Исследование условий возникновения промежуточного слоя в печах Ванюкова

Л. В. Крупнов 1 , Д. В. Румянцев 2 , Л. Ш. Цемехман 3 , С. С. Озеров 2 , П. В. Малахов 1

¹ 3Ф ПАО «ГМК «Норильский никель», г. Норильск, Россия
² ООО «Институт Гипроникель», г. Санкт-Петербург, Россия
³ член редколлегии журнала «Цветные металлы», г. Санкт-Петербург, Россия

Аннотация. Современное состояние горно-рудной базы большинства крупных горно-металлургический компаний отличается общими тенденциями — дальнейшим истощением основных месторождений и снижением доли качественных рудных концентратов, что привело к необходимости вовлечения металлургическими предприятиями на головных плавильных агрегатах ранее накопленного техногенного сырья — шлаков металлургических, илов прудов-отстойников систем оборотного водоснабжения и т. п. Доля такого сырья в загрузке плавильных агрегатов достигает уже 30 % и более [1–3]. Такая ситуация привела к серьезным технологическим сбоям в устойчивом ведении процесса на головных, автогенных плавильных агрегатах. Для печей Ванюкова это характеризуется образованием так называемого «промежуточного слоя», приводящего к запечатыванию перетоков из горна печи в шлаковый и штейновый сифоны с последующей полной остановкой агрегата. Все это обуславливает необходимость дальнейшего глубокого изучения механизмов протекания процессов для актуальных составов шихты самыми современными научными методами.

Ключевые слова: печь Ванюкова, низкоэнергетическое сырье, моделирование, термодинамика, промежуточный слой, сифон.

Начиная с 2019 года, в Заполярном филиале ПАО «ГМК "Норильский никель"» (ЗФ, НН), на фоне существенного изменения состава шихты, перерабатываемой в печах Ванюкова (ПВ) на Медном заводе (МЗ), стали возникать технологические нарушения хода плавки, что выражалось в ухудшении протока ее продуктов (расплавов штейна и шлака) по причине уменьшения площади сечения переточного отверстия [1]. Причиной снижения сечения протока явилось образование отдельной фазы — тугоплавкого гетерогенного «промежуточного» слоя неясной природы. Это требовало изучения его вещественного состава, а также условий возникновения. Был проведен большой комплекс исследований, посвященный изучению минералогического и фазового составов сырья и продуктов плавки в ретроспективе, а также ма-

тематическое моделирование условий формирования промежуточного слоя с применением самых современных методов исследования и программных комплексов [4; 5].

Фазовый состав текущей шихты и условия автогенности

Перспективная загрузка шихты на ПВ плавильного цеха МЗ предполагает переработку рудных сульфидных концентратов Талнахской и Норильской обогатительных фабрик (далее — ТОФ, НОФ) и продуктов техногенной природы — медного концентрата от разделения никелевого шлака медного конвертирования собственного производства (МК ФНШ); медного кека выщелачивания файнштейна, поступающего из г. Пори (Финляндия), привозных продуктов АО «Кольская горно-металлургическая компания» (далее — КГМК), в том числе меди цементной КГМК, медного штейна КГМК. Материалы техногенной природы в основном имеют малосернистый, низкоэнергетический состав, характеризуемый также наличием тугоплавких высших оксидов и шпинелей.

Были выполнены исследования химического и минералогического состава проб для следующих компонентов металлсодержащей шихты ПВ: медный концентрат ФНШ; медный кек Norilsk Nickel Harjavalta (NNH); штейн КГМК; цементная медь КГМК, массовые доли компонентов которых приведены в табл. 1

Таблица 1 **Металлсодержащие продукты шихты ПВ**

Тип материала	Массовая доля, %								
	Cu	Ni	Со	Fe	S	SiO ₂	CaO	Al ₂ O ₃	MgO
Медный концентрат ФНШ	52,2	9,11	0,118	8,23	13,9	2,82	0,71	0,38	0,82
Keк NNH	47,80	3,95	0,10	2,98	21,40	0,294	0,105	0,065	0,009
Медный штейн КГМК	62,02	5,64	0,266	5,28	21,64	0,170	0,151	0,056	0,036
Цементная медь КГМК	92,6	0,993	0,034	0,105	0,049	0,235	0,129	0,116	0,02
Промежуточный слой	20,96	4,60	0,223	48,4	5,40	3,05	0,278	0,281	0,277

По данным РФА, состав пробы медного концентрата ФНШ НМЗ соответствует сульфидам меди $\mathrm{Cu_7S_4}$ (роксбиит) и $\mathrm{Cu_{1,8}S}$ (дигенит), шпинельной фазе (по-видимому, железистому тревориту), твердому раствору на основе никеля NiFe, халькопириту, хизлевудиту (Ni $_3\mathrm{S_2}$), $\mathrm{Cu_2O}$ (куприт), присутствуют первые проценты CuO (тенорит) и NiO (рис. 1).

По результатам исследований РЭМ-РСМА установлено, что материал резко неоднороден по вещественному и гранулометрическому составу.

Крупность отдельных структурных составляющих кека варьируется от долей микрон до 0,6 мм (рис. 2).

Рис. 1. Общий вид образца МК ФНШ: 1 — сульфидные частицы, 2 — металлическая фаза, 3 — шлаковая масса (a — оксидные включения, 6 — силикатные включения)

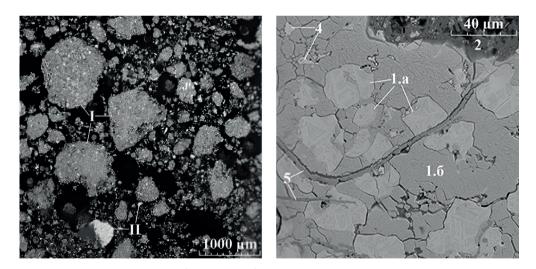


Рис. 2. Общий вид образца медного кека NNH: 1 — сульфидные частицы вариантной степени разрушения (1.а — структуры распада халькозин-борнитового твердого раствора, 1.б — сульфид никеля, 1.в — сульфид меди вариантной степени разрушения), 2 — многофазная тонкодисперсная масса 4 — металлическая фаза, 5 — оксидные компоненты

Образец существенно конгломерирован: в неоднородные по вещественному составу конгломераты объединено не менее 90 % об. материала. В качестве связующего в конгломератах выступает многофазная тонкодис-

персная масса, образованная преимущественно сульфатными компонентами на основе меди и сульфидными частицами микронной и субмикронной крупности.

Основу материала образуют частицы сульфидов на основе меди вариантной степени корродированности. Так, в кеке присутствуют плотные частицы халькозин-борнитового раствора с характерной структурой распада.

Помимо штейновых компонентов, в материале присутствуют оксидносиликатные (шлаковые) структуры.

По данным РФА анализа, фазовый состав пробы медного штейна КГМК соответствует Cu_9S_5 (дигенит), CuS (ковеллин), ктенасит, халькопирит, хизлевудит. Возможно, присутствуют следы $Cu_{1,98}S$ (джарлеит) (рис. 3). Кроме того, в материале присутствуют оксидная фаза, по составу приближающаяся к магнетиту.

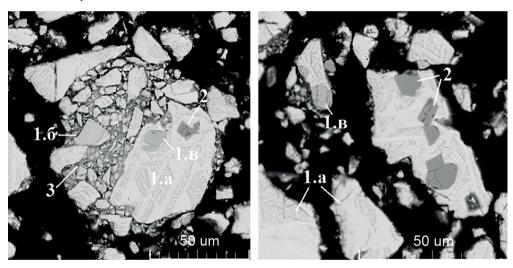


Рис. 3. Общий вид образца штейна КГМК:

- 1 сульфидные составляющие (а сульфид на основе меди-железа, 6 сульфид на основе никеля, в сульфид на основе никеля-железа),
 - 2 оксидная фазы, 3 многофазная тонкодисперсная масса

Основу цементной меди КГМК формируют:

- 1) масса меди металлической. В основном медь представлена крупными сферическими частицами с признаками окисления по поверхности;
- 2) оксидные фазы вариантного состава и морфологии: основная форма оксидных фаз оксид меди (I), представлен в ассоциации с медью металлической; оксид никеля представлен в пробе сугубо подчиненно. Как правило, в объеме оксидной массы различимы включения металлической фазы на основе Ni-Cu (рис. 4).

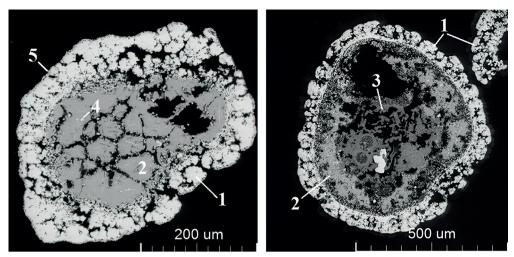


Рис. 4. Общий вид цементной меди:

1 — медь металлическая, 2 — оксид никеля, 3 — силикатные (шлаковые) структуры

Переработка металлсодержащей шихты из такого рода сырья приводит к протеканию плавки в полуавтогенных условиях с существенным дефицитом тепла. Результаты расчетов теплового баланса по статьям в долях представлен в табл. 2 (расчеты делались с применением программного комплекса FactSage) [6].

Как видно, плавка такого рода сырья приводит к существенному дефициту тепла, доходящему до 40 % и более, который в настоящее время компенсируется сжиганием углеводородного (природный газ) топлива. Однако, в случае стечения неблагоприятных условий, такая компенсация может не позволить обеспечить равномерный проплав всех компонентов шихты.

Результатом плавки представленной шихты являются такие продукты плавки, как медный штейн, шлак и промежуточный слой. Изучение штейна и шлака показало их достаточно типичный состав. Промежуточный слой представляет особый интерес из-за его влияния на устойчивое ведение процесса плавки.

Условно, в объеме материала можно выделить:

- 1) оксидно-силикатную (шлаковую) массу. В состав неоднородной шлаковой части, которая занимает основную часть пробы (сугубо ориентировочно 75 % об.), входят:
 - а) шпинельные составляющие, по составу приближающиеся к магнетиту;
- б) оксидно-силикатные компоненты (кристаллы оливинов и остаточное стекло);
 - в) сульфидно-металлические включения вариантного состава;
- 2) сульфидно-металлическую массу, представлена подчиненно, объемная доля составляет около 25 % об. (рис. 5).

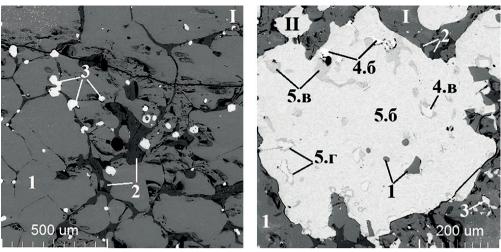


Рис. 5. Общий вид и строение пробы промежуточного слоя: I — шлаковая масса, II — штейновая масса; 1 — силикатная масса шлака, 2 — оксидные компоненты шлака, 3 — сульфидно-металлические включения в шлаковой массе, 4 — металлическая масса, 5 — сульфидная масса

Тепловой баланс

Таблица 2

Статьи прихода тепла	%	Статьи расхода тепла	%
Физическое тепло шихты 1		Тепло штейна ПВ	11,0
Физическое тепло дутья	1,0	Тепло шлаков ПВ	31,0
Тепловой эффект процесса	54,0	Тепло отходящих газов ПВ (с пылью)	44,0
Тепло от сгорания топлива	44,0	Тепло отводимое охлаждающей	13,8
		водой кессонов	
		Потери тепла кожухом	0,2
ВСЕГО:	100	ВСЕГО:	100

Математическое моделирование

Комплексное исследование всех гидродинамических процессов требует больших временных затрат и ресурсов. Однако для промышленной практики возможно ограничиться анализом основных характеристик, в данном случае изучением влияния промежуточного слоя на протекание процесса плавки [7; 8].

Для численного решения задачи использовался CFD-код FLUENT программного пакета Ansys 2022R1, который базируется на описанных выше принципах [9]. В состав Fluent входит сеточный препроцессор, который в настоящей работе использовался для построения расчетных сеток печи Ванюкова [10].

На рис. 6 представлена схема печи Ванюкова, по которым была построена трехмерная модель внутреннего пространства печи.

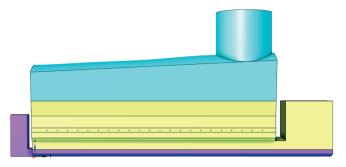


Рис. 6. Модель печи Ванюкова

Для детального исследования течения расплава в перетоках к сифонам были взяты фрагменты 3D-модели в непосредственной близости к шлаковому сифону.

Результаты моделирования параметров расплава в шлаковом сифоне (рис. 7–10).

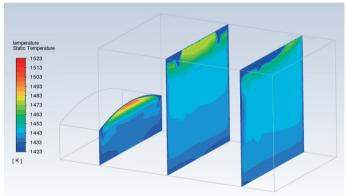


Рис. 7. Поле скорости шлака в шлаковом сифоне

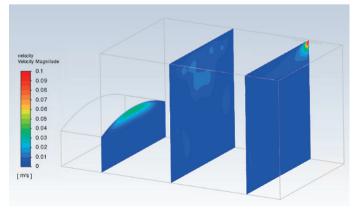


Рис. 8. Поле скорости шлака в шлаковом сифоне с пониженным расходом

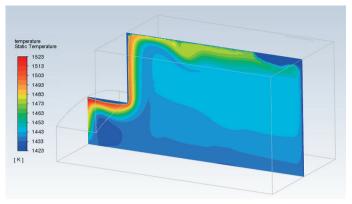


Рис. 9. Поле температуры шлака в шлаковом сифоне

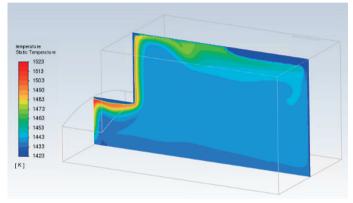


Рис. 10. Поле температуры шлака в шлаковом сифоне (с пониженным расходом)

Отчетливо видны зоны пониженных температур и скоростей относительно общих полей распределения при снижении загрузки шихты. Указанные участки являются застойными зонами первичного образования настылей, образующихся при кристаллизации материала промежуточного слоя (в основном магнетита), имеющего температуру солидус в пределах 1950–2100 °C [11].

Выводы

Проведенные исследования дают основание для нескольких общих и частных выводов:

- 1. Существенную долю перерабатываемой шихты составляют продукты техногенной природы, содержащие в своем составе окисленные минералы и соединения.
- 2. Температуры плавления наиболее тугоплавких компонентов шихты превышают среднюю температуру плавки в агрегате 1195–1235 °C. Они перемещаются из надфурменной зоны печи в горн в твердом состоянии.

Таким образом, расплав, в первую очередь шлаковый, изначально не имеет гомогенной структуры.

3. Шпинели, изначально присутствовавшие в составе шихты, имеющие техногенную природу и образовавшиеся в процессе из-за переокисления продуктов плавки, образуют «промежуточный» слой, отличающийся высокой температурой ликвации (превышающей температуры реального промышленного процесса) и повышенной вязкостью.

Библиографический список

- 1. Практика работы автогенных агрегатов в 3Ф ПАО «ГМК «Норильский никель» в условиях переработки сырья с пониженным энергетическим потенциалом / Л. В. Крупнов и др. // Цветные металлы. — 2022. — № 2. — С. 39–47.
- 2. Исследования возможности применения техногенного сырья при плавке сульфидных медных концентратов в печи Ванюкова в АО «Алмалыкский ГМК» / М. М. Якубов и др. // Цветные металлы. 2023. № 5. С. 14–19.
- 3. Автогенные процессы с кислородным дутьем / Л. Ш. Цемехман, Л. П. Лукашев и др. // Новые направления интенсификации технологических процессов и повышения комплексности использования сырья в металлургии никеля и кобальта : тр. Ин-та «Гипроникель». Л., 1982.
- 4. Атлас минерального сырья, технологических промышленных продуктов и товарной продукции 3Φ ПАО «ГМК «Норильский никель» / под ред. Л. Б. Цымбулова. СПб. : Политех-Пресс, 2021. 336 с.
- 5. Сканирующая электронная микроскопия и рентгеноспектральный микроанализ в примерах практического применения / М. М. Криштал и др. ; общ. ред. М. М. Криштал. М. : Техносфера, 2009. 206 с.
- 6. FactSage Thermochemical Software and Databases / C. W. Bale, P. Chartrand, S. A. Decterov et al. // Calphad Journal. 2002. Vol. 62. P. 189–228.
- 7. *Скуратов А. П., Журавлев Ю. А., Григорьева О. М.* Разработка математической модели теплообмена в энерготехнологическом комплексе для плавки в жидкой ванне // Моделирование теплофизический процессов: межвуз. сб. Красноярск: Изд-во КРУ, 1989. С. 110–118.
- 8. Янышев Д. С., Быков Л. В. Сеточные модели для решения инженерных теплофизических задач в среде ANSYS. М.: URSS, 2021. 264 с.
- 9. Математическое моделирование гидродинамики и теплообмена в ванне печи Ванюкова / Ф. Н. Лисин и др. // Эффективное внедрение автогенных процессов в производстве тяжелых цветных металлов : сб. науч. тр. «Гинцветмета». М., 1989. С. 84–918.
- 10. Селиванов Е. Н., Гуляева Р. И., Толокнов Д. А. Осаждение магнетита при плавке медно-цинковых концентратов в печи Ванюкова // Цветная металлургия. 2010. № 7. С. 3–9.

11. *Синева С.И.*, *Старых Р.В.* Влияние экспериментальных факторов на результаты определения температур фазовых превращений методом термического анализа // Заводская лаборатория. Диагностика материалов. — 2009. — Т. 75, № 11. — С. 27–33.

УДК 661.645.3:669.75

Вывод мышьяка из отработанных щелочных растворов производства сурьмы

А. А. Гребнева, И. Л. Субботина, В. Р. Курдюмов, Р. С. Воинков, К. Л. Тимофеев

АО «Уралэлектромедь», г. Верхняя Пышма, Россия

Аннотация. В работе представлены результаты исследований по выводу мышьяка в форме сульфидного осадка из щелочных и сульфидно-щелочных отработанных растворов, образующихся при производстве сурьмы в АО «Уралэлектромедь». В лабораторных экспериментах установлены оптимальные режимы переработки данных растворов совместно с кислым мышьяксодержащим раствором, в частности порядок смешения исходных растворов, последовательность ввода реагентов и их расходы. Рассмотрены две схемы реализации технологии, первая из которых включает восстановление мышьяка раствором пиросульфита натрия с последующим осаждением мышьяка раствором сульфида натрия в виде трисульфида, а вторая — его прямое осаждение раствором сульфида натрия из смеси мышьяксодержащих растворов без предварительного восстановления. При испытании обеих схем отмечен практически полный переход мышьяка из растворов в сульфидный осадок (степень осаждения 99,5–99,9 %).

Ключевые слова: мышьяк, осаждение, сульфид мышьяка, сурьмяно-оловянный концентрат, сульфидно-щелочной электролит, раствор водной отмывки.

Введение

Технологическая схема получения технической сурьмы (триоксида сурьмы) в АО «Уралэлектромедь» включает в себя следующие операции: мокрое измельчение и водную отмывку исходного промпродукта (сурьмусодержащих шлаков рафинирования свинца); фильтрацию осадка после отмывки; сульфидно-щелочное выщелачивание осадка с получением сурьмусодержащего раствора; фильтрацию раствора; электроэкстракцию сурьмяно-оловянного концентрата из раствора; промывку, съем, фильтрацию и сушку концентрата; окислительное рафинирование черновой сурьмы [1].