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Abstract

Large multilingual language models such as mBERT or XLM-R enable zero-shot cross-lingual
transfer in various IR and NLP tasks. Cao et al. (2020) proposed a data- and compute-efficient
method for cross-lingual adjustment of mBERT that uses a small parallel corpus to make em-
beddings of related words across languages similar to each other. They showed it to be ef-
fective in NLI for five European languages. In contrast we experiment with a typologically
diverse set of languages (Spanish, Russian, Vietnamese, and Hindi) and extend their origi-
nal implementations to new tasks (XSR, NER, and QA) and an additional training regime
(continual learning). Our study reproduced gains in NLI for four languages, showed im-
proved NER, XSR, and cross-lingual QA results in three languages (though some cross-lingual
QA gains were not statistically significant), while mono-lingual QA performance never im-
proved and sometimes degraded. Analysis of distances between contextualized embeddings
of related and unrelated words (across languages) showed that fine-tuning leads to “forget-
ting” some of the cross-lingual alignment information. Based on this observation, we fur-
ther improved NLI performance using continual learning. Our software is publicly available
https://github.com/pefimov/cross-lingual-adjustment.

1 Introduction

Large multi-lingual language models such as mBERT or XLM-R pre-trained on large unpaired multilin-
gual corpora enable zero-shot cross-lingual transfer (Libovickỳ et al., 2019; Pires et al., 2019), which is
sometimes effective even for languages not seen at the pre-training stage (Ebrahimi et al., 2021; Muller
et al., 2021). Contextualized word representations produced by the models can be further aligned (across
languages) with a modest amount of parallel data, e.g., by finding a rotation matrix using a bilingual dic-
tionary (Mikolov et al., 2013). Such a post hoc alignment can improve zero-shot transfer for text parsing
and understanding (Kulshreshtha et al., 2020; Wang et al., 2019b; Wang et al., 2019a). This approach is
a more data- and computationally-efficient alternative to training a machine translation system on a large
parallel corpus.

Cao et al. (2020) used a small parallel corpus for direct cross-lingual adjustment of the mBERT model
and found this adjustment procedure to be more effective than the post hoc rotation. However, they
experimented only with a single task: cross-lingual NLI, and restricted their study to European languages.
In that, we are not aware of any systematic study that tested this procedure on a set of diverse languages
and tasks.

To fill this gap, we rigorously evaluated the method using four typologically diverse languages (Span-
ish, Russian, Vietnamese, and Hindi) and four different tasks all of which are crucial to information
retrieval and text mining: natural-language inference (NLI), question-answering (QA), named-entity
recognition (NER), and cross-lingual sentence retrieval (XSR). QA and XSR are core information min-
ing tasks directly targeting a user’s information need (Baeza-Yates et al., 1999; Manning et al., 2008)
while NLI and NER are used in document (Tawfik, 2020) and query (Wen et al., 2019; Cheng et al., 2021)
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Figure 1: Histograms of L2 distances between pairs of mBERT last-layer representations for randomly
sampled related (i.e., aligned) and unrelated word pairs from WikiMatrix (Hi-En): (a) original1, (b) after
cross-lingual adjustment, (c) after fine-tuning on English NLI data, (d) after cross-lingual adjustment and
subsequent fine-tuning on English NLI data, (e) after cross-lingual adjustment and subsequent continual
fine-tuning on English NLI data.

analysis. Named entities are the core of entity-oriented (Balog, 2018) and expert search (Brandsen et al.,
2022). Entity-oriented retrieval models can also be used to boost recall of traditional keyword-based
retrievers (Shehata et al., 2022; Ensan and Bagheri, 2017).

Furthermore, existing studies typically avoided statistical testing and presented results for a single
seed. In contrast, we performed each experiment with five seeds and assessed statistical significance of
the difference from a baseline. In addition to the original method of Cao et al. (2020) we evaluated its
continual-learning extension (Ratcliff, 1990; Robins, 1995; Parisi et al., 2019) where we combined the
target task loss with the cross-lingual adjustment loss (Caruana, 1996).

In our study, we ask the following research questions:

R1 How does cross-lingually adjusted mBERT fine-tuned on English data and zero-shot transferred to
a target language perform on various IR/NLP tasks and typologically different languages?

R2 How does adjustment of mBERT on parallel data and fine-tuning for a specific task affect similarity
of contextualized embeddings of semantically related and unrelated words across languages?

R3 Inspired by our observation (see Fig. 1c-1d) that fine-tuning draws embeddings of both related
and unrelated words closer to each other, which may negatively affect the cross-lingual transfer,
we wonder if continual learning—with an auxiliary cross-lingual adjustment loss—can improve
effectiveness of the zero-shot transfer.

Our experiments demonstrated the following:

• The cross-lingual adjustment of mBERT improves NLI in four target languages; NER, XSR, and
cross-lingual QA in three languages (though some cross-lingual QA gains are not statistically signif-
icant). Yet, there is no statistically significant improvement for mono-lingual QA and a statistically
significant deterioration on three out of eight QA datasets.

• When comparing L2 distances between contextualized-embeddings of words across languages
(Fig. 1b), we see that the cross-lingual adjustment of mBERT decreases the L2 distance between
related words while keeping unrelated words apart, which is in line with prior work (Zhao et al.,
2021).

• However, we have found no prior work that inspected histograms obtained after fine-tuning. Quite
surprisingly, we observe that fine-tuning of mBERT for a specific task draws embeddings of both
related and unrelated words much closer to each other (Fig. 1c and Fig. 1d). Thus, fine-tuning
causes the model to “forget” some of the cross-lingual information learned during adjustment.

1To simplify the presentation, parts of the plots in Fig. 1a corresponding to small cumulative probabilities have been cropped
in the camera-ready version of the paper.



• In that, continual learning allows the model to learn a target task while maintaining the separation
between related and unrelated words (Fig. 1e). Continual learning consistently improves perfor-
mance on NLI data. Aside from NLI, it improves XSR and NER only for Russian and there are no
improvements on other QA or NER datasets.

In summary, our study contributes to a better understanding of (1) cross-lingual transfer capabilities
of large multilingual language models and of (2) effectiveness of their cross-lingual adjustment across
various tasks and languages. We believe our results support a conjecture that the cross-lingual adjustment
of Cao et al. (2020) is more beneficial for cross-lingual tasks. Our software is publicly available https:
//github.com/pefimov/cross-lingual-adjustment.

2 Related Work

2.1 Cross-Lingual Zero-Shot Transfer with Multilingual Models
The success of mBERT in cross-language zero-shot regime on various tasks has inspired many papers
that attempted to explain its cross-lingual abilities and limitations (Wu and Dredze, 2019; Conneau et
al., 2020; K et al., 2020; Libovickỳ et al., 2019; Dufter and Schütze, 2020; Chi et al., 2020; Pires et al.,
2019; Artetxe et al., 2020; Chi et al., 2020). These studies showed that the multilingual models learn
high-level abstractions common to all languages, which make transfer possible even when languages
share no vocabulary. However, the gap between performance on English and a target language is smaller
if the languages are cognate, i.e. share a substantial portion of model’s vocabulary, have similar syn-
tactic structures, and are from the same language family (Wu and Dredze, 2019; Lauscher et al., 2020).
Moreover, the size of target language data used for pre-training and the size of the model vocabulary
allocated to the language also positively impacts cross-lingual learning performance (Lauscher et al.,
2020; Artetxe et al., 2020).

Zero-shot transfer of mBERT or other multilingual transformer-based models from English to a differ-
ent language was applied to many tasks including but not limited to cross-lingual information retrieval,
POS tagging, dependency parsing, NER, NLI, and QA (Wu and Dredze, 2019; Wang et al., 2019b; Pires
et al., 2019; Hsu et al., 2019; Litschko et al., 2021). XTREME data suite (Hu et al., 2020) and its suc-
cessor XTREME-R (Ruder et al., 2021) are dedicated collections of tasks and corresponding datasets
for evaluation of zero-shot transfer capabilities of large multilingual models from English to tens of lan-
guages. XTREME includes XSR, NLI, NER, and QA datsets used in the current study. Although transfer
from English is not always an optimal choice (Lin et al., 2019; Turc et al., 2021), English still remains the
most popular source language. Furthermore, despite there have been developed quite a few new models
that differ in architectures, supported languages, and training data (Doddapaneni et al., 2021), mBERT
remains the most popular cross-lingual model.

2.2 Cross-lingual Alignment of Embeddings
Mikolov et al. (2013) demonstrated that vector spaces can encode semantic relationships between words
and that there are similarities in the geometry of these vectors spaces across languages. A variety of
approaches have been proposed for aligning monolingual representations based on bilingual dictionaries
and parallel sentences. The most widely used approach—which requires only a bilingual dictionary—
consists in finding a rotation matrix that aligns vectors of two monolingual models (Mikolov et al.,
2013). Lample et al. (2018) proposed an alignment method based on adversarial training, which does
not require parallel data. Ruder et al. (2019) provide a comprehensive overview of alignment methods
for pre-Transformer models.

Schuster et al. (2019) applied rotation to align contextualized ELMo embeddings (Peters et al., 2018)
using “anchors” (averaged vectors of tokens in different contexts) and bilingual dictionaries. They
showed improved results of cross-lingual dependency parsing using English as source and several Euro-
pean languages as target languages. Wang et al. (2019a) aligned English BERT and mBERT represen-
tations using rotation method and Europarl parallel data (Koehn, 2005). They employed the resulting
embeddings in a cross-lingual dependency parsing model. The parser with aligned embeddings con-
sistently outperformed zero-shot mBERT on 15 out of 17 target languages. Instead of aligning on a

https://github.com/pefimov/cross-lingual-adjustment
https://github.com/pefimov/cross-lingual-adjustment


word level, Aldarmaki and Diab (2019) performed a sentence-level alignment of ELMo embeddings and
evaluated this approach on the parallel sentence retrieval task.

Cao et al. (2020) proposed to directly modify the mBERT model by bringing the vectors of seman-
tically related words in different languages closer to each other. This was motivated by the observation
that embedding spaces of different languages are not always isometric (Søgaard et al., 2018) and, hence,
are not always amenable to alignment via rotation. The authors showed that mBERT simultaneously
adjusted on five European languages consistently outperformed other alignment approaches on XNLI
data. In the current study, we implement the approach with some modifications.

Liu et al. (2021) showed that combining continual learning with fine-tuning improved zero-shot trans-
fer performance for NER and POS tagging. In that, they used cross-lingual sentence retrieval (XSR)
and/or masked-language model (MLM) task as additional tasks. Although XSR can be seen as an alter-
native to the cross-lingual adjustment of Cao et al. (2020), the authors did not evaluate the effectiveness of
zero-shot transfer after adjusting the model with XSR. In contrast, we evaluate the marginal effectiveness
of continual learning with respect to already cross-lingually adjusted mBERT.

Kulshreshtha et al. (2020) compared different alignment methods (rotation vs. adjustment) on NER
and slot filling tasks. According to their results, rotation-based alignment performs better on the NER
task, while model adjustment performs better on slot filling. Zhao et al. (2021) continued this line
of research and proposed several improvements of the model adjustment method: 1) z-normalization
of vectors and 2) text normalization to make the input more structurally ‘similar’ to English training
data. Experiments on XNLI dataset and translated sentence retrieval showed that vector normalization
leads to more consistent improvements over zero-shot baseline compared to text normalization. Faisal
and Anastasopoulos (2021) applied cross-lingually adjusted mBERT and XLM-R to cross-lingual open-
domain QA and obtained improvements both on paragraph and span selection subtasks. However, they
trained their models on machine-translated data, which is different from our zero-shot settings.

3 Methods

In this study, we use a multilingual BERT (mBERT) as the main model (Devlin et al., 2019). mBERT
is a case-sensitive “base” 12-layer Transformer model (Vaswani et al., 2017) with 178M parameters.2 It
was trained with a masked language model objective on 104 languages with a shared WordPiece (Wu et
al., 2016) vocabulary (using 104 Wikipedias). To balance the distribution of languages, high-resource
languages were under-sampled and low-resource languages were over-sampled.3 For a number of NLP
tasks, cross-lingual transfer of mBERT can be competitive with training a monolingual model using the
training data in the target language.

We align cross-lingual embeddings by directly modifying/adjusting the language model itself, follow-
ing the approach by Cao et al. (2020). The approach—which differs from finding a rotation matrix—
proved to be effective in the NLI task. However, there are some differences in our implementation. In
all cases, we work with one pair of languages at a time while Cao et al. (2020) adjusted mBERT for five
languages at once.

BERT uses WordPiece tokenization (Wu et al., 2016), which splits sufficiently long words into sub-
word tokens. We first word-align parallel data with fast align (Dyer et al., 2013) and then average all
subword tokens’ vectors.4

Based on alignments in parallel data, we obtain a collection of word pairs (si, ti): si from the source
language, ti from the target one. From these alignments we can obtain their mBERT vector representa-
tions f(si) and f(ti). Then, we adjust the mBERT model on aligned pairs’ vectors using the following
loss function:

L =
∑
(si,ti)

∥f(si)− f(ti)∥22 +
∑
sj

∥f(sj)− f0(sj)∥22, (1)

2https://huggingface.co/bert-base-multilingual-cased
3https://github.com/google-research/bert/blob/master/multilingual.md
4We also experimented with other options reported in the literature – first/last tokens’ vectors, as well as aligning subword

tokens produced by BERT. Although these choices induced some variations in results, there is no single pattern across all tasks
and languages.

https://huggingface.co/bert-base-multilingual-cased
https://github.com/google-research/bert/blob/master/multilingual.md


where the first term “pulls” the embeddings in the source and target language together, while the second
(regularization) term prevents source (English) representations from deviating far from their initial values
in the ‘original’ mBERT f0. Finally, the cross-lingually adjusted mBERT model is fine-tuned for a
specific task.

Training neural networks via empirical loss minimization is known to suffer from the “catastrophic
forgetting” (McCloskey and Cohen, 1989). The histograms of L2 distances between embeddings of
related and unrelated words in pairs of languages (see Fig. 1 and the discussion in § 5.3), confirm that this
is, indeed, the case. Specifically, fine-tuning on a target task—in contrast to the cross-lingual adjustment
objective—reduces the separation between related and unrelated words. To counter this effect, we ran
an additional experiments in a continual-learning mode (Riabi et al., 2021), which relies on experience
replay (Ratcliff, 1990; Robins, 1995).

Technically, this entailed a multi-task training (Caruana, 1996) with a combined loss function:

L = Ltarget + αLalign, (2)

where Ltarget was the loss-function for the target task, e.g., NLI, Lalign was a cross-lingual loss function
given by Eq. 1, and α > 0 was a small weight. During training, we iterated over the complete (reshuffled)
dataset for the target task: After computing Ltarget for a current batch we randomly sampled a small
batch of aligned pairs of words {(si, ti)} from the parallel corpus and computed Lalign.

4 Tasks and Data

4.1 Languages and Parallel Data

Lang Family Script Word Number of English
order Wiki pages

en IE/Germanic Latin SVO 6.3M
es IE/Romance Latin SVO 1.7M
ru IE/Slavic Cyrillic SVO 1.7M
vi Austroasiatic Latin SVO 1.3M
hi IE/Indo-Aryan Devanagari SOV 150K

IE : Indo-European; Prevalent word order: SVO – subject-verb-object,
SOV – subject-object-verb;

Table 1: Language information.

In our experiments we transfer models trained
on English to four languages: Spanish, Rus-
sian, Vietnamese, and Hindi. This set represents
four different families (including one non-Indo-
European language), three scripts, and two dif-
ferent prevalent word orders (see Table 1). All
the languages are among languages that were
used to train mBERT.5

To align embeddings, we use a sample from
the parallel corpus WikiMatrix (Schwenk et al.,
2021) that contains sentences in 1,620 different language pairs mined from Wikipedia.

4.2 Natural Language Inference

Natural language inference (NLI) is a task of determining the relation between two ordered sentences
(hypothesis and premise) and classifying them into: entailment, contradiction, or “no relation”. English
MultiNLI collection consists of 433K multi-genre sentence pairs (Williams et al., 2018). The XNLI
dataset complements the MultiNLI training set with newly collected 2.5K development and 5K test En-
glish examples (Conneau et al., 2018). They were professionally translated into 15 languages, including
all four target languages of the current study. Additionally, for each target language test set, we created
a new mixed-language XNLI set by randomly picking either a hypothesis or a premise and replacing
it with the original English sentence. Performance on XNLI datasets is evaluated using classification
accuracy.

4.3 Named Entity Recognition

Named entity recognition (NER) is a task of locating named entities in unstructured text and classifying
them into predefined categories such as persons, organizations, locations, etc. In our experiments, we
employ the Wikiann NER corpus (Rahimi et al., 2019) that is derived from a larger “silver-standard”

5However, Hindi Wikipedia is an order of magnitude smaller compared to other Wikipedias, which may have led to some-
what inferior contextualized embeddings.



collection that was created fully automatically (Pan et al., 2017). Wikiann NER has data for 41 languages,
including all languages in the current study. The named entity types include location (LOC), person
(PER), and organization (ORG). The English training set contains 20K sentences. Test sets for Spanish,
Vietnamese, and Russian have 10K sentences each; for Hindi – 1K sentences. Performance is evaluated
using the token-level micro-averaged F1.

4.4 Question Answering

Machine reading comprehension (MRC) is a variant of a QA task. Given a question and a text para-
graph, the system needs to return a continuous span of paragraph tokens as an answer. The first large-
scale MRC dataset is the English Wikipedia-based dataset SQuAD (Rajpurkar et al., 2016), which con-
tains about 100K paragraph-question-answer triples. SQuAD has become a de facto standard and in-
spired creation of analogous resources in other languages (Rogers et al., 2021). We use SQuAD as
the source dataset to train MRC models. To test the models, we use XQuAD, MLQA, and TyDi QA
datasets. XQuAD (Artetxe et al., 2020) is a professional translation of 240 SQuAD paragraphs and
1,190 questions-answer pairs into 10 languages (including four languages of our study). MLQA (Lewis
et al., 2020) data is available for six languages including Spanish, Vietnamese, and Hindi (but it does
not have Russian). There are about 5K questions for each of our languages. TyDi QA (Clark and others,
2020) includes 11 typologically diverse languages of which we use only Russian (812 test items).

In addition to monolingual test data, we experimented with parallel/cross-lingual MLQA and XQuAD
datasets and explored two directions: (1) question is in a target language, but paragraph is in English;
(2) a question is in English, but a paragraph is in a target language.

QA performance is evaluated using a token-level F1-score.

4.5 Cross-Lingual Sentence Retrieval

The task of cross-lingual sentence retrieval (XSR) consists in retrieving sentences that are translations
of each other. A query is a sentence in one language and a corpus is a set of sentences (translations)
in another language (in our case English). For the XSR task, we use a subset of the Tatoeba collec-
tion (Artetxe and Schwenk, 2019) covering 93 languages (including four languages in our study). This
subset has one thousand English sentences each of which has a translation in each of the 93 languages.
Following Ruder et al. (2021), we fine-tune the model on a QA task. A sentence representation is ob-
tained by averaging token embeddings in one of the layers. Representations are compared using the
cosine similarity. Because different layers perform differently in different scenarios (original mBERT
vs. adjusted vs. adjusted with continual learning), we select the scenario-specific best-performing layer.
In that, retrieval performance is measured using the mean reciprocal rank (MRR).

5 Experimental Results and Analysis

5.1 Setup

All experiments were conducted on a single Tesla V100 16GB. For cross-lingual model adjustment we
use the Adam optimizer and hyper-parameters provided by Cao et al. (2020). To obtain reliable results
we run five iterations (using different seeds) of model adjustment (for each configuration) followed by
fine-tuning on downstream tasks. For each run we sample 30K sentences from a set of 250K parallel
(WikiMatrix) sentences word-aligned with fast align.6

The code to fine-tune mBERT on XNLI, SQuAD, and Wikiann is based on HuggingFace sample
scripts,7 which were modified to support continual learning. We use a standard architecture consisting of
a BERT model with a task-specific linear layer (Devlin et al., 2019). We also reuse parameters provided
by HuggingFace, except for the weight α = 0.01 in the multi-task loss (Eq. 2), which was tuned on

6We ran the main experiments with 30K parallel sentences. In addition, we conducted experiments with
5K/10K/30k/100K/250K Ru-En sentence pairs. Increasing amount of parallel data benefits both NLI and NER, whereas QA
performance peaks at roughly 5K parallel sentences and further decreases as the number of parallel sentences increases. Due
to limited space we don’t report detailed results and analysis here.

7https://github.com/huggingface/transformers/tree/master/examples/pytorch

https://github.com/huggingface/transformers/tree/master/examples/pytorch


mBERT es ru vi hi
Original XNLI

Original 74.20 67.95 69.58 59.03
Adjusted 74.82* 69.45* 70.88* 61.54*
Adj+cont 75.89** 71.26** 72.79** 63.90**

Mixed-language NLI
Original 70.93 64.24 62.72 53.53
Adjusted 72.06* 66.56* 66.50* 57.31*
Adj+cont 73.50** 69.09** 69.14** 61.09**

Statistically significant differences from an original and
adjusted mBERT are marked with * and **, respectively
(p-value threshold 0.05).

Table 2: Performance on original and mixed-
language NLI datasets (accuracy).

mBERT es ru vi hi
Original 73.40 63.43 71.02 65.24
Adjusted 73.28 65.49* 71.99* 68.22*
Adj+cont 72.71** 66.27** 71.35** 66.07**

Statistically significant differences from an original and
adjusted mBERT are marked with * and **, respectively
(p-value threshold 0.05).

Table 3: Performance on NER task (token-
level F1).

mBERT Spanish Russian Vietnamese Hindi
MLQA XQuAD TyDi QA XQuAD MLQA XQuAD MLQA XQuAD

Original 64.96 75.59 67.05 70.72 59.95 69.18 48.73 57.56
Adjusted 63.11* 73.99* 67.03 70.58 58.46* 68.63 48.47 57.81
Adj+cont 62.76** 73.44 67.63 70.51 57.71** 68.64 48.02** 57.83

Question in target language, paragraph in English
Original 67.34 75.74 – 71.54 56.08 65.00 42.48 47.83
Adjusted 66.93* 75.65 – 71.68 56.74* 66.75* 44.91* 50.45*
Adj+cont 66.31** 74.88** – 70.99 54.51** 64.63** 43.88** 50.13

Question in English, paragraph in target language
Original 67.36 76.71 – 67.31 64.43 68.12 55.32 58.62
Adjusted 66.96* 76.42 – 68.25* 65.01* 68.99 55.63 58.93
Adj+cont 66.68** 76.21 – 68.06 64.36** 68.54 54.74** 58.22

Statistically significant differences from an original and adjusted mBERT are marked with * and **, re-
spectively (p-value threshold 0.05).

Table 4: Effectiveness of QA systems (F1-score).

XNLI validation sets. Also note that batch sizes are 32 (for the main target loss) and 16 (for the auxiliary
cross-lingual adjustment loss in the case of continual learning).

All reported results are averages over five runs with different seeds. We compute statistical significance
of differences between the original and adjusted mBERT using a paired t-test. For XSR, QA, and NLI
we first average metric values for each example over different runs and then carry out a paired t-test
using averaged values. For NER we concatenate example-specific predictions for all seeds and run 1,000
iterations of a permutation test for concatenated sequences (Pitman, 1937; Efron and Tibshirani, 1993).

5.2 Main Results

Results for NLI, NER, QA, and XSR tasks are summarized in Tables 2, 3, 4, and 5, respectively. We can
observe consistent and statistically significant improvements (up to 2.5 accuracy point) of aligned models
over zero-shot transfer on XNLI for all languages. This is in line with Cao et al. (2020) even though we
used a set of more diverse languages, parallel data of lower quality, and a slightly different learning
scheme (we adjusted models individually for each pair of languages). In that, employing continual
learning lead to additional substantial gains (up to 2.4 accuracy points).

We also evaluated models on the (bilingual) mixed-language XNLI test data (see § 4.2). According to
the bottom part of Table 2, compared to the original XNLI, we observe bigger gains for all four languages,
especially when we employ continual learning. For Hindi, we obtain a 7.5 point gain by using both the
adjustment and continual learning.

NER results are somewhat mixed: We observe statistically significant gains (up to 3 points for Hindi)
on all languages except Spanish. In that, continual learning is beneficial only for Russian.

When we fine-tuned a cross-lingually adjusted mBERT on mono-lingual QA tasks, there were no
statistically significant gains. In that, there was a statistically significant decrease for all Spanish datasets
and Vietnamese MLQA. Use of continual learning lead to further degradation in nearly all cases. Note



that models were noticeably less accurate on MLQA compared to XQuAD, which is a translation of our
training set SQuAD.

Muttenthaler et al. (2020) and van Aken et al. (2019) showed that QA models essentially clustered
answer token vectors and separated them from the rest of the paragraph token vectors using a vector
representation of the question. Thus, to solve the QA task, the model learns to rely on mutual similarities
among question and answer tokens (on English QA data) rather than on their actual vector represen-
tations. As a consequence, there may be no need to make representations in the target language to be
similar to English-language representations. This may partially explain why the cross-lingual adjustment
was unsuccessful for mono-lingual QA.

This hypothesis—together with the observation of stronger performance on XQuAD compared to
MLQA—prompted us to explore whether the cross-lingual adjustment could be more useful for cross-
lingual QA. We explored two directions: (1) question is in a target language, but paragraph is in En-
glish; (2) a question is in English, but a paragraph is in a target language. According to results in the
lower part of Table 4, we observe improvements in three languages (except Spanish) and most of these
improvements are statistically significant. This is in line with cross-lingual QA results by Faisal and
Anastasopoulos (2021).

mBERT es ru vi hi
Original 0.80 0.73 0.67 0.49
Adjusted 0.82* 0.72* 0.72* 0.56*
Adj+cont 0.78** 0.74** 0.69** 0.53**

Statistically significant differences from an original
and adjusted mBERT are marked with * and **, re-
spectively (p-value threshold 0.05).

Table 5: Performance on XSR task (MRR
for best-performing layers).

For XSR—another cross-lingual task—using
the cross-lingual adjustment lead to substan-
tial and statistically significant improvements
in three languages: Spanish, Vietnamese, and
Hindi. However, continual learning only
marginally helped Russian. Finally, we note that
cross-lingual adjustment resulted in bigger gains
for the mixed, i.e., cross-lingual XNLI data, than
for original one (Table 2). In summary, we be-
lieve our results support a conjecture that the
cross-lingual adjustment of Cao et al. (2020) is more beneficial for cross-lingual tasks.

5.3 Analysis of the Adjusted mBERT for NLI
This section analysis focuses on the NLI task. We calculate L2 distances between contextualized em-
beddings in English and other languages.8 The embeddings are taken from the last layer output (i.e., no
prediction heads are used). To this end we sampled semantically related words from parallel sentences
(matched via fast align) and unrelated words from unpaired sentences (nearly always unrelated). For
each pair of languages and each task, the sampling process was carried out for: (1) the original mBERT,
(2) an adjusted mBERT, (3) the original mBERT fine-tuned for the target task, (4) the adjusted mBERT
fine-tuned for the target task, (5) the adjusted mBERT fine-tuned for the target task using continual
learning.9

From Fig. 1 we can see that the cross-lingual adjustment makes embeddings of semantically similar
words from different languages closer to each other while keeping unrelated words apart, which is in line
with Zhao et al. (2021). However, prior work did not inspect histograms obtained after fine-tuning. Yet,
quite surprisingly, fine-tuning of both the original and adjusted mBERT on the English NLI data (Fig. 1c
and 1d) makes distributions of related and unrelated words almost fully overlap, i.e. all embeddings
become close to each other. Compared to the original mBERT, fine-tuning of the adjusted mBERT (Fig.
1d) does result in a better separation of related and unrelated words, but the effect is quite modest. We
believe this is an example of “catastrophic forgetting“ (McCloskey and Cohen, 1989), where fine-tuning
the model on a target task causes the model to forget some of the knowledge obtained during cross-lingual
adjustment.

Continual learning (Fig. 1e) permits fine-tuning for the target task while maintaining a separation
between related and unrelated words, which also consistently improves performance for the NLI task.

8Although most prior work uses the cosine similarity instead of L2 (Rudman et al., 2022), it does not distinguish between
vectors with the same direction, but different lengths.

9Due to limited space we demonstrate histograms only for Hindi/NLI task, other languages/tasks exhibit similar trends.



However, when we compared histograms for additional tasks (not shown due to space limit) there was no
direct relationship between the degree of separation and the success of cross-lingual transfer among all
tasks and training regimes. In the case of NER, the biggest separation was achieved for Spanish, but fine-
tuning of the adjusted mBERT resulted in a lower accuracy. More generally, fine-tuning with continual
learning always led to a better separation of related and unrelated words, but this extra separation was
beneficial only for the NLI task.

6 Conclusion

We evaluate effectiveness of an existing approach to cross-lingual adjustment of mBERT (Cao et al.,
2020) using four typologically different languages (Spanish, Russian, Vietnamese, and Hindi) and four
IR/NLP tasks (XSR, QA, NLI, and NER). The original mBERT is being compared to mBERT “adjusted”
with a help of a small parallel corpus. The cross-lingual adjustment of mBERT improves NLI in four
target languages; NER, XSR, and cross-lingual QA in three languages (though some cross-lingual QA
gains are not statistically significant). However, in the case of mono-lingual QA performance never
improves and sometimes degrades. We believe our results support a conjecture that the cross-lingual
adjustment of Cao et al. (2020) is more beneficial for cross-lingual tasks.

Inspired by the analysis of histograms of distances, we obtain additional improvement on NLI using
continual learning. Our study contributes to a better understanding of cross-lingual transfer capabilities
of large multilingual language models and identifies limitations of the cross-lingual adjustment in various
IR and NLP tasks.
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data augmentation for zero-shot cross-lingual question answering. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages 7016–7030.

Anthony Robins. 1995. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):123–
146.

Anna Rogers, Matt Gardner, and Isabelle Augenstein. 2021. QA dataset explosion: A taxonomy of nlp resources
for question answering and reading comprehension. arXiv preprint arXiv:2107.12708.
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