Научная статья УДК 697.1

# ИСПОЛЬЗОВАНИЕ ПРОГРАММНОГО КОМПЛЕКСА ANSYS ПРИ ПРОЕКТИРОВАНИИ ТЕПЛОВОЙ ЗАЩИТЫ ЗДАНИЙ

# Никита Сергеевич Тимонин<sup>1</sup>, Максим Сергеевич Белов, Артем Николаевич Бородин, Ольга Борисовна Колибаба

Ивановский государственный энергетический университет имени В. И. Ленина, Иваново, Россия

<sup>1</sup> nik15441@mail.ru

**Аннотация.** В работе представлен опыт применения вычислительного комплекса *Ansys* для теплового расчета ограждающих конструкций зданий. Получены температурные поля и тепловые потоки конструкции с теплотехническими неоднородностями. Подобные расчеты могут быть использованы при разработке раздела проектной документации «Энергоэффективность».

**Ключевые слова:** энергоэффективность, тепловая защита зданий, ограждающие конструкции, *Ansys*, температурное поле

Для цитирования: Использование программного комплекса *Ansys* при проектировании тепловой защиты зданий / Н. С. Тимонин, М. С. Белов, А. Н. Бородин, О. Б. Колибаба // Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и возобновляемые источники энергии. Атомная энергетика. Даниловские чтения — 2021 = Energy and Resource Saving. Power Supply. Non-traditional and Renewable Energy Sources. Nuclear Energy. Danilov Readings — 2021 : сборник научных трудов. Екатеринбург : Изд-во Урал. ун-та, 2023. С. 239—244.

Original article

## USING ANSYS SOFTWARE TO DESIGN THERMAL PROTECTION OF BUILDINGS

# Nikita S. Timonin<sup>1</sup>, Maxim S. Belov, Artyom N. Borodin, Olga B. Kolibaba

Ivanovo State Power University named after V. I. Lenin, Ivanovo, Russia

<sup>1</sup> <u>nik15441@mail.</u>ru

<sup>©</sup> Тимонин Н. С., Белов М. С., Бородин А. Н., Колибаба О. Б., 2023

**Abstract.** The paper presents the experience of using the Ansys computer complex for thermal calculation of building envelopes. The temperature fields and heat fluxes of a structure with thermal engineering inhomogeneity's are obtained. Similar calculations can be used in project activities in the development of the section of the project documentation "Energy efficiency".

**Keywords:** energy efficiency, thermal protection of buildings, enclosing structures, Ansys, temperature field

**For citation:** Timonin N. S., Belov M. S., Borodin A. N., Kolibaba O. B. (2023). Ispol'zovaniye programmnogo kompleksa Ansys pri proyektirovanii teplovoy zashchity zdaniy [Using Ansys Software to Design Thermal Protection of Buildings]. *Ehnergo- i resursosberezhenie. Ehnergoobespechenie. Netradicionnye i vozobnovlyaemye istochniki ehnergii. Atomnaya ehnergetika. Danilovskie chteniya — 2021* [Energy and Resource Saving. Power Supply. Non-traditional and Renewable Energy Sources. Nuclear Energy. Danilov Readings — 2021]. Ekaterinburg: Ural University Publishing House, 2023. P. 239—244. (In Russ).

В последнее время большое значение уделяется энерго- и ресурсосбережению. Актуальной тенденцией является повышение энергоэффективности зданий и сооружений. Федеральный закон № 261-ФЗ предусматривает необходимость разработки в проектной документации связанных с энергоэффективностью мероприятий на основании технических условий по энергообеспечению объекта. При проектировании здания теперь является обязательным наличие раздела «Энергоэффективность». В нем приводятся сводные показатели энергоэффективности принятых решений в соответствующих частях проекта здания. Сводные показатели должны соответствовать нормативным показателям удельного расхода тепловой энергии, установленным нормативами по энергосбережению [1].

Одной из задач является определение приведенного сопротивления теплопередаче ограждающих конструкций по результатам расчета температурных полей [2]. Требования тепловой защиты зданий считаются выполненными при одновременном удовлетворении следующим требованиям [1]:

- поэлементное;
- комплексное;
- санитарно-гигиеническое.

При проектировании строительных конструкций все большее значение приобретает температурный анализ, позволяющий получить распределение температур в сечении элемента, градиент температур,

поток проходящей через элемент теплоты и средние температуры внутренней и наружной поверхностей.

С точки зрения теплозащиты наружные стены зданий и сооружений теплотехнически неоднородны, поскольку имеют различные значения сопротивления теплопередаче и площади. Характеристики значительного количества вариантов теплотехнических неоднородностей представлены в [2]. Однако постоянное совершенствование используемых в строительстве материалов и появление новых архитектурных решений требуют дорогостоящего экспериментального исследования характеристик теплозащиты ограждающих конструкций либо проведения тепловых расчетов с применением специализированных программ (ELCUT, *Ansys* и др.).

Для оценки целесообразности применения программной системы конечно-элементного анализа методом конечных элементов (МКЭ) *Ал*-*sys* для решения указанных задач была разработана математическая модель и проведены тепловые расчеты фасада жилого здания [1, рис. H.1].

Ansys имеет несколько модулей стационарных и нестационарных тепловых расчетов для 2D и 3D геометрических моделей. Мы решали задачу в двумерной постановке с использованием модуля *Fluent* [3, с. 64—71]. Геометрическая модель фасада представлена на рис. 1.

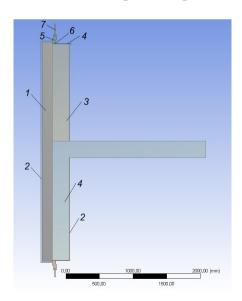



Рис. 1. Геометрическая модель ограждающей конструкции здания: 1- минераловатная плита; 2- штукатурка; 3- кирпичная кладка; 4- железобетон; 5- железобетонная рама; 6- пена монтажная; 7- стеклопакет

Построение расчетной сетки производилось в модуле *Mesh*, фрагмент расчетной сетки представлен на рис. 2.

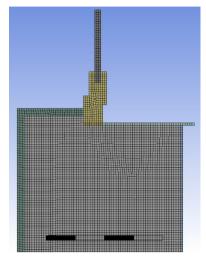



Рис. 2. Фрагмент расчетной сетки

При моделировании задавались теплофизические свойства материалов стены и граничные условия на внутренней и наружной поверхностях — температуры и коэффициенты теплоотдачи. Результаты расчетов могут быть наглядно представлены в виде температурных полей (рис. 3), значений температур в конкретных точках и осредненных по площади тепловых потоков через элемент стеновой конструкции.

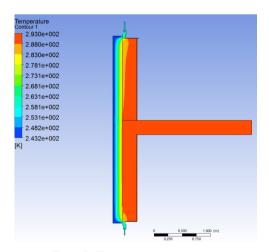



Рис. 3. Температурное поле

Проведенная работа показала, что вычислительный комплекс *Ansys* может быть использован для тепловых расчетов ограждающих конструкций при наличии квалифицированных специалистов и достаточных вычислительных мощностей. Применение расчетных комплексов на стадии проектирования и принятия решений позволит повысить энергоэффективность зданий и снизить потребление энергоресурсов.

### Список источников

- 1. СП 50.13330.2012. Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003. М.: Минрегион России, 2012. URL: <a href="https://docs.cntd.ru/document/1200095525">https://docs.cntd.ru/document/1200095525</a> (дата обращения: 01.12.2021).
- 2. СП 230.1325800.2015. Конструкции ограждающие зданий. Характеристики теплотехнических неоднородностей. М.: Стандартинформ, 2019. URL: <a href="https://docs.cntd.ru/document/1200123088">https://docs.cntd.ru/document/1200123088</a> (дата обращения: 01.12.2021).
- 3. Денисов М.А. Математическое моделирование теплофизических процессов. ANSYS и CAE-проектирование: учебное пособие. Екатеринбург: УрФУ, 2011, 149 с.

#### References

- 1. SP 50.13330.2012. Thermal protection of buildings. Updated version of SNiP 23–02–2003. M.: Ministry of Regional Development of Russia, 2012. URL: <a href="https://docs.cntd.ru/document/1200095525">https://docs.cntd.ru/document/1200095525</a> (date of access: 01.12.2021).
- 2. SP 230.1325800.2015. Structures enclosing buildings. Characteristics of thermal inhomogeneities. M.: Standartinform, 2019. URL: <a href="https://docs.cntd.ru/document/1200123088">https://docs.cntd.ru/document/1200123088</a> (date of access: 01.12.2021).
- 3. Denisov M. A. Mathematical modeling of thermophysical processes. ANSYS and CAE-Design: a textbook. Ekaterinburg: UrFU, 2011, 149 p.

## Информация об авторах

**Никита Сергеевич Тимонин** — студент Ивановского государственного энергетического университета имени В. И. Ленина (Иваново, Россия), nik15441@mail.ru

**Максим Сергеевич Белов** — студент Ивановского государственного энергетического университета имени В. И. Ленина (Иваново, Россия), <u>max-be2013@yandex.ru</u>

**Артем Николаевич Бородин** — студент Ивановского государственного энергетического университета имени В. И. Ленина (Иваново, Россия), vp.artyom@yandex.ru

Ольга Борисовна Колибаба — кандидат технических наук, доцент, заведующий кафедрой «Энергетика теплотехнологий и газоснабжение» Ивановского государственного энергетического университета имени В. И. Ленина (Иваново, Россия), koli-baba@mail.ru

#### Information about the authors

**Nikita S. Timonin** — Student of the Ivanovo State Power University named after V. I. Lenin (Ivanovo, Russia), <a href="mailto:nik15441@mail.ru">nik15441@mail.ru</a>

Maxim S. Belov — Student of the Ivanovo State Power University named after V. I. Lenin (Ivanovo, Russia), <u>max-be2013@yandex.ru</u>

**Artyom N. Borodin** — Student of the Ivanovo State Power University named after V. I. Lenin (Ivanovo, Russia), <u>max-be2013@yandex.ru</u>

Olga B. Kolibaba — Candidate of Technical Sciences, Associate Professor, Head of Department Energy, Heat Technologies and Gas Supply of the Ivanovo State Power University named after V.I. Lenin (Ivanovo, Russia), koli-baba@mail.ru