBF and energy absorption
build-up factor (EABF) values for samples S1-S5 at various

N
1

w
1

N
1

Mean Free Path (MFP,cm)

Mean Free Path (MFP,cm)

0 14.7 14.8 14.9 15.0
Energy (MeV)
T T T T T T T T T

0 2 4 6 8 10 12 14 16
Energy (MeV)

Figure 5: Variations of MFP (cm) with photon energy (MeV) for all S1-S5
glasses.
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MFP values is illustrated in Figures 6 and 7. The figure
demonstrates that the energy value exerts a notable impact
on the alteration of EBF and EABF values across all speci-
mens. This phenomenon can be attributed to the prevailing
mode of interaction resulting from the photon energy as
expounded upon in the preceding sections. The sample
denoted as S5 exhibited the lowest values for both EBF
and EABF among the samples that were analyzed. This phe-
nomenon can be elucidated by the observation that the
quantity of photons that have undergone collision in S5 is
comparatively greater than that in the remaining samples.
The surplus quantity of photons that have undergone colli-
sion may be regarded as a beneficial factor in the process of
absorption. The final parameter analyzed in this investiga-
tion was the TF values. The aforementioned values were
acquired utilizing the MCNPX code and were determined
through proportional assessments of the photon quantity
that enters and traverses the sample. The TF values for
samples S1-S5 at varying sample thicknesses and radioiso-
tope energies are depicted in Figure 8a—c. The figure illus-
trates that the TF amounts reach their maximum values for
each radioisotope energy when the material thickness is
low. A negative correlation is observed between the increase
in thickness and the aforementioned values. This pertains to
the phenomenon of diminishing secondary photon quantity
as the thickness of the material increases. To clarify, it is
anticipated that the TF values will decrease due to increased
absorption in thicker materials. The S5 sample exhibits
minimal TF values at every radioisotope energy and mate-
rial thickness. The aforementioned parameters, which were
derived through theoretical means and expounded upon in
preceding sections, are congruent with an autonomous
Monte Carlo simulation phase. The study found that sample
S5 yielded the most efficient results for all parameters ana-
lyzed. Hence, the suggested configuration for S5 can be
deemed as the most efficacious configuration for a lithium
silicate glass framework concerning its capacity to absorb
gamma rays.

4 Conclusion

It is commonly known that Pb and Pb-based shields have
the best photon shielding qualities. However, recent stu-
dies revealed that Pb-based materials have several serious
limitations, including toxicity, poor durability, opaqueness,
and high cost. The search for alternate radiation shielding
materials has accelerated in recent years. This research
sought to investigate more environmentally friendly radia-
tion shielding materials for nuclear medical facilities
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considering recent studies on radiation protection. The
quantitative results that would be obtained as a result of
such a study could offer important details regarding how
the tested material behaves when in use. The examination
of the glass composition of Li,0-Pb30,—Si0, has been the
main topic of this article with various compositions to explore
the gamma-ray attenuation characteristics of S1-S5 samples.
It is well known that adding Ag,0 makes glass structures
more stable and drastically alters their physical characteris-
tics, such as density and molar volume. We have concen-
trated on the radiation shielding properties of five samples
from the glass series because adding more Ag,0 to a glass
structure with a Li;0-Ph30,—SiO, composition would increase
the glass density as well as change and improve the radiation
shielding properties of the incorporated glass sample. We
compared the gamma-ray attenuation shielding properties
of five glasses from the glass system over a wide range of
input photon energy. Variations of the linear (¢) and mass
attenuation coefficients (u/p), HVL, TVL, and MFP of the exam-
ined glass samples have been determined using the general-
purpose Monte Carlo code MCNPX. With the help of the Phy-X/
PSD program, the computed results for mass attenuation
coefficients were compared for energies between 0.015
and 15MeV. Using the G-P fitting method at various MFP
values, the EBF and EABF values of the examined glasses
were calculated. Furthermore, the TFs of the examined
glasses in relation to the radioisotope energies of 0.662,
11732, and 1.3325MeV at various glass thicknesses have
been determined. Low values for the shielding parameters
HVL, TVL, MFP, EBF, and EABF, as well as high values for the
MAC, indicate that the glass material has effective shielding
qualities. The lowest value for the HVL and the highest
values of the MAC for the gamma reaction both occurred
atlow energy of 15 keV. On the other hand, the lowest values
of the above-mentioned parameters occurred at an energy
of 15 MeV. Our results indicate that the S5 sample, which has
the greatest mol% Ag,0 content and has the highest linear
(w) and mass (u/p) attenuation coefficients across the board,
is an ideal option for gamma protection. In conclusion, addi-
tional research on the effects of Ag,0 additive for nuclear radia-
tion shielding applications in various glass systems is possible.
We offered comprehensive findings in this study after consid-
ering a number of variables. The suggested glassy system has
potential but due to the extensive material characteristics of
glass materials, it will require ongoing optimization and refine-
ment. Based on the information presented, a broad overview of
the glass samples with Ag,0O incorporation was given. The
major material features connected to glass components, how-
ever, necessitate continued study in terms of overall optimiza-
tion and development for the suggested glass system.
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