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Abstract: The progressive research trends in the development of low-cost, commercially competi-
tive solid oxide fuel cells with reduced operating temperatures are closely linked to the search for
new functional materials as well as technologies to improve the properties of established materials
traditionally used in high-temperature devices. Significant efforts are being made to improve air
electrodes, which significantly contribute to the degradation of cell performance due to low oxygen
reduction reaction kinetics at reduced temperatures. The present review summarizes the basic infor-
mation on the methods to improve the electrochemical performance of conventional air electrodes
with perovskite structure, such as lanthanum strontium manganite (LSM) and lanthanum strontium
cobaltite ferrite (LSCF), to make them suitable for application in second generation electrochemical
cells operating at medium and low temperatures. In addition, the information presented in this
review may serve as a background for further implementation of developed electrode modification
technologies involving novel, recently investigated electrode materials.

Keywords: SOFC; cathode; air electrode; LSM; LSCF; composite electrode; conductivity; infiltration;
collector layer

1. Introduction

The development of renewable energy resources, including hybrid power systems [1–4],
is one of the ways for sustainable progress towards decarbonization [5–7]. Hybrid energy
systems combining solid oxide fuel cells (SOFCs) with heat generators, energy storage devices,
internal combustion engines, and solar cells have been intensively designed and manufactured
today [4,8–11]. The progressive trend in the development of SOFCs is to lower the operating
temperature, which brings undoubted advantages on the way to the commercialization of
these power sources, such as the use of cheaper materials, faster start-up, and increased
lifetime due to the reduction of degradation processes. However, challenges arise at low
operating temperatures related to the slowing down of electrode reaction kinetics and the
increasing ohmic resistance of the electrolyte membrane, resulting in a reduction in the SOFC
performance [12,13]. To maintain the electrochemical performance of SOFCs operating at
low (LT) and intermediate (IT) temperatures at a satisfactory level, the material optimiza-
tion has been considered for all construction parts of the SOFC, such as cathodes [14–19],
anodes [14,19–21] and electrolytes [19,22–24]. The cathode has been shown to be the major
contributor to the electrochemical degradation of the cell [25]. The characterization and
performance of the wide range of cathodes can be found in recent reviews [13,26–29].

An analysis of the literature data on the electrical, thermal, mechanical, and elec-
trochemical properties of the conventional perovskite-type cathode materials shows that
lanthanum strontium manganite (La,Sr)MnO3 (LSM) fulfils all the requirements for its
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use in high-temperature SOFCs [26,27]. However, as the temperature decreases, the use
of LSM materials, which are predominantly electronic conductors with a low level of
ionic conductivity, becomes unsatisfactory due to their low electrochemical activity for
the oxygen reduction reaction (ORR) [30,31]. On the other hand, cobalt-based perovskite
materials, including lanthanum strontium cobaltite ferrite (La,Sr)(Co,Fe)O3 − δ (LSCF), are
characterized by superior catalytic activity [32] due to high values of both electronic and
ionic conductivity [33]. However, these materials exhibit increased thermal and chem-
ical expansion, which is detrimental to the long-term operation of SOFCs [33,34]. The
poor long-term durability of high-temperature electrochemical cells is often caused by
the performance degradation phenomenon of the air electrode [35–37]. It has been found
that the electrochemical performance degradation of the LSM- and LSCF-based air elec-
trodes may include microstructural coarsening [33,38,39], the electrolyte/cathode interface
reactions [33,40–42], sulfur [43–45] and chromium poisoning [44,46–49], carbon deposi-
tion [50,51], and Sr surface segregation [33,35,36,52].

The perceived drawbacks of lanthanum strontium-based cathodes have driven re-
search trends towards alternative solutions to improve their electrochemical performance
and durability. A search of the Scopus database using the combination of the keywords
“LSM”, “SOFC*” and “LSCF”, “SOFC*” (with further application of the limits of “cathode*”,
“cathode materials”, “composite cathode*”, “cathode polarization”, “cathode performance”,
“electrode*”, “oxygen electrode”, “electrochemical electrodes”) yielded 1141 and 1208 doc-
uments respectively for the period of 1996 for LSM and 1998 for LSCF to June of 2023.
Figures 1 and 2, generated with the software package VOSviewer version 1.6.19 [53], consid-
ering a minimum number of occurrences equal to five author keywords, visualize the maps
with topic clusters related to LSM and LSCF as cathode materials for SOFCs, respectively.

Materials 2023, 16, x FOR PEER REVIEW 2 of 46 
 

 

An analysis of the literature data on the electrical, thermal, mechanical, and electro-
chemical properties of the conventional perovskite-type cathode materials shows that lan-
thanum strontium manganite (La,Sr)MnO3 (LSM) fulfils all the requirements for its use in 
high-temperature SOFCs [26,27]. However, as the temperature decreases, the use of LSM 
materials, which are predominantly electronic conductors with a low level of ionic con-
ductivity, becomes unsatisfactory due to their low electrochemical activity for the oxygen 
reduction reaction (ORR) [30,31]. On the other hand, cobalt-based perovskite materials, 
including lanthanum strontium cobaltite ferrite (La,Sr)(Co,Fe)O3–δ (LSCF), are character-
ized by superior catalytic activity [32] due to high values of both electronic and ionic con-
ductivity [33]. However, these materials exhibit increased thermal and chemical expan-
sion, which is detrimental to the long-term operation of SOFCs [33,34]. The poor long-
term durability of high-temperature electrochemical cells is often caused by the perfor-
mance degradation phenomenon of the air electrode [35–37]. It has been found that the 
electrochemical performance degradation of the LSM- and LSCF-based air electrodes may 
include microstructural coarsening [33,38,39], the electrolyte/cathode interface reactions 
[33,40–42], sulfur [43–45] and chromium poisoning [44,46–49], carbon deposition [50,51], 
and Sr surface segregation [33,35,36,52]. 

The perceived drawbacks of lanthanum strontium-based cathodes have driven re-
search trends towards alternative solutions to improve their electrochemical performance 
and durability. A search of the Scopus database using the combination of the keywords 
“LSM”, “SOFC*” and “LSCF”, “SOFC*” (with further application of the limits of “cath-
ode*”, “cathode materials”, “composite cathode*”, “cathode polarization”, “cathode per-
formance”, “electrode*”, “oxygen electrode”, “electrochemical electrodes”) yielded 1141 
and 1208 documents respectively for the period of 1996 for LSM and 1998 for LSCF to June 
of 2023. Figures 1 and 2, generated with the software package VOSviewer version 1.6.19 
[53], considering a minimum number of occurrences equal to five author keywords, visu-
alize the maps with topic clusters related to LSM and LSCF as cathode materials for 
SOFCs, respectively. 

 
Figure 1. Thematic map of co-occurring author keywords in the Scopus dataset for (La,Sr)MnO3 
(LSM). 
Figure 1. Thematic map of co-occurring author keywords in the Scopus dataset for (La,Sr)MnO3 (LSM).



Materials 2023, 16, 4967 3 of 42Materials 2023, 16, x FOR PEER REVIEW 3 of 46 
 

 

 
Figure 2. Thematic map of co-occurring author keywords in the Scopus dataset for (La,Sr)(Co,Fe)O3–

δ (LSCF). 

From the graphical data shown in Figure 1, the author keywords of the documents 
considered as LSM can be divided into four clusters: the red cluster, focused on the deg-
radation of the cells; the blue cluster, focused on the composite electrodes; the green clus-
ter, focused on the cathode microstructure; and the yellow cluster, focused on the elec-
trode modification using infiltration. Thus, the red cluster generalizes the drawbacks of 
the LSM cathode, while the other three clusters reflect the strategies to overcome them. 
From the graphical data shown in Figure 2, the author keywords of the documents con-
sidered as LSCF can be divided into four clusters, some of which are different from those 
for LSM. In the case of LSCF, the red, blue, and the green clusters generalize the LSCF 
performance under the operating conditions of fuel cells, electrolysis cells, and microtubu-
lar SOFCs, respectively. The yellow cluster generalizes the interfacial characterization. It 
is interesting to note that each cluster for LSCF includes the topic of drawbacks and their 
possible solutions. Thus, the above-mentioned trends justify that the improvement of the 
activity of LSM and LSCF electrodes remains prominent, and it is important to summarize 
the thematic studies, provided that the performance of LSM and LSCF has been improved. 

It is worth noting that the recent review by Chen et al. [54] presents the progress in 
surface modification techniques to improve the cathode performance, including methods 
such as solution infiltration, atomic layer deposition, and one-pot synthesis, but it does 
not directly address LSM and LSCF. In terms of LSM-related reviews, the recent review 
by Carda et al. [31], which highlights the mechanism of ORR on the LSM electrode, and 
the review by Jiang S.P. [30] on the development of the LSM cathodes, published in 2008, 
should be noted. Jiang’s review, which has 585 citations in the Scopus database as of June 
of 2023, can be found as the strongest item (excluding Jiang’s original research article [55]) 
in the bibliographic coupling link strength on the LSM network map, which is restricted 
to documents with at least 90 citations (Figure 3). In the case of LSCF, the reviews by Wang 
et al. [44], Jiang S.P. [33], and Safian et al. [36] (in chronological order) should be men-
tioned. The paper by Jiang [33], published in 2019, presents a comprehensive review of 
LSCF and has 223 citations in the Scopus dataset as of June of 2023. Figure 4 shows the 
network map of the bibliographic coupling in the Scopus dataset of documents citing the 
work [33] with their citations, considering a minimum number of citations of each citing 
document equal to five. The highest metrics of both the review by Jiang [33] and its citing 

Figure 2. Thematic map of co-occurring author keywords in the Scopus dataset for
(La,Sr)(Co,Fe)O3 − δ (LSCF).

From the graphical data shown in Figure 1, the author keywords of the documents
considered as LSM can be divided into four clusters: the red cluster, focused on the
degradation of the cells; the blue cluster, focused on the composite electrodes; the green
cluster, focused on the cathode microstructure; and the yellow cluster, focused on the
electrode modification using infiltration. Thus, the red cluster generalizes the drawbacks of
the LSM cathode, while the other three clusters reflect the strategies to overcome them. From
the graphical data shown in Figure 2, the author keywords of the documents considered as
LSCF can be divided into four clusters, some of which are different from those for LSM. In
the case of LSCF, the red, blue, and the green clusters generalize the LSCF performance
under the operating conditions of fuel cells, electrolysis cells, and microtubular SOFCs,
respectively. The yellow cluster generalizes the interfacial characterization. It is interesting
to note that each cluster for LSCF includes the topic of drawbacks and their possible
solutions. Thus, the above-mentioned trends justify that the improvement of the activity
of LSM and LSCF electrodes remains prominent, and it is important to summarize the
thematic studies, provided that the performance of LSM and LSCF has been improved.

It is worth noting that the recent review by Chen et al. [54] presents the progress in
surface modification techniques to improve the cathode performance, including methods
such as solution infiltration, atomic layer deposition, and one-pot synthesis, but it does
not directly address LSM and LSCF. In terms of LSM-related reviews, the recent review
by Carda et al. [31], which highlights the mechanism of ORR on the LSM electrode, and
the review by Jiang S.P. [30] on the development of the LSM cathodes, published in 2008,
should be noted. Jiang’s review, which has 585 citations in the Scopus database as of June
of 2023, can be found as the strongest item (excluding Jiang’s original research article [55])
in the bibliographic coupling link strength on the LSM network map, which is restricted
to documents with at least 90 citations (Figure 3). In the case of LSCF, the reviews by
Wang et al. [44], Jiang S.P. [33], and Safian et al. [36] (in chronological order) should be
mentioned. The paper by Jiang [33], published in 2019, presents a comprehensive review
of LSCF and has 223 citations in the Scopus dataset as of June of 2023. Figure 4 shows
the network map of the bibliographic coupling in the Scopus dataset of documents citing
the work [33] with their citations, considering a minimum number of citations of each
citing document equal to five. The highest metrics of both the review by Jiang [33] and its
citing documents show that the LSCF study topic is still highly relevant today. Meanwhile,
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the reviews [33,36,44], although considering LSCF, did not directly address the cathode
enhancement strategies.
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Therefore, in the present topical review we report on the most promising techniques
to improve the electrochemical performance of conventional air electrodes for solid ox-
ide fuel cells and also electrolysis cells based on the lanthanum strontium manganite
La1 − xSrxMnO3 − δ with x = 0.2; 0.3; 0.4 as the commonly used compositions, and the lan-
thanum strontium cobaltite ferrite with the composition La0.6Sr0.4Co0.2Fe0.8O3 − δ mainly,
as the most prominent representative of the (La,Sr)(Co,Fe)O3 − δ series and the most
widely used cathode material for the intermediate-temperature (IT) solid oxide fuel cells
(IT-SOFCs). The present work highlights for the first time the selection of optimal electrode
compositions, as well as electrode fabrication and electrode activation methods.
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2. Key Functional Properties of LSM and LSCF Electrode Materials: Advantages
and Drawbacks

The lanthanum strontium manganite La1 − xSrxMnO3 − δ (LSM), as a representative
of complex oxides with a perovskite ABO3 structure with rhombohedral distortions in the
compositional range of 0.2 ≤ x < 0.4 [56–58], is known to be used as a material for the
fabrication of air electrodes for electrochemical devices operating at low- [59] and inter-
mediate temperatures [30]. On the one hand, this is due to the high level of electronic
conductivity σe for LSM (corresponding to 200 S cm−1, 250 S cm−1, and 320 S cm−1 for
La0.8Sr0.2MnO3 − δ (LSM20), La0.7Sr0.3MnO3 − δ (LSM30), and La0.6Sr0.4MnO3 − δ (LSM40),
respectively, at 800 ◦C and at Po2 = 1 bar [60]). Secondly, due to the closest values of the
coefficient of linear thermal expansion (CTE) of the LSM (e.g., for LSM20—11.4 × 10−6 K−1

in the range of 50–1000 ◦C, [61]; for LSM30—12.2 × 10−6 K−1 and 13.2 × 10−6 K−1 in
the ranges of 200–650 ◦C and 650–900 ◦C, respectively, [62]; LSM40—12.7 × 10−6 K−1 in
the range of 50–1000 ◦C, [61];) to those for the solid electrolytes perspective for operating
in IT-SOFCs and low-temperature SOFCs (LT-SOFCs) [15,22,24,63–65]. The CTE values
can be mentioned for doped ceria (e.g., for Ce0.8Sm0.2O2 − δ (SDC)—12.0 × 10−6 K−1 in
the range of 25–1000 ◦C, [66]; for Ce0.8Gd0.2O2 − δ (GDC)—12.2 × 10−6 K−1 in the range of
50–900 ◦C, [67]), (Sr,Mg)-doped LaGaO3 (in general LSGM, e.g., for La0.8Sr0.2Ga0.8Mg0.2O3 − δ

—12.1 × 10−6 K−1 in the range of 25–1000 ◦C, [68]), Sc2O3-stabilized ZrO2 (SSZ)
(for 8SSZ—10.4 × 10−6 K−1 in the range of 30–1000 ◦C, [69]). In addition, LSM electrodes
offer such an important advantage as the improved stability during operation under SOFC
and solid oxide electrolysis cell (SOEC) conditions compared to Fe- [48] and Co- [70,71]
containing electrodes.

It should be noted that the oxygen diffusion and interfacial heteroexchange parameters
for LSM, which is predominantly an electron conductor, are lower than those of materials
possessing high mixed oxygen ion and electron conductivity (MIECs), such as cobalt-based
perovskites. For example, the oxygen self-diffusion coefficient (D*) and the oxygen sur-
face exchange coefficient (k) for LSM20 at 800 ◦C were found to be 4.00 × 10−15 cm2 s−1 and
5.62 × 10−9 cm s−1, respectively, compared to D* = 9.87 × 10−10 cm2 s−1 and
k = 6.31 × 10−7 cm s−1 for the La0.8Sr0.2CoO3 − δ MIEC material [72]. The values of
the ionic conductivity, σi, for LSM are in a range of 10−4–10−7 S cm−1 at 800–1000 ◦C and
decrease significantly in the intermediate temperature range of 600–800 ◦C [30].

Recently Jiang summarized the literature data regarding the characterization of the
oxide materials from the lanthanum strontium cobaltite ferrite (La,Sr)(Co,Fe)O3 − δ series,
and showed that the composition La0.6Sr0.4Co0.2Fe0.8O3 − δ (the acronym LSCF will be
used from now on), as a representative of MIECs, is the most prominent cathode material
used in IT-SOFCs [33]. LSCF, which has a perovskite structure with rhombohedral dis-
tortions [73,74], exhibits excellent electrical properties properties with ionic and electron
partial conductivity values reaching approximately 1 × 10−2 S cm−1 and 1 × 102 S cm−1,
respectively, at 800 ◦C [75]. It demonstrates a moderate CTE value equal to 17.5 × 10−6 K−1

in the range of 30–1000 ◦C [76]. The oxygen self-diffusion and surface exchange coefficients
for LSFC amount 5 × 10−7 cm2 S−1 [77] and 6 × 10−6 cm S−1 [78] at 800 ◦C. It should be
noted that due to MIEC conductivity nature and the superior oxygen diffusion properties
of LSCF compared to LSM, this material is preferred for use in electrochemical devices
operated at lower temperatures, whereas LSM materials are still in high demand for high-
temperature applications due to their CTE values being more compatible with electrolyte
materials and higher total conductivity values.

The main drawbacks of conventional perovskite electrodes, which lead to the degrada-
tion of solid oxide cells during long-term operation, are the segregation of Sr at the electrode
surface with the formation of the SrO layer for the LSM- [35,52] and LSCF-based [36,79–82]
cells, and the high interaction of LSM [41,52,83–86] and LSCF [41,87–90] with Zr-containing
electrolytes to form the SrZrO3 (SZO) and La2Zr2O7 (LZO) phases. In addition, due to the
presence of CO2 in the air, the SrCO3 carbonate phase was formed on the surfaces of the
LSM- [91–93] and LSCF- [94–96] electrodes. The formation of the same insulating phases
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limits the oxygen exchange at the electrode–electrolyte interface and reduces the electro-
catalytic activity of the LSM [97–100] and LSCF [79,100–105] air electrodes for the ORR,
followed by an increase in both the electrode ohmic and polarization resistances. Similar
long-term operation tests have shown that the degradation of cells based on LSM [81] or
LSCF [106,107] operating in electrolysis mode was higher than that in fuel cell mode, and
when comparing two perovskite electrodes, the long-term durability of LSCF was one step
ahead of that of LSM [106,108].

Automated methods developed for the detection of Sr nucleation seeds on the elec-
trode surface [109,110], for the identification of the interlayer width between the per-
ovskite and YSZ layers [111,112], and for the computational design and numerical sim-
ulation of the perovskite-based composite electrodes [113–116] allowed for the sugges-
tion of possible degradation mechanisms and an understanding of the electrode behav-
ior at both the atomic and macroscopic scales. The deposition of protective and non-
catalytic layers on the electrode surface has been proposed as a solution to the prob-
lems of segregation [117–119], contaminant poisoning [120–123], and sluggish oxygen
kinetics [124–128]. The organization of ceria-based buffer layers at the perovskite elec-
trode/YSZ electrolyte interface and the replacement of the zirconium electrolyte in the
composite electrode with other ionic conductors, methods widely used for other per-
ovskite electrodes [129–135], may also help to reduce interactions and increase the activ-
ity and long-term stability of LSM [136–138] and LSCF [138–147] electrodes. The high
reactivity of the (La, Sr)-containing electrodes with the conventional YSZ electrolyte facili-
tated extensive investigations of the LSM-based cathodes formed on the SDC [148–151],
GDC [152], SSZ [151,153], LSGM [149], BaZr0.8Y0.2O3 − δ (BZY20) [154], La9.5Si6O26.25 [155],
and La27.44W4.56O55.68 (LWO56) [156] electrolytes as an alternative. The LSCF-based cath-
odes were formed on the SSZ [157], SDC [158,159], Ce0.9Gd0.1O2 − δ (GDC10) [160–162],
GDC [126,163–167] Y0.1Ce0.9O1.95 [168], Nd0.2Ce0.8O3 − δ [169], SSZ [170], LSGM [171,172],
GDC with LSGM [173], SDC with LSGM [174], BZY20 [175], BaZr0.9Y0.1O3 − δ [176],
BaZr0.8Yb0.2O3 − δ (BZYb) [177], BaCe0.7Zr0.1Y0.1Yb0.1O3 − δ (BCZYYb) [178–182],
BaCe0.7Zr0.1Y0.2O3 − δ (BCZY) [183–185], and BaCe0.7Zr0.15Y0.15O3 − δ (BCZY15) [186] electrolytes.

The chemical compatibility of the LSM and LSCF electrodes with oxygen-ion and proton-
conducting electrolytes and the interdiffusion across the cathode/interlayer/electrolyte inter-
faces have been extensively observed in the recent reviews of Zhang et al. [41], Khan et al. [42]
and Hanif et al. [187]. To briefly summarize the data presented in [41], it could be mentioned
that LSM20, in contrast to LSCF, showed good chemical compatibility with La27W4NbO55 − δ

up to 1400 ◦C [188] and with La10Si55Al0.5O26.75 at 1300 ◦C [189], whereas the La-deficient
LSM40 did not react with La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM9182) at 1300 ◦C [190]. Secondary
phases were found to form after sintering of LSM20 with SDC and BaCe0.9Y0.1O3 − δ at
1150 ◦C [191], La-deficient LSM20 with BZY20 and BaCe0.8Y0.2O3 − δ (BCY20) at 1100 ◦C [192],
LSCF with BZY20 and BCY20 at 1100 ◦C [192]. The conclusions in [41] justified that LSCF had
better chemical compatibility with LSGM and CeO2-based electrolytes due to the formation of
small amounts of impurity phases with LSGM9182 at 1300 ◦C and negligible interdiffusion
with SDC at 1150 ◦C.

It should be noted that the use of LSM electrodes in contact with the BaCeO3-based
electrolytes is limited due to their active chemical interaction [193]. However, due to its
high electronic conductivity and CTE compatibility, LSM can be successfully used as a
collector for perspective layer electrodes for proton-conducting fuel cells operating in the
IT range [194–197].

3. Conventional and Advanced Techniques to Fabricate Electrode Layers

The choice of electrode deposition method and electrode configuration usually depends on
the cell design (tubular/planar configuration), which in turn determines the current characteris-
tics of the electrode. Traditional ceramic methods of the oxygen electrode deposition in planar
cells on the supporting fuel electrode, which are technologically simple and easily scalable,
are slurry coating [198–201] (LSM), Refs. [202–204] (LSCF), screen printing [205–209] (LSM),
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Refs. [110,158,183,210,211] (LSCF), tape casting [212–215] (LSM), Refs. [174,180,216,217] (LSCF),
spraying [212,218–221] (LSM), Refs. [170,173,222–224] (LSCF). Figure 5 shows schematics of
these deposition methods.
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Figure 5. Schemes of methods used to apply electrode layers: (a) slurry application; (b) spraying; (c)
screen printing; (d) film casting ((a) is reproduced from [225] with permission of IOP Publishing; (b)
is reproduced from [226] with permission of Taylor and Francis; (c) is reproduced from [227]; (d) is
reproduced from [228] with permission of J. Wiley and Sons).

In addition, freeze casting [229] (LSM), Refs. [230,231] (LSCF), dip coating [232,233]
(LSM), Refs. [234–238] (LSCF), and extrusion [239–241] (LSM), Refs. [241–244] (LSCF)
have been used to fabricate LSM- and LSCF-based electrodes in microtubular cells. Elec-
trophoretic deposition [245,246] has been applied to form electrode thin films [247–250]
(LSM), Refs. [251–254] (LSCF), and to fabricate LSM-based layered electrodes [255,256].

To maintain a high sintering temperature, e.g., to improve adhesion and/or to form
air electrodes in the co-sintering process with NiO-based cermets with lower sinterability,
different pore formers have been used to control the microstructure of the air electrode: carbon
black [257–261] (LSM), Refs. [262–265] (LSCF); various types of starch [154,205,266–269] (LSM),
Refs. [251,262,270–272] (LSCF).

To improve the catalytic activity of perovskite electrodes, special techniques for deposit-
ing nanoscale layers have been used, which are different from those used for the electrodes
based on micro-sized electrode materials. In general, these are mainly the low-temperature
methods to maintain the high surface area of the nanosized materials. Among the variety
of methods available to improve the conventional perovskite electrodes by extending the
triple-phase boundary (TPB), it is worth mentioning spray pyrolysis in its different mod-
ifications highlighted in the review [273], and used for LSM in [218,219,274–277], and for
LSCF in [223,278–281]; electrospinning represented in reviews [282–284], and used for LSM
in [285,286], and for LSCF in [286–292] template method used for LSM in [293], and for LSCF
in [294–297]; infiltration method considered in the reviews [298–302], and used for LSM
in [26,54,148,154,232,303–312], and for LSCF in [118,182,288,313–344]; solution combustion
used for LSM in [345,346], and for LSCF in [346,347]. As a promising technique for the design
of solid electrochemical cells, additive manufacturing (3D printing) has demonstrated its ad-
vantages for the fabrication of the scalable three-dimensional microstructures [348–351] using
the LSM-based electrodes [352–359] and surface-modified LSCF electrodes [337,360,361].
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Electrode activation methods are schematically summarized in Figure 6. They include
the use of composite materials, materials with mixed electronic and ionic conductivity,
the introduction of an active interlayer at the electrode–electrolyte interface (e.g., a highly
conductive ionic conductor), the exfoliation of active nanoparticles on the electrode sur-
face, infiltration, the use of nanomaterials. Due to the predominantly electronic nature of
LSM materials, the selection and application of appropriate activation methods are neces-
sary, especially for the electrodes used in electrochemical devices operating at decreased
temperatures (below 800 ◦C).
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Figure 6. Air electrode activation method for electrochemical devices: (a) electronic conductor with
localization of the TPB at the electrode–electrolyte interface; (b) nanosized electrode; (c) composite
conductor/electronic conductor; (d) nanocomposite electrode; (e) mixed ionic-electronic conductor
with extended TPB; (f) thin film active layer at the electrode–electrolyte interface; (g) electronic
conductor in a porous ionic conductor matrix obtained by infiltration; (h) nanoparticle exfoliation on
the surface of the electronic conductor.

4. Methods to Improve the Electrochemical Performance of the Conventional Electrodes
4.1. Optimization of the Oxide Composition

The interaction of LSM with Zr-containing electrolytes, as it was mentioned above,
results in the formation of low conducting LZO and, at high strontium content, SZO
phases at the electrode sintering stage at temperatures above 1000–1200 ◦C, depending
on the material dispersity [85]. It has also been found that Mn readily dissolves in YSZ,
leaving chemically active La2O3 at the LSM/YSZ interface, which reacts with ZrO2 to
form LZO [114]. To reduce the interaction of LSM with Zr-containing electrolytes, the
use of (LS)xM, a cation deficient in the A position, has been proposed [129]. It was found
that the creation of the A-site deficiency suppressed the formation of the parasitic LZO
phase due to the decrease in the La chemical potential. However, it should be noted
that increasing the deficiency beyond a certain limit led to the release of the MnOx phase
in (LS)xM, resulting in the intensification of interphase reactions. Thus, recent studies
on the interaction of (La0.75Sr0.25)xMnO3 − δ (x = 1.0, 0.97, 0.95, 0.9 and 0.85) with the
SSZ electrolyte showed that the optimum deficiency level was 0.95 [153]. The composite
electrode (LS)0.95M containing 50 mol% SSZ was characterized by the lowest values of
polarization resistance Rp (sometimes called Rη, ASR in the works of different groups) and
serial resistance Rs in the series studied, despite the high temperatures of the electrode
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formation. Therefore, the values of Rp and Rs for the electrodes sintered at 1200 and 1300 ◦C
were equal to 1.21 and 1.94 Ω cm2 and 0.82 and 1.60 Ω cm2 at 950 ◦C, respectively.

The excess of Mn in La0.85Sr0.15MnyO3 − δ (LSMy, y = 1.1) was found to prevent the
formation of chemically active La2O3 and thus, the formation of LZO. In [362], it was
shown that the use of LSM1.1 instead of LSM in a composite electrode with 20 wt% YSZ
resulted in a reduction of Rp from 1.6 to 0.6 Ω cm2 at 1000 ◦C. It has been shown that the
modification of the YSZ electrolyte with Mn also results in a reduction of the LSM/YSZ
interaction [363,364].

In the case of LSCF, the A-site cation-deficient materials with the (LS)xCF and LxSCF
composition have been developed and widely used [175,365,366] due to their improved
electrical conductivity and reduced CTE values [367]. Meanwhile, based on the results of
the long-term stability study of the YSZ electrolyte-supported SOFC with the (LS)0.98SF
cathode, Simner et al. [79] concluded that the high rate of the cell degradation (about
30% during 500 h) was mainly caused by Sr segregation at the cathode–electrolyte and
cathode/collector layer interfaces, without any significant microstructural and chemical
changes. Bucher et al. [366] also confirmed that L0.96SCF underwent strong Si-induced
degradation at 600 ◦C in both wet and air atmospheres.

As a possible solution to the problem of the Sr segregation and contaminant poisoning
in the perovskite electrodes, the use of high entropy oxides (HEOs) containing at least
five co-dopants in an equimolar ratio in the A-position could be considered [19]. Recently,
HEOs based on LSM have been reported, such as La0.2Pr0.2Nd0.2Sm0.2Sr0.2MnO3 [368]
and La0.2Nd0.2Sm0.2Ca0.2Sr0.2MnO3 [369]. It was shown that the distortions in the LSM
perovskite structure caused by the multi-doping in the A-site led to the highly disordered
stress field around the Sr ions, which resulted in limiting the transport and migration of
the Sr ions, and suppressed the Sr segregation phenomenon [368,369]. Dabrowa et al. [370]
synthesized a nanosized homogeneous high entropy oxide (HEO) based on LSCF, such as
La0.6Sr0.4Co0.2Cr0.2Fe0.2Mn0.2Ni0.2O3 − δ. The resulting HEO was characterized by lower
CTE, increased electronic conductivity, and enhanced stability to Cr contamination com-
pared to the base oxide [370].

Xu et al. [371] synthesized the orthorhombic phase La0.2Nd0.2Gd0.2Sr0.2Ba0.2Co0.2Fe0.8O3 − δ

(HE–LSCF) and investigated the electrochemical activity of the HE–LSCF on the SDC substrate
in the symmetrical cells. The Rp value for the HE–LSCF cathode was measured to be 0.57 Ω cm2

at 700 ◦C compared to 0.71 Ω cm2 for the conventional LSCF cathode. The kinetics of the oxygen
reduction reaction in the HE–LSCF cathode, related to the processes of oxygen dissociation and
interfacial charge transfer, was attributed by the authors to the middle-frequency process. The
polarization results obtained for the cells aged at 800 ◦C for 200 h showed that the HE–LSCF
cathode was characterized by higher stability compared to the pristine LSCF cathode. The
Rp values were 0.75 and 1.27 Ω cm2 at 700 ◦C for the high-entropy LSCF cathode and the
conventional LSCF cathode, respectively. Scanning electron microscopy (SEM) and energy
dispersive spectroscopy (EDS) data confirmed that the surface of the HE–LSCF cathode had a
homogeneous distribution of all elements in the A-position with no Sr segregation both before
and after cell ageing in contrast to the pristine LSCF cathode. The authors reported that the Sr
segregation was successfully suppressed in the HE–LSCF cathode.

In summary, although the formation of the (La,Sr)-deficient sites, which aims at both
increasing the electrical conductivity and suppressing Sr segregation is the most widely
used technique for selecting the optimal composition of the LSM and LSCF electrodes, the
creation of highly disordered oxides with sluggish cation diffusion can be quite perspective
direction in the composition modification of the conventional perovskite materials.

4.2. Enhancement of the Ionic-Conducting Electrode Component

To increase the electrochemical activity of LSM air electrodes, their compositions with
ionic conductors were applied, e.g., with solid electrolytes (YSZ [205,303,352,372–383], YSZ
with GDC10 [374], SSZ [149,384–390], GDC10 [391], GDC [152,198], SDC [148,149,387,392,393],
doped Bi2O3 [151,394–399], BaZr0.85Y0.15O3 − δ (BZY15) [154], LWO56 [156], LSGM [400,401]),
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or MIEC materials (Co- [150,402] and Fe-based perovskites [403–405]). The optimum electrolyte
content in the composite electrode depends on the specific surface area ratio of the components
and is in the range of 30–50 wt% in most cases. Calculations using Comsol software showed that
the maximum active TPB of 9.53 µm µm−3 was achieved for electrodes containing 35 vol% of
the electrode material, 35 vol% of the electrolyte and 30 vol% of pores [396].

Wang et al. [373] found that the enhancement of the electrochemical activity of the
LSM–YSZ composites was due to the spatial enlargement of the triple-phase boundary
(TPB) area, which increased the active sites for the oxygen adsorption and charge transfer
processes. Lee et al. [383] reported on dissociative adsorption as the main rate-determining
step of the ORR on the LSM–YSZ composite cathodes. It was found that the replacement of
YSZ with GDC in the LSM–based composite electrodes developed in [152] resulted in much
lower current interfacial resistances compared to the conventional LSM–YSZ electrodes on
the corresponding electrolytes.

A detailed study of the influence of ionic conductivity on the properties of the LSM20-
based composite electrodes was carried out by Yaroslavtsev et al. in [149], using high ionic
conductivity materials SSZ, SDC and La0.88Sr0.12Ga0.82Mg0.18O2.85 (LSGM8282) as the elec-
trolyte component, whose content in the composite electrodes was 50 wt%. The thickness of
the electrodes, obtained by screen-printing of a powder suspension with polyvinyl butyral
(PVB) binder with the addition of ethyl alcohol, was 50 µm. A collector layer of LSM40 com-
position was used for the composite electrode to ensure stable current collection. Sintering
of the 50LSM20–50SSZ micro-sized electrode layers was carried out at 1200 and 1250 ◦C,
1 h. Figure 7a shows the characteristics of the electrodes after sintering and after activation
with praseodymium oxide (m) in symmetrical cells based on the Sm-doped ceria electrolyte
of the composition often used to organize buffer layers at the air electrode–electrolyte
interface in ZrO2 and LaGaO3-based cells). The 50LSM20–50SDC composite electrode
was found to have the best performance, with the 50LSM20–50SSZ electrode with LSM40
collector coming close. The polarization conductivities of the modified 50LSM20–50SDC
and 50LSM20–50SSZ/LSM40 electrodes were 114 and 100 S cm−2 at 800 ◦C, corresponding
to Rp of 0.009 and 0.01 Ω cm2.

Furthermore, Yaroslavtsev et al. have proposed to modify the properties of 50LSM20–
50SDC and 50LSM20–50SSZ electrodes by activation through the LSM40 collector layer
containing Y-doped bismuth oxide Bi1.5Y0.5O3 − δ (YDB) [151]. It was shown that when
the collector layer was sintered at 1000 ◦C, the polarization resistance of the electrodes
decreased due to the diffusion of bismuth-containing melt phases into the functional
composite layer (Figure 7b). The optimum additive content in the collector layer for both
electrodes was therefore set at the level of 5 wt% (Figure 7c,d). When the YDB content
was increased beyond this value, a decrease in the cathode performance was observed due
to the sintering and reduction in porosity of the collector layer. The Rp values of 0.1 and
0.2 Ω cm2 at 800 ◦C were obtained for the 50LSM20–50SDC and 50LSM20–50SSZ electrodes,
which were optimized in terms of sintering temperature and amount of the additive.
The composite electrodes, activated through the collector, exhibited higher Rp values
compared to the praseodymium oxide-activated electrodes; however, they demonstrated a
significantly lower degradation rate.

Mosiałek et al. [150] investigated the performance of the composite cathodes contain-
ing LSM20 and the MIEC material of YFe0.5Co0.5O3 (YFC) formed on the SDC electrolyte by
screenprinting. It was found that the addition of 5 wt% YFC to LSM resulted in a decrease
of the polarization resistance Rp from 2.7 to 1.9 Ω cm2 at 800 ◦C. This fact was attributed to
the facilitation of the charge transfer process.

LSM composite electrodes can be prepared by various techniques: by mechanically
mixing the components in a mill [114,396], by forming composites with a core–shell
structure (by depositing one material on top of another) [206], by infiltrating one compo-
nent of the composite electrode into the pre-sintered porous matrix of the other compo-
nent [198,377], and by preparing vertically oriented high-entropy nanocomposites [393].
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Figure 7. Effect of activation on the properties of composite electrodes of different composition
applied by screen printing on SDC electrolyte: (a) temperature dependences of polarization conduc-
tivity for basic and praseodymium oxide (m) modified 50 wt% LSM20 based electrodes; (b) SEM
micrograph showing diffusion of bismuth-based fusible components from 95LSM40–5YDB collector
into 50LSM20–50SDC functional layer and YSZ electrolyte (Bi-containing phases are denoted by 3, 3a
and 5, 5a); (c,d) polarization resistance of 50LSM20–50SDC and 50LSM20–50ScSZ electrodes with
LSM40 collector as a function of its YDB content (x) ((a) is reproduced from [149] with permission of
Springer; (b–d) are reproduced from [151] with permission of Springer).

In [206], the 60(LS)0.95M25–40YSZ composite powder was obtained by the synthesizing
of LSM on submicron YSZ particles using in situ glycine-nitrate combustion method. The
electrode with a core–shell structure was formed on the surface of the YSZ electrolyte by
screen printing (Cell A). The organic binder consisted of 5 wt% ethyl cellulose dissolved
in 95 wt% terpineol, and the weight ratio of electrode powder to the binder in the stencil
was 2:3. The applied electrode was sintered at 1180 ◦C for 2 h. For comparison, the second
electrode was formed under the same conditions from a mechanical mixture of YSZ and
LSM, synthesized by the glycine-nitrate combustion method (Cell B). The YSZ electrolyte
formation in the half-cells on the NiO–YSZ support cathode for the single-cell test was
also carried out by screen printing with sintering at 1400 ◦C for 2 h, with a film thickness
of about 10 µm. The authors observed a reduction in the electrolysis cell performance
when using an anode produced by conventional mixing. Current densities of 0.520 A cm−2

and 0.431 A cm−2 at 900 ◦C and 0.333 A cm−2 and 0.231 A cm−2 at 850 ◦C at 1.50 V were
obtained for Cell A and Cell B, respectively.

It should be noted that the dispersity of the materials used has a great influence on
the performance of composite electrodes obtained by mechanical mixing. It is therefore
important to obtain LSM powders with nanosized particles. According to the data reported
in [406], La0.5Sr0.5MnO3 − δ (LSM50) with homogeneous morphology and nanoparticles of
20 nm, prepared by the Pechini method, has been characterized as a material that provides
improved electrode activity compared to those obtained with LSM50 powders synthesized
by citrate and alkoxide techniques. The application of nanosized (86 nm) low-agglomerated
powder (La0.75Sr0.25)0.95MnO3 − δ ((LS)0.95M25), obtained by pyrolysis of acetate acrylic
polymer, in the composite with YSZ reduced the electrode polarization to less than 0.1 Ω
cm2 at 800 ◦C [378]. A 20 µm thick 50(LS)0.95M25–50YSZ composite was formed in a
NiO–YSZ|YSZ half-cell by spraying an ethanol-based suspension followed by drying and
sintering at 1000 ◦C for 2 h (Figure 8a).
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Figure 8. SEM micrograph of the 50(LS)0.95M25–50YSZ electrode of 20 µm thickness, prepared by
nanopowder suspension spraying followed by sintering at 1000 ◦C, 2 h (a); YSZ ceramic matrix
followed by heat treatment at 600 and 1100 ◦C (arrows indicate LSM particles) (b); SEM micrograph
of the 75LSM20–25GDC electrode obtained by GDC infiltration into the LSM ceramic matrix (arrows
indicate GDC particles) (c); polarization resistance of the LSCF–GDC10 composite cathodes on
the GDC10 content at 600 ◦C by Leng et al. [407], Liu et al. [408], Dusastre et al. [409], Murray
et al. [410], (d); temperature dependencies of the polarization resistance for LSCF–NGCO cathodes
characterized in symmetrical cells (e); scheme of migration paths of conducting species in LSCF–BZCY
(i), LSCF–SCO (ii), LSCF–LCO (iii) composite cathodes on BZCY electrolyte (f) ((a) is reproduced
from [378] with permission of Elsevier; ((b) is reproduced from [377] with permission of Elsevier;
(c) is reproduced from [198] with permission of Elsevier (d) is reproduced from [407] with permission
of Elsevier; (e) is reproduced from [166]; (f) is reproduced from [185] with permission of Elsevier).

The application of infiltration leads to both an increase in the activity of the composite
electrode and a solution to the problem of electrode delamination, which is particularly
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pronounced under conditions of anodic polarization. For example, the 45LSM20–55YSZ
nanostructured electrodes, obtained in [377] by infiltration of La0.8Sr0.2Mn(NO3)x with
addition of citric acid into the porous YSZ ceramic matrix (Figure 8b), followed by a two-
step temperature treatment at 600 ◦C and then at 900 or 1100 ◦C, showed Rp values of
0.21 and 0.74 Ω cm2 at 800 ◦C, respectively. The YSZ matrix for the composite electrode
was formed in [377] on the YSZ electrolyte surface by slurry coating followed by sintering
at 1200 ◦C for 2 h. In [198], the 75LSM20–25GDC composite was prepared by infiltrating
the solution of Gd0.2Ce0.8(NO3)x into a 20–30 µm-thick porous LSM matrix (Figure 8c)
formed by slurry deposition followed by presintering at 1100 ◦C for 2 h. The polarization
resistance of the bare LSM electrode measured at 8.2 Ω cm2 at 800 ◦C was reduced to
0.39 and 0.09 Ω cm2 after infiltration with 0.5 and 1.5 mg cm−2 GDC, respectively. The
electrodes, developed by Chen et al. [198,377], showed high stability under polarization
with an anodic current of 500 mA cm−2 at 800 ◦C in air for 100 h. However, it should be
noted that the area of the infiltrated electrodes is generally small (<1 cm2) because it is
difficult to obtain a homogeneous distribution of the component in the matrix over a large
area in a non-mechanized infiltration process.

For the preparation of the LSCF-based electrodes, compositions with ionic conductors
were used, such as YSZ [411,412], YSZ with GDC10 [413], GDC10 [160,336,407,414–418]
GDC [110,120,171,417–421], NdxGd0.15Ce0.85 − xO2 − δ (NGCOx) [166], SDC [114,127,162,
184,185,416,422–426], Ce0.8Zr0.2O2 − δ [427], BZYb [177], BCZYYb [178,181], BCZY [185],
BCZY15 [186], La2Ce2O7 (LCO) [185], LSGM [428,429], as well as with the MIEC mate-
rials Bi0.3Sr0.7Co0.3Fe0.7O3 − δ [172], La0.94Ni0.6Fe0.4O3 (LNF94) [340], Ba0.5Sr0.5Co0.8Fe0.2
O3 − δ [430], SrCo0.2Fe0.6Ni0.2O3 − δ [431]. As in the case of the LSM-based composites, the
LSCF-based composite electrodes can be prepared by conventional mixing [166,185,407],
infiltration [340,416–418,421,425,426], and by creating core–shell structures [340,424].

Ling et al. [407] evaluated the electrochemical activity of the pristine LSCF cathode and
the LSCF–GDC10 composite cathodes at the operating temperatures of 500–700 ◦C. The Rp
value of the LSCF porous electrode, sintered on the thin-film GDC10 electrolyte at 975 ◦C,
was measured to be 1.20 Ω cm2 at 600 ◦C. The GDC10 additives to LSCF improved the
electrode performance, reducing the polarization resistance down to 0.17 Ω cm2 at 600 ◦C
for the LSCF–GDC composite cathode with the GDC10 content of 60 wt%. The higher
GDC10 content resulted in an increase of polarization resistance, which was consistent with
the ambipolar resistivity model of the porous composite cathode [409]. It has been shown
that the polarization resistance increases in the composites with high electrolyte content
because the electron-conducting pathways cannot be effectively formed [407]. Besides, both
the ohmic resistance and the contact resistance were high for the LSCF–GDC10 composite
cathode with the GDC10 content of 70 wt%. Therefore, it was concluded that the optimum
GDC content to achieve the lowest polarization resistance of the LSCF–GDC10 composite
cathode was 60 wt%. The performance of the single cell with the optimized LSCF–GDC
composite as the cathode, GDC10 as the electrolyte, and Ni–GDC10 as the anode was
characterized by the maximum power density (MPD) value of 422 mW cm−2 at 600 ◦C. The
superior electrochemical performance of the LSCF–GDC10 composite cathode, observed
in [407], compared to that obtained in [408–410] (as shown in Figure 8d) is consistent with
the model that the optimum GDC10 volume fraction to achieve the minimum polarization
resistance may be greater than 50 wt%, since the grain size of the LSCF powder is much
smaller compared to that of the GDC powder.

A simple method for the preparation of nanosized composites has been proposed by
Xi et al. [415]. The LSCF–GDC10 powders were obtained from La2O3, Sr(OH)2, Co3O4,
Fe2O3, and GDC10 powders, mechanically treated in a high-speed attrition-type mill for
20 min. The resulting composite electrodes, sintered on the SSZ substrate at 900 ◦C, were
characterized by the corresponding polarization resistance value of 0.38 Ω cm2 at 700 ◦C.
The authors of [415] concluded that the mechanical treatment allowed the formation of
nanosized particles in the LSCF–GDC10 composite as compared to the conventional mixing
technique with the formation of micro-sized particles.
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Samreen et al. [166] used the co-doped GDC for the fabrication of the LSCF–NGCOx
composite electrodes (x was equal to 1, 3, 5, 7 wt%), obtained from the corresponding
powder mixtures. According to the electrochemical impedance spectroscopy (EIS) data
obtained on the symmetrical cells with the LSCF–NGCOx electrodes, sintered at 1100 ◦C on
the GDC substrate, the lowest Rp equal to 0.31 Ω cm2 at 700 ◦C was observed for NGCO5.
As shown in Figure 8e, the NGCO5-based electrode showed better performance not only
compared to LSCF and other studied LSCF–NGCOx electrodes [166], but also compared to
the LSCF–GDC10 electrodes [415]. Thus, the Nd co-doping of GDC can be considered as
the promising way for the fabrication of the composite electrodes based on LSCF due to the
improvement of the oxygen ion diffusion pathways and the optimization of the TPB sites.

In [120], the GDC-coated LSCF composite cathode prepared by the dip-coating tech-
nique was shown to have both the excellent electrochemical performance and the Cr
poisoning tolerance. According to the EIS results, the 76LSCF–24GDC composite cathode
was characterized by the polarization resistance value of 0.59 Ω cm2 at 700 ◦C, compared
to 0.87 Ω cm2 at 700 ◦C for the bare LSCF. The 76LSCF–24GDC and LSCF cathodes showed
the Rp values of 0.71 and 1.35 Ω cm2 at 700 ◦C, respectively. after the stability tests under
the Cr poisoning conditions for 200 h. Zhang et al. [120] considered that the Cr poisoning
of the composite cathode was reduced due to the diminishing of both Cr deposition on the
electrode surface and the SrCrO4 formation.

Three different types of the LSCF-based composite cathodes for proton-conducting
fuel cells (PCFCs) were obtained and investigated in [185]. The LSCF–SDC, LSCF–BCZY,
LSCF–LCO electrode slurries were prepared from the LSCF and SDC, BCZY, and LCO
powders, respectively, mixed in a 7:3 weight ratio using terpineol and ethyl cellulose as
binders. The power densities of the anode-supported cells (ASC) with the LSCF–SDC,
LSCF–BCZY, and LSCF–LCO cathodes, sintered on the BCZY electrolyte at 1000 ◦C, were
measured to be 421, 432, 469 mW·cm−2 at 600 ◦C. The long-term operation tests of the
single cell with the LSCF–LCO cathode showed the stability of the cell power of 420 mW
cm−2 during 100 h at 600 ◦C without any obvious degradation. Gao et al. [185] suggested
that the excellent performance of the LSCF–LCO cathode, compared to LSCF–SDC and
LSCF–BCZY was due to the enhanced migration rates of proton and oxygen ions through
the BCZY electrolyte, as shown in Figure 8f.

According to the conclusions of the work [421], the LSCF-based cathodes, obtained
as a three-dimensional network of nanofibers had such advantages as high porosity, high
percolation, continuous paths for charge migration, good thermal stability, and excellent
framework for subsequent infiltration. The maximum power densities of the single cells
with the NiO–YSZ as anode, YSZ as electrolyte, LSCF nanofiber cathode, prepared by elec-
trospinning, and LSCF–GDC composite, prepared by the GDC infiltration, were measured
to be 900 and 1070 W cm−2 at 1.9 A cm−2 at 750 ◦C, respectively. The polarization resis-
tances of the LSCF and LSCF–GDC composite cathodes were equal to 0.26 and 0.21 Ω cm2

at 750 ◦C, respectively. In [417], the LSCF–GDC10 composite cathodes were formed from
the LSCF nanofibers deposited on the GDC10 electrolyte, and the GDC10 was introduced
into the LSCF scaffold by the infiltration method. The polarization resistances for the LSCF
nanofiber and LSCF–GDC10 (weight ratio of 1:0.56) composite cathodes were equal to 0.78
and 0.14 Ω cm2 at 700 ◦C, respectively. The size of the infiltrated particles also may have an
influence on the electrode performance. Burye and Nicholas [432] used desiccation of LSCF
precursor nitrate solutions infiltrated into porous GDC10 scaffold with CaCl2 to decrease
the average size of the infiltrated LSCF particles in the LSCF–GDC10 composite cathode
down to 22 nm, which was more than twice lower than that in the pristine cathode. It
allowed polarization resistance of 0.10 Ω cm2 to be obtained at 575 ◦C, compared to 650 ◦C
for the undesiccated electrode. The results of the works [417,421,432] demonstrated the
efficiency of the infiltration method in achieving the high cell performance of the solid
oxide fuel cells.

The 50LSCF–50SDC core–shell composite cathode was prepared in [424]. The 500-nm
size of the SDC core was controlled to achieve the total encapsulation of the SDC particles
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with the LSCF particles, resulting in the improved phase homogeneity with the excellent
microstructure and increased TPB. The LSCF–SDC core–shell cathode was characterized by
a polarization resistance of 0.265 Ω cm2 at 650 ◦C and long-term operational stability during
both the 120 h electrochemical test and the 30 thermocycles between 100 and 650 ◦C [424].
According to the data of [340], the LNF94-infiltrated LSCF composite cathode with the
core–shell structure on the GDC10 electrolyte was characterized by the values of Rp equal
to 0.041 Ω cm2 and MPD, equal to 1080 mW cm−2 at 800 ◦C, and the excellent long-term
stability in CO2 and Cr-containing atmospheres. The authors [340] showed that it was the
heterogeneous electrode interface that significantly increased the electron conductivity and
the oxygen dissociation.

Wang et al. [433] proposed a novel core–shell LSCF-based perovskite structured elec-
trocatalyst covered with Ruddlesden–Popper phase La0.6Sr1.4Co0.2Fe0.8O4 − δ (LSCF214)
thin film. To form a local LSCF214 structure on the LSCF particles, Sr(NO3)2 was added to
the suspension of LSCF particles simultaneously with urea as a complexing agent. After
suspension evaporation on a hot plate, a uniform Sr2+ coated LSCF particle precursor
was obtained, which was finally calcined at 800 ◦C. The core–shell electrode formed by
screen-printing followed by sintering at 900 ◦C, 2 h on the SDC electrolyte demonstrated a
lower polarization resistance (0.17 Ω cm2) than the LSCF electrode (0.32 Ω cm2) at 650 ◦C.
The MPD values obtained for the anode-supported cell with the thin-film SDC electrolyte
and the core–shell and conventional LSCF electrodes were 0.57 and 0.3 W cm−2 at 650 ◦C,
respectively. Moreover, the core–shell electrode showed a low degradation rate in the
long-term test at 600 ◦C. The ASR values at 0, 100, 200, 300 and 400 h were 0.58, 0.77, 0.84,
0.85 and 0.82 Ω cm2, respectively.

In summary, the preparation of the composite electrodes, aimed at increasing the
TPB by improving the oxygen ion migration, remains the most demanded strategy to
enhance the electrochemical performance of the traditional perovskite electrodes. However,
the latest composite fabrication techniques use nanostructured materials to provide an
increased electrode interface.

4.3. Improvement of the Electrode Surface

The effective approach to increase the electrochemical activity of the conventional
perovskite electrodes by increasing the TPB is related to the preparation of decorated
electrodes by the infiltration (also called impregnation) method, where the porous cathode
is filled with various additives [148,163,304,323,340,382,403,434–438] as well as decorating
the electrode surface with nanocatalysts [141,154,315,387,405,416,426,439] and nanocoat-
ings [303,308,341,342], which significantly improve the electrode surface diffusion and
exchange with the gas phase.

The enhancement of the electrochemical performance of (La0.8Sr0.2)0.95MnO3 − δ

((LSM200.95)–YSZ cathodes by infiltrating salt solutions was reported in [382]. The de-
veloped 50LSM200.95–50YSZ cathodes were characterized by the reduction of the high-
frequency polarization resistance up to 45% of the baseline (Rp(hf) = 1.06 Ω cm2 at 700 ◦C for
the YSZ infiltrated electrode), and the low-frequency polarization resistance up to 28% of
the baseline (Rp(lf) = 0.57 Ω cm2 at 700 ◦C for the ammonium chloride infiltrated electrode).

According to Zhang et al. [304] and Han et al. [305], the reversible cell with the
LSM20–YSZ air electrode infiltrated with SrTi0.3Fe0.6Co0.1O3 − δ (STFC), the YSZ electrolyte,
and the SrTi0.3Fe0.7O3 − δ fuel electrode showed the improved power performance using
different fuel gases. The STFC infiltration allowed for an increase in the peak power
density of the solid oxide cell in the fuel mode by >1.5 times, up to 0.88 W cm−2 and
1.37 W cm−2 using air and oxygen as an oxidizer, respectively [304], and up to 0.9 W cm−2

and 0.68 W cm−2 using wet H2 and wet CO as a fuel, respectively [305], at 800 ◦C.
Wu et al. [148], who investigated the influence of the infiltration process on the

morphology and performance of the LSM electrode (electrode schemes are presented
in Figure 9), showed that the electrochemical characteristics of the LSM–SDC electrodes
infiltrated with Sm0.5Sr0.5CoO3 − δ (SSC) and the LSM–SSC electrodes infiltrated with
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SDC (LSM–SSC–SDC) were dependent on the infiltration time. It was shown that as the
infiltration time increased, the cathode polarization resistance and overpotential decreased,
and the single-cell peak power density improved. The Rp value for the LSM–SSC–SDC
electrode was obtained as low as 0.08 Ω cm2 at 800 ◦C compared to 2.38 Ω cm2 at 800 ◦C
for the LSM electrode.
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Sun et al. in [154] developed the composite electrode for a protonic ceramic fuel cell
based on (LS)0.95M20 and BZY15 infiltrated with Pr6O11 nanoparticles over four cycles.
The polarization resistance of the (LS)0.95M20–BZY15 cathode on the BZY20 electrolyte,
measured at 600 ◦C, was equal to 0.12 Ω cm2, and the peak power density of the NiO–
BZY20|BZY20|LSM–BZY15–Pr6O11 single cell reached 0.28 W cm−2 at 600 ◦C. The long-
term stability tests showed that the obtained cathode was stable at 600 ◦C for 100 h. The
results of the work [154] demonstrated that the infiltration technique, which ultimately led
to the TPB extension, is a highly effective strategy to improve the electrochemical activity
of conventional LSM–YSZ cathodes by enhancing the oxygen adsorption, dissociation, and
diffusion processes.

In [387], the possibility of using the low-cost mixed metal LnOx (Ln = Ce, La, Nd,
Pr, Sm) as an ionic conductor in an air nanostructured electrode was demonstrated,
and the Rp value, equal to 0.04 Ω cm2 at 800 ◦C, was measured for the composite elec-
trode of praseodymium oxide-modified 60LSM20–40LnOx. The influence of the cerium,
praseodymium or manganese oxide infiltration on the electrochemical performance of the
80(LS)0.95M20–20YSZ electrodes was investigated in [306]. It was shown that the infiltration
of oxide nanoparticles significantly increased the electrochemical performance of LSM–YSZ:
infiltration of PrOx resulted in a polarization resistance value of 0.068 Ω cm2 at 700 ◦C.

Seyed-Vakili et al. [405] investigated the effect of co-infiltration with metallic (Ag)
and ceramic (La0.8Sr0.2FeO3 (LSF20), CeO2) precursors on the performance of the LSM
cathode on the YSZ substrate. It was shown that the introduction of Ag and ceria reduced
the polarization resistance down to 0.64 Ω cm2 at 800 ◦C, which was 2.5% lower than that
of the pristine LSM electrode, while the infiltration of Ag solution reduced the electrode
overpotential by approximately 114%.

The results of the study [303] showed that the enhancement of the LSM20–YSZ elec-
trode activity can be achieved by using a nanocoating consisting of the dual (CoOx, Pt)
nanocatalyst. The polarization resistance values for the electrodes without and with de-
posited nanocatalysts were equal to 0.66 and 0.31 Ω cm2 at 750 ◦C, respectively. In addition,
the long-term operation of the NiO–YSZ|YSZ|LSM20–YSZ single cell at 750 ◦C showed
that the use of the nanocoating resulted in an increase in the MPD value of almost 200%.
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The improved electrochemical performance of the LSM20 cathode on the YSZ elec-
trolyte substrate was achieved by depositing the nanocrystalline YSZ interlayer at the
LSM/YSZ interface using an infiltration process [308]. The LSM–YSZ infiltrated cathode
showed a reduced polarization resistance value of 0.11 Ω cm2 compared to 0.35 Ω cm2 for
the LSM infiltrated cathode (at 750 ◦C). In addition, the single cell NiO–YSZ|YSZ|LSM20
with the nanocrystalline YSZ interlayer was characterized by the increased peak power
density at 750 ◦C, equal to 1.54 W cm−2, compared to the value of 0.76 W cm−2 for the
cell without the YSZ interlayer. The single cell based on the LSM–YSZ infiltrated cath-
ode showed long-term stability at 750 ◦C for 300 h at a current density of 0.5 A cm−2.
Koo et al. attributed the improved oxygen reduction kinetics to the increased TPB on the
infiltrated YSZ interlayer, which increased the number of reaction sites with a low reaction
barrier [308].

The LSCF–GDC10 composite electrodes decorated with CuO nanoparticles were
prepared by the infiltration technique in [416]. The results of the high-temperature X-ray
diffraction study indicated the formation of a new Cu-containing LSCF-based compound.
The polarization resistance of the LSCF–GDC10 cathode on the GDC10 substrate decreased
significantly from 0.62 Ω cm2 to 0.32 Ω cm2 at 650 ◦C for the bare and infiltrated electrodes,
respectively. Gao et al. concluded that the electrode improvement was due to the Cu2+

reduction at the LSCF–GDC10/CuO interface. Meanwhile, a slight degradation in the
performance of the infiltrated samples was observed during the ageing tests at 500 ◦C and
650 ◦C for 150 h in air. The authors of [416] attributed the electrode degradation to the
coarsening of the CuO particles, the Sr segregation and the low stability of Cu-containing
impurities formed at the interface.

The 50LSCF–50Er0.4Bi1.6O3 (ESB) composite cathode prepared by infiltration using
organic solvents in [323] showed the excellent electrochemical performance with the SDC
electrolyte, equal to 0.11 Ω cm2 at 700 ◦C, compared to 0.27 Ω cm2 at 700 ◦C for the LSCF
cathode. It was also found that this value was the best performance for the LSCF infiltrated
electrodes reported in the literature, such as LSCF–Ce(Ag) [315], LSCF–(Pr,Ni,Mn)O [341],
LSCF–Pd [439], LSCF–LSM [403], LSCF–SDC [425], LSCF–SDC–CuO [416], LSCF–SDC–
Ag [426], LSCF–GDC10 [417,418]. The NiO–SDC|SDC|LSCF–ESB single cell fuelled with
wet hydrogen, characterized by an MPD value of 469 mW cm−2 at 700 ◦C had a good
short-term stability for 50 h at a current density of 0.45 A cm−2 [323]. Wang et al. concluded
that the ESB additive had changed the rate-limiting electrode process from the charge
transfer to the oxygen diffusion on the cathode surface.

Shi et al. [341] reported on the enhanced electrochemical activity of the LSCF cathode
by coating a thin film of (Pr,Ni,Mn)O (PNM5) oxide using an infiltration method. According
to the XRD and SEM data, the PNM5 thin film coating, which consisted of a mixture
of the Pr6O11, PrNiO3, MnO and NiO oxides, have formed the small particles on the
surface of the LSCF backbone particles. The EIS data showed that the PNM5-infiltrated
LSCF cathode on the GDC substrate exhibited Rp = 0.388 Ω cm2 at 700 ◦C compared to
Rp = 1.166 Ω cm2 for the bare LSCF cathode. The MPD values of the NiO–DC|GDC|LSCF
single cells were equal to 241 and 580 mW cm−2 at 750 ◦C for the cells with the bare and
infiltrated LSCF cathodes, respectively. The degradation rates of the above cells were
measured to be 0.07093% and 0.02168 at 750 ◦C during 200 h, respectively. Distribution of
Relaxation Times (DRT) function analysis confirmed that the PNM5 coating significantly
improved the ORR on the LSCF electrode surface.

Thus, the literature data presented confirm that the infiltration technique is currently
the most advanced method for producing active air electrodes with enhanced surface prop-
erties.

4.4. Improvement of the Electrode–Electrolyte Interface

An advanced air electrode may consist of several layers, each of which has specific
requirements. For a functional layer (FL), which is close to the interface with the elec-
trolyte, it is important to have the thermo-mechanical properties (CTE value) close to those
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of the electrolyte substrate with no chemical interaction with the electrolyte, and high
electrochemical activity.

It is known that the electrical conductivity of LSM-based composite layers decreases
significantly with increasing electrolyte content [440], so it is necessary to form a collector layer
(CL) with high electronic conductivity to ensure uniform current distribution over the electrode
volume and to organize a stable current capacity. Therefore, noble metals have been used
as the collectors for the composite electrodes: platinum in [149,198,377], and silver in [441].
The oxide electrode collectors with LSM were used in [149,151,387,442] (LSM40), in [205]
(LSM30), [442] La0.65Sr0.3MnO3 − δ (L0.65SM30) and in [303,443] (LSM20), [442] ((LS)0.98M20).

Harboe et al. [205] investigated the microstructure and electrochemical activity of the
L0.65SM30–YSZ–graphite–rice starch electrodes with the LSM collector with different com-
positions in a symmetrical YSZ electrolyte-supported cell. The results obtained showed that
the application of the double L0.65SM30–YSZ–rice starch electrode combinations with the
LSM30 current collector, sintered at 1150 ◦C, showed the best electrochemical performance
of the cathode, equal to 0.26 Ω cm2 at 800 ◦C.

In [379] the effect of the configuration of the electrode based on LSM20–YSZ on its
performance was investigated. The electrode with an area of 25 mm2 was formed by
screen printing and annealed at 1200 ◦C for 2 h. Three electrode configurations were
studied: monolayer 80LSM20–20YSZ electrode (the mass ratio of the components in the
electrode is shown); bilayer electrode with FL 80LSM20–20YSZ and CL LSM20; triple-layer
electrode with FL 60LSM20–40YSZ, interlayer 80LSM20–20YSZ and CL LSM20, as shown
in Figure 10a. Scanning electron microscopy showed the absence of any defects at the
interfaces between the composite cathode and the electrolyte, and between the different
cathode layers for the triple-layer electrode, which was ensured by the gradual change
in CTE (Figure 10b). The thickness of each cathode layer was approximately 5–6 µm.
The polarization resistances for the above electrode configurations were 0.32, 0.24 and
0.18 Ω cm2 at 800 ◦C, respectively. Maximum values of current density (0.77 A cm−2 at
an overvoltage of 0.1 V at 800 ◦C) and specific power of a single SOFC (447 mW cm−2

compared to 220 mW cm−2 for the single-layer electrode) were obtained for the triple-
layer electrode.

Gradient composite electrodes based on La0.72Sr0.18MnO3 − δ (LSM18), LSCF, GDC
were prepared by sol–gel slurry deposition [199]. The polarization resistance values for
the 50LSM18–50GDC cathode with the 25LSM18–25LSCF–50GDC and 50LSCF–50GDC
interlayers, and the LSCF collector layer (Figure 10c,d), sintered at 900 ◦C on the YSZ
substrate, were equal to 0.21 and 0.10 Ω cm2 at 700 and 800 ◦C, respectively.

Tian et al. [307] fabricated the double-layer electrode LSM35–LSCF with the LSCF top
layer infiltrated with SDC, the polarization resistance of which decreased by a factor of 3
times at 800 ◦C compared to the single-layer LSM electrode. The single fuel cell with the
above-fabricated air electrode had an MPD value of 671 mW cm−2 at 800 ◦C, which was
5 times higher than that of the bare LSM cell. The electrolysis cell with the LSM35–LSCF
air electrode was characterized by the hydrogen production rate of 547.58 mL cm−2 h−1 at
800 ◦C under 1.5 V, which was three times higher than that of the LSM air electrode. The
results obtained in [307] justified that the formation of the double-layer air electrodes, whose
functional layers consist of both LSCF and LSM, is a promising strategy for enhancing
the oxygen reaction reduction and could be useful for the improvement of fuel cells and
electrolysis cells.
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Figure 10. Examples of functional-layer electrodes based on LSM: (a) scheme and (b) SEM micrograph
of three-layer electrode with 60LSM20–40YSZ functional layer, 80LSM20–20YSZ interlayer and LSM20
collector layer (1200 ◦C, 2 h), obtained by screen printing [379]; (c) scheme and (d) SEM micrograph of
four-layer electrode with 50LSM18–50GDC functional layer, 25LSM18–25LSCF–50GDC and 50LSCF–
50GDC interlayers and LSCF collector layer (900 ◦C, 2 h), obtained by sol–gel slurry deposition
((a,b) are reproduced from [379] with permission of Springer; (c,d) are reproduced from [199] with
the permission of Elsevier).

The addition of La0.8Sr0.2FeO3 − δ (LSF) into the double functional layer and infiltration
were simultaneously used in [444] to fabricate the LSCF−LSF−YSZ composite cathode.
Layers of LSF and LSCF were sequentially deposited on the YSZ scaffold with LSF as
a protective layer between LSCF and YSZ. The Rp values of the symmetrical cells with
the LSF- and LSCF−LSF-based cathodes were equal to 0.72 and 0.19 Ω cm2 at 700 ◦C,
respectively. The MPD values of the single cells with the LSCF−LSF−YSZ and LSF−YSZ
cathodes were measured to be 1277 and 922 mW cm−2 at 700 ◦C, respectively. The results
obtained showed that the use of the LSF protective layer could be applied to the adoption
of the LSCF air electrode for use in YSZ-based cells without CeO2-based buffer layers.

The study on the effect of the thickness of FL and CL of the LSCF-based double-layer
electrode on its polarization resistance in contact with the GDC10 electrolyte showed
that the optimum FL was almost 5 µm-thick, while the optimum CL thickness reached
30 µm [445]. For the symmetrical cell with the optimum thickness cathode layers the
excellent Rp value was measured to be 0.021 Ω cm2 at 650 ◦C.

Lee et al. [186] prepared the LSCF−BCZY15 composite cathode with gradient porosity
by a slurry deposition method for use in PCFCs with the BCZY15 electrolyte. The gradient
composite cathodes were prepared in such a way that the cathode porosity and cathode
powder size increased significantly in the opposite direction from the electrode–electrolyte
interface. The polarization resistances of the symmetrical cells with the porosity gradient
and the conventional LSCF−BCZY15 composite cathodes were 0.19 and 0.22 Ω cm2 at
700 ◦C, respectively. The MPD values of the NiO–BCZY15|BCZY15|LSCF−BCZY15 single
cells with the porosity gradient and the conventional cathodes were 367 and 352 mW cm−2

at 700 ◦C, respectively. In addition, the cell with the porosity gradient cathode showed
excellent 100 h stability at 700 ◦C with a degradation rate of no more than 2%. The
authors [186] concluded that it was the gradient structure of the composite cathode that
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prevented the degradation of the cell performance and stabilized the long-term durability
by improving the oxygen adsorption and oxygen reduction at the TPBs.

A numerical simulation of the microstructure of the porosity gradient electrodes was
presented in [115]. A “multi-sphere” discrete element method was used to model the
powder packing, a kinetic Monte Carlo method was used to model the powder sintering,
and the lattice Boltzmann method was used to model the electrochemical reaction at the
cathode. It was found that the best performance of the cathode was achieved for the cathode
design with a thickness of 25 µm and a density range of 40−65%, which suppressed the
sintering but improved the thermal stability of the electrode.

The sintering conditions of the electrode affect the microstructure, adhesion of the elec-
trode to the electrolyte and the possible electrode–electrolyte interdiffusion and chemical
interaction, and are, therefore, the most important parameters of the electrode formation.

In [380], the effect of sintering conditions on the performance of electrodes with
a 50(LS)0.95M25–50YSZ functional layer and an (LS)0.95M25 collector was investigated.
Electrodes annealed in the temperature range 1150–1300 ◦C were studied, with the thickness
of the FL varying in the range of 4–14 µm, and the collector layer 15–85 µm. Reducing
the sintering temperature of the FL resulted in a more porous structure with smaller pores
and particles, which reduced the polarization resistance. When the sintering temperature
of the FL was kept constant at 1300 ◦C, a reduction in the annealing temperature of the
collector also resulted in a reduction in the polarization resistance. The minimum values
of the polarization and contact resistances (0.03 and 0.17 Ω cm2 at 1000 ◦C, respectively)
were obtained for the 13 µm thick FL electrode annealed at 1150 ◦C and the 80 µm thick CL
electrode annealed at 1150 ◦C.

A comparative study to investigate the effect of sintering temperature on the functional
properties of (LS)0.95M20–YSZ and (LS)0.95CF–YSZ composites prepared as hollow fibers
in the range of 1250–1450 ◦C was presented in [241]. For LSCF–YSZ, the formation of
the pyrochlore structured impurity phase was observed at the sintering temperature of
1300 ◦C, followed by the degradation of the perovskite phase at 1400 ◦C. In contrast, LSM–
YSZ showed high thermal stability. It was shown that the highest porosity (34.57% and
33.32% for LSM−YSZ and LSCF−YSZ, respectively) was obtained after sintering at the
temperature of 1250 ◦C, and with the increasing sintering temperature, the porosity and
gas permeability of both composites decreased significantly. The mechanical strength of
the composites (which is an important property for the cathode-supported SOFCs) was
improved by increasing the sintering temperature. For the two composites sintered at
1400 ◦C and with a sufficient porosity of 22%, the mechanical strength was measured
to be 161 and 114 MPa for LSM–YSZ and LSCF–YSZ, respectively. Thus, Ab Rahman
et al. [241] concluded that the LSM–YSZ composite cathode was more noticeable at high
sintering temperatures compared to the LSCF−YSZ due to its thermal and chemical stability,
optimum values of the mechanical strength, gas permeability, and porosity.

The effect of sintering temperature on the performance of the LSCF-based composite
cathodes in PCFCs was investigated in [177]. It was shown, that the ohmic and polarization
resistances of the LSCF–BZYb composite cathodes on the BZYb electrolyte decreased from
0.76 to 0.45, and from 2.43 to 0.73 Ω cm2 at 600 ◦C for the electrodes sintered at 900 and
1100 ◦C, respectively. The power densities of the fabricated PCFCs with the LSCF–BZYb
composite cathodes sintered at 900 and 1100 ◦C were equal to 120 and 250 mW cm−2

at 600 ◦C, respectively. Watanabe et al. [177] suggested that a better performance of the
electrodes sintered at higher temperatures was due to the improved adhesion at the cathode–
electrolyte interface, resulting in an increased number and thickness of the BZYb proton
conducting paths within the composite cathodes.

In addition, well-known problems with air electrode delamination [446–448] were par-
tially solved by introducing a porous electrolyte layer at the LSM electrode/YSZ dense elec-
trolyte interface [372,384] or by forming nanostructured or contact layers at the LSCF/YSZ
interface [449,450]. The flash co-sintering technique was used to form of the LSCF nanofiber
coating on the GDC substrate [451] as a possible solution to the electrode delamination
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problem. The experimental and modeling results showed that severe cracking was observed
when the LSCF layer was connected to the electrode. When the LSCF layer was electrically
isolated from the electrode, the temperature gradient was dropped. It was concluded that
the optimum LSCF/SDC bilayer structure for use in SOFCs would be maintained if the
GDC layer density of 92.86% and the LSCF layer porosity of 52.26% were achieved.

He et al. applied the numerical simulation using level-set and adjoint methods to
optimize the porous LSCF microstructure [452–454]. It was shown that the spherical
LSCF solid particles were preferable for performance improvement [452]. In [454], the
LSCF/GDC10 electrode–electrolyte interface was numerically modelled using the adjoint
method, and it was concluded from the calculation results that the cathode with the
optimized electrode–electrolyte interface (optimized electrolyte volume fraction along
the cathode thickness direction) had higher electrochemical activity compared to the flat
electrode–electrolyte interface.

Thus, the data presented in this section show that the improvement of the perovskite
electrode–electrolyte interface aimed at improving the processes occurring in TPBs includes
the techniques of the gradient electrode fabrication, the use of collector layers, and the
application of the optimum sintering temperature.

5. Modeling of the Electrode Performance

The data presented in the above paragraphs justify a greater number of experimental
studies to improve the electrochemical performance of the conventional perovskite elec-
trodes. Meanwhile, the high cost of the fuel and electrochemical cell elements and the time
required for the investigations have led to the attempts to develop the mathematical models
of the electrode performance and to perform 3D reconstruction of solid oxide cells with
LSM- and LSCF-based electrodes using computational studies and an Artificial Intelligence
(AI) technique. The computational modeling allows the analysis of key parameters that
influence the electrochemical activity of the air electrodes.

In [309], Zhang et al. combined the super-resolution of a two-dimensional micrograph
with the distribution of relaxation times (DRT) analysis data, showed that the active TPB
was the key factor responsible for the LSM–YSZ infiltrated electrode activity, which moni-
tored the electrochemical process at a high frequency. The authors of [309] presented the
prospective strategy for modeling three-dimensional heterogeneous nanostructures from
two-dimensional graphical data, and proposed an approach for correlating between func-
tional properties of nanostructured electrodes. Sharma et al. [455] simulated a button cell
based on a NiO–YSZ fuel electrode, YSZ electrolyte, and LSM air electrode. Electrochemical
model equations (Fick’s model, Butler–Volmer equation, Ohm’s law used to estimate the
values of concentration, activation, and ohmic overpotential losses, correspondingly) im-
plemented in MATLAB software allowed the overall performance of the cell to be predicted
by varying the fuel gas composition, operating temperature, electrolyte thickness and cell
configuration. The authors believe that the mathematical model developed in [455] could
be a prospect for the future design of solid oxide cells.

Yang et al. [456], for the first time, applied a calibrated multiphysics simulation
with a multistep ORR model and structural coarsening data from a phase field study
to investigate the degradation of the LSM–YSZ composite cathode performance. The
multistep oxygen reduction reaction mechanism was considered to involve parallel surface
(3PB) and bulk (2PB) pathways (Figure 11a,b). Multiphysical processes, such as charge
conservation, gas transport through porous media and surface/bulk transport in the solid
phase, were considered. The numerical simulation with a multistep ORR mechanism was
simultaneously calibrated with DC polarization curves and AC impedance behavior for
different air/fuel supply conditions. The structural changes were found to be sensitive
to the volume fraction of LSM in the composite (Figure 11c). The degradation due to
grain coarsening in the composite cathode was mainly due to the reduction of active sites
for surface and bulk charge transfer steps with a change in the contributions of the 3PB
(bulk) and 2PB (surface) pathways (Figure 11d). The simulation results were in good
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agreement with the experimental investigation of the degradation kinetics of the LSM–YSZ
cathode performance carried out using combined isotope exchange, EIS and microstructural
study [457].

Figure 11. Modeling the degradation of the LSM–YSZ cathode (a); 3PB (surface) and 2PB (bulk)
pathways of the electrode reaction for LSM–YSZ cathodes (b); the predicted evolution trend of the
LSM/air interface, where surface adsorption and dissociation steps occur (c); the changes in the
contributions of the 3PB and 2PB pathways due to structural degradation (d); Equivalent Circuit
Model for the fit of the impedance data and their attribution to each layer for electrolyte-supported
(*) and anode-supported (**) cells with LSCF cathode (e); single and bilayer LSCF-based electrode
configurations (f) ((a–d) are reproduced from [456]; (e) is reproduced from [116], (f) is reproduced
from [458]).

The numerical simulation of the influence of microstructural characteristics, such as
particle size and porosity, on the electrochemical performance of LSCF-based cathodes was
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provided by the He’s group [459,460]. In [459], it was predicted that the best performance
of the LSCF cathode was observed at a porosity of 0.40, and the cathode performance
decreased sharply at a critical porosity of 0.10–0.25 due to pore blockage. It was also shown
that the LSCF cathodes with the smaller mean pore size could be active at the low porosity
of 0.10. In [460], the 3D microstructure of the LSCF–GDC cathode was constructed and the
influence of the GDC pillars inside the bare LSCF and composite cathodes with different
particle sizes was studied. The results obtained showed that the GDC fibers improved the
performance of the LSCF cathode and were more effective in the cathode microstructures
with smaller particle sizes.

The prediction of the performance characteristics for the YSZ electrolyte-supported
single cell with NiO–SDC as the composite anode and LSCF as the cathode was provided
in [461] using a Support Vector Machine (SVM) machine learning technique. The key
SOFC parameters, such as the temperature and the supply voltage, were input into the
computational model and the values of current density and the MPD values were the output
parameters, corresponding to 1160 mA cm−2 and 225 mW cm−2 at 800 ◦C, respectively. The
prepared NiO–SDC|YSZ|LSCF single cell with hydrogen as fuel showed the values of peak
current and power density equal to 1170 mA cm−2 and 227 mW cm−2 at 800 ◦C, respectively,
which showed the closeness of the theoretically predicted and research data [461].

The experimental and theoretical approaches to identify the contributions of the
different cell components were applied in [116] using EIS and a 2D simulation tool
for the anode-supported NiO–YSZ|YSZ|LSCF–GDC10 and electrolyte-supported NiO–
CGO|YSZ|LSCF–GDC10 planar cells (Figure 11e). It was found that in the electrolyte-
supported cell, the largest contribution to the total cell resistance was ohmic due to the
greater thickness of the electrolyte layer compared to the anode-supported cell. The major
contribution to the total cell resistance of the anode-supported cell was due to the activation
overpotential, which was three times higher than that of the electrolyte-supported cell. Gas
diffusion was negligible in all tests with the electrolyte-supported cell, in contrast to its large
influence in the anode-supported cell. In addition, temperature had a greater influence in
the anode-supported cell due to the higher values of the activation energy for the ohmic
and activation losses. As the current density increased, the contribution to the activation
resistance decreased in both cells studied. Padinjarethil et al. [116] considered that the
same work, if improved by introducing the effect of time on the kinetic parameters, could
be useful for predicting the long-term operation of SOFCs. The influence of temperature,
concentration, and current density gradients within and along the cell structure on the
performance of the NiO-cermet anode-supported single cell was evaluated in [462] using
a calibration model. The results obtained for the cell in a steady state showed the strong
role of the temperature gradients along the channel and the mass transport processes at the
gas/electrode interface.

The 1D and 2D models for the LSCF cathode degradation due to sulfur poisoning
were developed numerically in [463]. The 1D model viewed a barrier layer formed on
the LSCF surface with a random distribution of sulfur content in the thickness direction.
The above 1D model was fed to the 2D model of the anode-supported single cell under
sulfur poisoning. The results obtained for the 2D simulation model of the planar SOFC
showed that it was the model that correctly predicted the SrSO4 formation near the cathode–
electrolyte interface in the region of the air channel. Iwai et al. concluded that the model
proposed in [463] could be used to improve the LSCF cathode by considering the poisoning
rate as a function of the barrier thickness.

Modelling of the electrochemical reactions occurring at 2PBs and 3PBs of the single
layer La0.6Sr0.4Co0.4Fe0.6O3 − δ (LSCF60) and bilayer LSCF60/SCT (strontium cobalt tan-
talum oxide) air electrodes in a solid oxide electrolysis cell with the YSZ electrolyte and
GDC10 buffer layer provided in [458] (as shown in Figure 11f) revealed a competition in
electrode kinetics between 2PBs and 3PBs. However, 3PBs were the preferred reactive sites
for the single-layer LSCF60 electrode at high voltages. The application of the SCT layer
increased the activity of 2PBs, thus reducing the oxygen stoichiometry and dimensional
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changes. The authors of [458] considered that the analog strategy would be used to prevent
delamination at the electrode–electrolyte interface. In addition, the cyclic voltammetry (CV)
response of the porous LSCF electrode was simulated in [464], considering the models of
solid-state diffusion coupled with oxygen exchange (model-I) and a detailed description of
the reaction mechanism (model-II). It was shown that the peaks of the voltammograms were
due to the change in oxygen stoichiometry governed by both oxygen diffusion and oxygen
exchange, and model-I satisfactorily described the CV curves when the kchem constant was
determined far from equilibrium. Meanwhile, model II adequately explained the shape of
the voltammograms due to the passivation and decomposition of the LSCF surface.

6. Conclusions

In the present review, the established and novel methods for modifying conven-
tional air electrodes with perovskite structure were discussed, such as lanthanum stron-
tium manganite La1 − xSrxMnO3 − δ (LSM) and lanthanum strontium cobaltite ferrite
La0.6Sr0.4Co0.8Fe0.2O3 − δ (LSCF), with particular emphasis on the selection of the opti-
mal electrode material composition, electrode layer design, progressive synthesis and
deposition methods, and electrode activation techniques. In addition to the creation of
defects as the most suitable way to increase the chemical stability of the materials, the devel-
opment of high-entropy oxides based on LSM and LSCF containing at least five co-dopants
was noted. Ceramic methods such as screen printing, tape casting and spraying were found
to be the most technologically simple and easily scalable electrode fabrication methods.
Spray pyrolysis in its different modifications, along with electrospinning, template method,
and 3D printing were mentioned among the variety of methods available to improve the
conventional perovskite electrodes by extending TPB. The deposition of protective and
non-catalytic layers on the electrode surface was proposed as a solution to the problems of
segregation, impurity poisoning and sluggish oxygen kinetics.

New trends in the design of the LSM- and LSCF-based composite electrodes were high-
lighted, including various infiltration techniques, modification of the electrode structure
using nanofibers and the creation of core–shell structures. The selection of the optimum
sintering temperature, the creation of the electrodes with gradient composition and porosity
and the use of collector layers were shown to be important in improving the perovskite
electrode–electrolyte interface, preventing electrode delamination, and ensuring stable
current collection.

It was shown that computational design and numerical simulations of the perovskite-
based composite allowed us to suggest possible degradation mechanisms and to understand
the electrode behavior at both atomic and macroscopic scales. These methods were found to
be useful for quickly analyzing key parameters that influence the electrochemical activity of
the air electrodes and for predicting the durability of the electrode without time-consuming
experimental work. The development of the mathematical models was shown to be
promising for the future design of solid oxide cells.

The present review, which summarizes the basic information on the methods to
improve the electrochemical performance of conventional air electrodes, can serve as a
guide for the application of the developed technologies to the modification of electrodes
with novel, recently investigated electrode materials.
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