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KMnO4 has unusual formal manganese oxidation state Mn+7 that seems puzzling: the energy of creating such
ion (119 eV) is much greater than the energy of chemical bonds (up to ~10 eV). We have used the Wannier
functions formalism to analyze the distribution of Mn-  electrons and O-  electrons for empty electronic
states in the  complex and have found that, while formally one has  configuration for manganese ion
in this compound, in reality only about one-half of the hole density described by these Wannier functions cor-
responding to this configuration belongs to d-electrons, while the other half is spread over surrounding oxy-
gen atoms. This corresponds much more to Mn+7 state than to Mn+2, because the calculated total number of
d-electrons is equal to 5.25. Our analysis has also sown nearly perfect covalent type of chemical bond within
the  complex with negligible contribution of the ionic part.
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INTRODUCTION
Transition metals compounds with high oxidation

state often reveal anomalous properties with a rich
phase diagram, like for example in trivalent nickel in
RNiO3 [1] and tetravalent iron in CaFeO3 [2]. There
one observes metal–insulator transitions, charge
ordering and unusual types of antiferromagnetic
ordering. Charge disproportionation in charge
ordered states formally corresponds to appearance of
even higher oxidation states Ni+4 and Fe+4. All those
anomalies are usually ascribed to significant contribu-
tion of oxygen orbitals to formally d-states of transition
metals.

Chemically those high oxidation compounds are
also very unusual. They are often unstable and can be
used as strong oxidizers. The high formal metal ion
charges look strange because it takes very large energy
to create such ions. The most interesting example of
this class is KMnO4 where the formal valence of man-
ganese ion is Mn+7. To make such highly charged ion
one needs ~119 eV [3], while energies of chemical
bonds are below ~10 eV.

In this paper we present electronic structure calcu-
lations for this compound and analyze it using the for-
malism of Wannier function (WF). Our conclusion is
that the chemical bond in  complex is strongly
covalent and charge transfer between d-states of man-

ganese to p-states of oxygen is small in spite of very
large formal oxidation state. Also, our calculations
give the number of d-electrons on Mn ion 5.25 that is
more appropriate to ionic charge +2 rather than +7.

The paper is organized as follows. First, we
describe the methodology used. The way of obtaining
the atomic-centered localized Wannier wavefunctions
from DFT calculation is presented, then, using these
wavefunctions, expressions for ionic and covalent
components of the bonding energy in crystal are
derived in a general form. Then we define the transfor-
mation of basis wavefunctions to make them “natu-
ral,” i.e., representing the local crystal structure sym-
metry of the ions. In the last part of the paper we apply
presented methodology to the KMnO4 and show how

the interactions within the  cluster could be
described with four 2 × 2 matrices.

WANNIER FUNCTIONS
Electronic structure calculations were performed

using Quantum ESPRESSO package. WFs used for
our analysis are the most general and natural choice
for definition a set of localized atomic orbitals as elec-
tronic states that are formally equivalent to the set of
itinerant Bloch functions set. The transformation
between them can be considered as unitary transfor-
mation in Hilbert functional space. The localization
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degree and the symmetry of such wave functions could
be controlled in the projection procedure. One of the
most widespread procedures is an enforcement of
maximum localization of WF [4]. The second one [5],
successfully used before [6, 7] for describing a plethora
of compounds, is a constraint of the WF symmetry to
be the same as the symmetry of pure atomic d-orbitals.

In the present paper the second type of projection
procedure is used. WFs were generated as projections

of the pseudoatomic orbitals  onto a

subspace of the Bloch functions  (the detailed
description of WFs construction procedure within
pseudopotential method is given in [8]):

(1)

where

(2)

Here,  is the lattice translation vector. The resulting

WFs  have symmetry of the atomic orbitals 
positioned at the unit cell defined by  and describe
electronic states that form energy bands numbered
from  to .

One can redefine Hamiltonian and density matrix
operators in WF basis set:

(3)

Then electron energy E is

(4)

To separate electron energy E in Eq. (4) into cova-
lent and ionic parts is not a trivial task. While inter-

atomic term  is clear a
covalent energy, the diagonal in atomic indexes term

 contains both contributions:
covalent energy for all atoms type i in crystal and ionic
part of energy. To separate them we have introduced
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 for atom i. The ionic part can be defined

as  and covalent part as .
The electron energy E in Eq. (4) can be written as

(5)

In a general case with orbital indices 
Eq. (4) is

(6)

For binary compound 

(7)
Chemical bonding energy is

(8)

(9)
The following approximation could be useful

(10)

Then, from Eqs. (8) and (5):

(11)

Hence bonding energy separation is:

(12)

(13)

Occupation matrix and natural orbitals basis. Occu-
pation matrix  in Eq. (3) has in general except
atomic number indexes  also orbital indexes 
where  is combined index with l orbital
moment quantum number and its projection m. The
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Fig. 1. (Color online) Crystal structure of KMnO4 consists
of MnO4 tetrahedra and potassium atoms between them.

Fig. 2. (Color online) Band structure of KMnO4.

–

Fig. 3. (Color online) Density of states of KMnO4.
WF  is obtained in Eq. (1) by projection on Bloch
functions  trial atomic wave function . These
atomic orbitals have in general in addition to atomic
number also orbital indices  and hence resulting
WFs are . So, density matrix and Hamiltonian in
Eq. (3) has the following form:

(14)

Hence for atomic “diagonal” term  one in gen-
eral has nondiagonal  occupation matrix . It
would be convenient to choose the “natural” atomic
orbital basis set where atomic occupation matrix is
diagonal. Also, it is useful to choose special linear
combination of ligand-atoms orbital having the same
symmetry as atomic orbital of the metallic ion. That
can be done by diagonalization of the matrix

(15)

Here,  is unitary atomic basis transformation matrix

(16)

These “natural” atomic orbitals  have usually
the form corresponding to basis functions of irreduc-
ible representation for crystal structure symmetry
group.

CALCULATION RESULTS
KMnO4 crystallizes in the orthorhombic P

space group with unit cell parameters  Å,
 Å,  Å [9]. In potassium permanga-
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nate, the manganese ion is surrounded by four oxygens
ions with a tetrahedral environment corresponding to
the Td point group symmetry (see Fig. 1). For this
symmetry five d-orbitals transform according to triply
degenerate irreducible representation  (orbitals xy,

) and doubly degenerate representation 

(orbitals  and ). In contrast to the octa-
hedral symmetry Oh  level lies higher in energy than

 level.

Resulting energy bands dispersion (Fig. 2) and
density of states (Fig. 3) show rather narrow bands in
agreement with well separated  ions in the
structure. The partial density of the states in Fig. 3
showing the contribution of manganese d-orbitals and
oxygen p-orbitals to various bands clearly indicates
two antibonding sets of  bands around 1 and 3 eV
energy of  and  symmetry. The corresponding
bonding counterpart of the same symmetry bands can
be observed at –5 eV. The set of bands between –4 and
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Table 1. Contribution of atomic states to Wannier functions
of KMnO4

Mn d 46% 45% 45% 45% 46%
O p 50% 49% 48% 47% 50%

−2 2z r zx zy −2 2x y xy
‒1 eV has pure oxygen p-character and corresponds to
a non-bonding combination of p-orbitals that do not
hybridize with metallic d-states.

In order to analyze spatial distribution of electronic
states in this material we have calculated squared
modulus of WFs for unoccupied bands (marked by red
on Fig. 2). The results are presented in Fig. 4. These
figures show spatial distribution of holes for various
symmetry states of  ion. As one can easily see,
nearly half of the hole density for every WF is situated
on the neighboring oxygen ions. The Table 1 shows
percentage of Mn-d and O-p contributions to the
WF charge representing holes in formally  shell of
manganese ion. It is clear that in fact more than half of
each ten formally d holes in reality belong to the oxy-
gen states. The total number of d-holes from this table
gives 4.54 which corresponds to the number of d-elec-
trons 5.46. That agrees well with the occupancy of
manganese d-shell 5.25 obtained in full DFT calcula-
tions. So, while formal valency of metal in this com-
pound is seven the occupancy of d-shell corresponds
rather to Mn+2 with admixture of Mn+.

Keeping in mind that in KMnO4 there is an ionic

type of bonding between potassium and  ions,
we calculated the contribution of covalent and ionic
parts to the chemical bond within the  complex
according to Eq. (12). The obtained values

−
4MnO
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−
4MnO

−
4MnO
Fig. 4. (Color online) Wannier functions (isosurface of the
squared moduli) with the symmetry of manganese d-orbit-
als.
 eV and  eV confirm that
 ion in KMnO4 is a totally covalent complex.

Below we map the picture of chemical bonding in
KMnO4 on a simple model.

DISCUSSION

Chemical bond is a basic concept of chemistry. A
bond holds atoms in a molecule together by sharing
their electrons on molecular orbitals obtained as a
combination of hybridized atomic orbitals. In crystal
there are no atomic orbitals anymore but its electrons
are described by Bloch wave functions  that are
spread over the whole crystal. WF formalism was
developed in order to construct atomic-like functions
centered on specific atoms and having the correspond-
ing symmetry. This is done by unitary transformation
of Bloch functions Hilbert space into new WF basis via
Eqs. (1) and (2).

In the simplest case of a single bond for binary
compound AB we can write rather simple Hamilto-
nian matrix in WF basis. It can describe both covalent
and ionic parts of chemical bond. The most important
parameters in our WF formalism are —atomic
energies (diagonal terms of the Hamiltonian) or their
difference  and off-diagonal Hamilto-
nian matrix terms  determining electron hop-
ping between atoms. The first one  defines the ten-
dency to form ions from neutral atoms and the second
one  forms a covalent bond between atoms. It would
be useful to consider the simplest model containing
those parameters and compare with it our calculation
results.

Let’s assume that A and B are two different atoms
with one partially filled nondegenerate orbital on each
ion (2 electrons total). The Hamiltonian of the system
is then:

(17)

where E is the energy level of the first orbital (the
higher one) and second ion has the orbital energy on

 lower than the first one. The hopping energy term
t corresponds to hybridization between the orbitals.
From the eigenvectors of the model Hamiltonian
(Eq. (17)) one can get occupation numbers for the two
atoms (A and B) orbitals (  and ) and then calcu-
late the charge transfer  from the first to the
second atom. One can easily see that larger  value
give smaller charge transfer value  that charac-
terizes ionicity and hence the chemical bond in the
system will be more covalent. On the contrary if the
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value of  parameter is small then the opposite is
true and the system will be characterized by mostly
ionic bond.

The ionicity can be calculated from  in the
following way: , , 

, where  and  are occupa-
tions for the corresponding neutral atoms A and B (for
our simple model 

To analyze chemical bonding in KMnO4 we have
redefined the basis of WFs for complex ion (MnO4)– to
make it as similar as possible to the two orbital bonding
model. To achieve that, one needs for every Mn-d
orbital to find a set of oxygen p-orbitals that hybridizes
most with the specific Mn-d one.

For each  complex in the cell we constructed
five linear combinations of the 12 O-p orbitals in such
a way, that every such set transforms according to the
same irreducible representation of the Mn-ion point
group Td as one of the Mn-d orbitals. Consequently,
we have got the five pairs of d- and p-type orbitals that
are mostly hybridized (within the pair) by symmetry.
Corresponding 10 orbitals will form chemical bonding
within the  cluster. Additionally, we constructed
another 7 linear combinations of the O-p orbitals that
are orthogonal to the five linear combinations
described above. These 7 orbitals represent the non-
bonding oxygen states of the  cluster.

In this way we have separated full 17-dimensional
linear space of d-Mn and p-oxygen orbitals of 
ion into two orthogonal subspaces: 7-dimensional
non-bonding oxygen orbital subspace and 10-dimen-
sional subspace responsible for chemical bonding in
this system. The first orbitals subspace forms a set of
non-bonding bands between –4 eV and –1 eV (see
Figs. 2 and 3) and the second one forms bonding
bands at –5 eV and antibonding ones from  to 3 eV.

Those 17 orbitals were used to build 17 WFs that
describe all occupied and empty energy bands, i.e., all
bands within the  eV energy interval corre-
sponding to (MnO4)– ion. The separation of the elec-
tron states into bonding and non-bonding subspaces is
clear (Figs. 2 and 3). We have calculated within this
new basis the Hamiltonian matrix and the occupation
matrix (see Appendix where we have omitted not
essential for our analysis non-bonding states terms).
These 10 × 10 matrices, due to the presence of the
rather high symmetry of the  tetrahedra, could
be constructed by doubly degenerate 2 × 2 matrices
describing interaction of the Mn-  states with the

O-p bonding orbital and triply degenerate 2 × 2 matri-
ces for the Mn-  states and the corresponding
O-p bonding orbitals

This means that a 10 × 10 dimensional bonding orbital
space is essentially formed by five orthogonal 2 × 2
dimensional subspaces. Every one of them can be
described by the simple model Eq. (17). Diagonalizing
those Hamiltonian matrices one obtains eigenvalues
3.72 and –2.23 for  states and 5.48 and –2.43 for 
states that corresponds perfectly with position of
bonding and antibonding bands of Fig. 3. The corre-
sponding occupations matrices give  and  values
very close to 0.5 and their difference  is nearly
zero. That means almost completely prefect covalent

bond for  ions and practical absence of the ionic
contribution to the bonding. The value of  is
equal 0.10 for  states and 0.02 for  states. That
agrees well with our conclusion of nearly pure covalent

bond in  ion.

To summarize, we have calculated electronic
structure for KMnO4 compound with formally seven
valency Mn ion and analyzed the results with WF for-

malism. We have found the chemical bond in 
complex being nearly of perfect covalent type with
practically no presence of ionic contribution. The
d-electors charge distribution for Mn atom corre-
sponds to charge close to +2 rather than the formal
ionic charge of +7.

APPENDIX

Hamiltonian matrix for the  complex in the
basis of 17 WF. The first 5 WFs are centered on Mn
and have the symmetry of Mn-d orbitals. The next five
WFs also have the symmetry of the Mn-d orbitals, but
are the lineal combination of the nearest oxygen
p-orbitals. These five WFs correspond to oxygen states
that mostly hybridizes with the Mn-d states. The spa-
cial distribution of the first 10 WFs is presented in
Fig. A1. The last 7 WFs of the basis are the linear com-
binations of O-p orbitals that are orthogonal to all the
previous basis functions. The corresponding blocks in
the matrix (the first 5 × 5, and another 5 × 5) are
drawn for the eye guide.
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Fig. A1. (Color online) Wannier function with the symmetry of the Mn-d orbitals (upper panel) and the bonding O-p states (lower
panel).

O-p
(A.1)

The occupation matrix  in the same basis:

(A.2)

− −
− −

−
− −

−
− −

−
−

0.59 0. 0. 0. 0. 2.97 0. 0. 0.02 0.
0. 1.48 0. 0. 0. 0. 3.89 0. 0. 0.13
0. 0. 1.49 0. 0. 0. 0. 3.92 0. 0.
0. 0. 0. 1.49 0. 0.03 0. 0. 3.91 0.
0. 0. 0. 0. 0.58 0. 0.1 0. 0. 2.99

=
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