РОССИЙСКАЯ ФЕДЕРАЦИЯ

(19) **RU** (11)

2 791 679⁽¹³⁾ C1

(51) MПК *C22C 45/02* (2006.01) *H01F 1/047* (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(52) CIIK

C22C 45/02 (2022.08); H01F 1/047 (2022.08)

(21)(22) Заявка: 2022117715, 30.06.2022

(24) Дата начала отсчета срока действия патента: **30.06.2022**

Дата регистрации: **13.03.2023**

Приоритет(ы):

(22) Дата подачи заявки: 30.06.2022

(45) Опубликовано: 13.03.2023 Бюл. № 8

Адрес для переписки:

620002, г. Екатеринбург, ул. Мира, 19, Центр интеллектуальной собственности, Маркс Т.В.

(72) Автор(ы):

Лобанов Михаил Львович (RU), Никульченков Николай Николаевич (RU), Юровских Артем Сергеевич (RU), Зорина Мария Александровна (RU), Векслер Михаил Юрьевич (RU)

(73) Патентообладатель(и):

Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)

ത

ထ

(56) Список документов, цитированных в отчете о поиске: RU 2044352 C1, 20.09.1995. JP 4205777 B2, 07.01.2009. JP 6530164 B2, 12.06.2019. US 20090065100 A1, 12.03.2009. AT 388942 B, 25.09.1989. RU 16884 U1, 20.02.2001.

(54) АМОРФНЫЙ МАГНИТНЫЙ СПЛАВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-КРЕМНИЙ

(57) Реферат:

Изобретение относится к металлургии, а именно к аморфному сплаву на основе системы железо-кремний-магний, который может быть использован в качестве материала для магнитопроводов трансформаторов, индукторов, дросселей и электродвигателей. Аморфный магнитный сплав содержит, в ат.%: железо —

88–92, магний – 4, кремний – 4-8. Аморфный сплав характеризуется повышенной магнитной индукцией и высокой термостабильностью. Сплав легко обрабатывается в широком интервале температур, сохраняя свою аморфную структуру. 1 ил., 1 пр.

 $\overline{}$

2791679

∠

RUSSIAN FEDERATION

(19) **RII** (11)

2 791 679⁽¹³⁾ C1

(51) Int. Cl. C22C 45/02 (2006.01) H01F 1/047 (2006.01)

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY

(12) ABSTRACT OF INVENTION

(52) CPC

C22C 45/02 (2022.08); H01F 1/047 (2022.08)

(21)(22) Application: **2022117715**, **30.06.2022**

(24) Effective date for property rights:

30.06.2022

Registration date: 13.03.2023

Priority:

(22) Date of filing: 30.06.2022

(45) Date of publication: 13.03.2023 Bull. № 8

Mail address:

620002, g. Ekaterinburg, ul. Mira, 19, Tsentr intellektualnoj sobstvennosti, Marks T.V.

(72) Inventor(s):

Lobanov Mikhail Lvovich (RU), Nikulchenkov Nikolai Nikolaevich (RU), Iurovskikh Artem Sergeevich (RU), Zorina Mariia Aleksandrovna (RU), Veksler Mikhail Iurevich (RU)

(73) Proprietor(s):

Federal State Autonomous Educational Institution of Higher Education Ural Federal University named after the first President of Russia B.N.Yeltsin (RU)

ത

ဖ

(54) AMORPHOUS MAGNETIC ALLOY BASED ON THE IRON-SILICON SYSTEM

(57) Abstract:

FIELD: metallurgy.

SUBSTANCE: invention relates to an amorphous alloy based on the iron-silicon-magnesium system, which can be used as a material for magnetic cores of transformers, inductors, chokes and electric motors. The amorphous magnetic alloy comprises, in at.%: iron - 88 - 92, magnesium - 4, silicon - 4-8. Amorphousc

alloy is characterized by increased magnetic induction and high thermal stability.

EFFECT: alloy is easily processed in a wide temperature range, while maintaining its amorphous structure.

1 cl, 1 dwg, 1 ex

~

2791679

⊃ ~ Изобретение относится к металлургии железа, более конкретно, к разработкам составов аморфных магнитных сплавов на основе системы железо-кремний. Заявленный сплав может быть использован в качестве материала для магнитопроводов трансформаторов, индукторов, дросселей и электродвигателей.

5

2010. V. 55. P. 219-256].

Металлические аморфные материалы на основе железа обладают уникальным сочетанием магнитных свойств – высокой магнитной проницаемости, низкой коэрцитивной силы и относительно высокой индукцией насыщения [G. Herzer. Nanocrystalline soft magnetic alloys // Handbook of magnetic materials. 1997. V. 10. P. 415–462]. Магнитопроводы, выполненные из металлических аморфных материалов, с успехом используются, как в обычных (50 Гц), так и в высокочастотных (400–10000 Гц) трансформаторах [Ю.Н. Стародубцев, В.Я. Белозеров. Аморфные металлические материалы // Силовая электроника. 2009. № 2. С. 86–89]

Как правило, аморфные магнитные материалы, относящиеся к так называемым металлическим стёклам, создаются на основе системы М–Х, где М – это металл (металлы) в количестве ~ 80 ат. %, X – элементы-аморфизаторы, преимущественно неметаллические в количестве ~ 20 ат.%, обычно мало растворимые в кристаллической решетке металлического элемента (М) [С. Suryanarayana, A. Inoue. Iron-based bulk metallic glasses // International Materials Reviews. 2013. V. 58. P. 131–166]. В случае получения аморфного магнитного материала методом скоростной закалки из расплава, металлический компонент может представлять собой либо только железо, либо смесь различных металлов. В большинстве случаев, металлическая составляющая сплава представляет собой так называемую «триаду железа» (Fe, Co, Ni) [C. Suryanarayana, A. Inoue. Bulk metallic glasses. Boca Raton: CRC Press LLC. 2011. 525 р.]. Иногда также добавляют другие металлические элементы, такие как Cr, Mn, Al, Ga, Mo, Zr, Nb и Та, причем их концентрации варьируют от нескольких до почти 15-20 ат. % [A. Inoue, A. Makino, T. Mizushima. Ferromagnetic bulk glassy alloy // J. Magn. and magn. mat. 2000. V. 215-216. P. 246-252]. Редкоземельные элементы, такие как Y, Er, Gd и Tm, также иногда добавляют для получения благоприятных эффектов повышения формуемости стекла [Y. Q. Cheng, E. Ma. Atomic-level structure and structure-property relationship in metallic glasses // Progress in Materials Science. 2011. V. 56. P. 379–473]. Элементами аморфизаторами обычно являются B, C, P и Si с их общим содержанием около 20 ат.% [D. B. Miracle, D. V. Louzguine-Luzgin, L. V. Louzguina-Luzgina, A. Inoue. An assessment of binary metallic glasses: correlations between structure, glass forming ability and stability // International Materials Reviews.

Известен аморфный магнитомягкий сплав на основе Fe–Co–Ni [B.B. Маркин, Ж.H. Мухаматдинов, Р.М. Гиндулин, Ф.М. Аверин, О.В. Смолякова, О.В. Хамитов, Патент РФ №2269173. 27.01.2006], полученный в виде ленты в процессе литья плоского потока расплава на поверхность охлаждающего тела и скоростной закалки. Состав сплава определяется формулой (Fe-Co-Ni) $_a$ A $_b$ L $_c$ Ba $_e$, где: А – аморфизирующие элементы: B, Si,

 40 P, а L − легирующие элементы: V, Cr, Mn, Ge, Zr, Nb, Mo, W, Bi, Cu, при следующем соотношении компонентов, ат.%: $12 \le b \le 22$; $0 \le c \le 7$; $0,1 \le e \le 0,8$; а − остальное. Сплав быть использован в магнитопроводах, преобразующих электроэнергию устройств.

Известен аморфный магнитомягкий сплав [У. Акири, Я. Ямада, Х. Хироюки, С. Йосида, А. Макино, Патент РФ №2483135. 27.05.2013], который имеет состав $Fe_{(100-X-Y-Z)}B_XP_YCu_Z$ с аморфной фазой в качестве основной фазы, где $79 \le (100-X-Y-Z) \le 86$ ат.%, $4 \le X \le 13$ ат. %, $1 \le Y \le 10$ ат. % и $0.5 \le Z \le 1.5$ ат.%. Сплав изготавливается в виде тонкой ленты и может быть использован в магнитопроводах трансформаторов, индукторов.

Известен сплав аморфный промышленный сплав на основе железа, производимый в виде тонкой ленты, содержащий медь, бор, ниобий и молибден [В.И. Кейлин, В.Я. Белозеров, Ю.Н. Стародубцев, Патент РФ № 2009257. 20.11.1991], состоящий из следующих ингредиентов: ат.% Cu - 0.5-2; Si - 12-18; B - 7-12; Nb - 2-4; Mo - 0.2-2; Fe - остальное.

Вышеперечисленные аморфные сплавы имеют следующие недостатки: 1) трудности с получением достаточно точных химических составов при выплавке, связанные с большим количеством элементов и их различными свойствами в расплавах; 2) экстремальные условия получения из расплава единственного возможного изделия в аморфном состоянии – тонкой ленты толщиной ~ 15–30 мкм; 3) низкую термическую стабильность: аморфное состояние сначала кристаллизуется, а затем рекристаллизуется при температурах ~ 400–650°C, безвозвратно утрачивая высокие магнитные свойства; 4) низкие значения магнитной индукции по сравнению с электротехническими сталями, заменителями которых они являются. Последнее связанно с высокой концентрацией (около 20 ат.%) «немагнитных» атомов, в основном аморфизаторов, в химическом составе сплавов.

В качестве ближайшего аналога (прототипа) выбран аморфный сплав системы FeSi-B [Ф.Е. Пащенко, В.С. Чернов, О.Г. Иванов, Патент РФ №2044352. 20.09.1995], который дополнительно содержит Zn и/или Al при следующем соотношении компонентов, ат.%: B-11-16; Si-4-8; Zn и/или -A10,5-5; Fe-остальное. Сплав может быть произведен в виде тонкой ленты, и использован в качестве магнитомягкого материала для производства изделий с линейной петлей гистерезиса, то есть в дросселях и трансформаторах. За исключением сравнительно простого химического состава сплав имеет все вышеперечисленные недостатки.

25

45

Магний (Mg) является металлическим элементом, практически не растворяющимся ни в одном 3d-переходном металле во всем температурном интервале их существования, в частности ни в α - или γ -фазах железа. С кремнием магний образует химический комплекс Mg₂Si устойчивый в широком интервале температур. Исследования показали, что в системе Fe-Si, содержащей несколько атомных процентов Mg, в температурном интервале $\alpha \leftrightarrow \gamma$ -превращения возможно формирование комплексов Mg₂Si с их встраиванием в кристаллическую решетку твердого раствора Fe-Si с последующей его аморфизацией. Было также показано, что для аморфизации твердого раствора, состоящего из 100 атомов, достаточно двух комплексов Mg₂Si. Дальнейшие исследования показали, что сформированное в момент $\alpha \leftrightarrow \gamma$ -превращения (910–950°C) аморфное состояние сохраняется как при нагреве до 1100°C, так и при охлаждении до комнатных температур.

Разработанный сплав системы Fe-Mg-Si, где соотношение элементов имеет формулу $\text{Fe}_{96\text{-}x}\text{Si}_x\text{Mg}_4$ с аморфной фазой в качестве основной, где x в ат.% варьируется в пределах: $4 \le x \le 8$, позволяет исключить проблему пониженных магнитных характеристик, вследствие минимального содержания неметаллических атомов в составе. Вторая задача, которую решает предлагаемый сплав – это термическая стабильность аморфного состояния, позволяющая обрабатывать материал в широком интервале температур, создавая изделия различных форм и размеров, в том числе «массивные» образцы.

Данный сплав может быть получен любым известным способом получения металлических стекол, в частности скоростной закалкой из жидкого состояния. Сплав может использоваться в качестве материала для магнитопроводов трансформаторов, индукторов, дросселей и электродвигателей.

RU 2791679 C1

Пример 1. Изготавливали три сплава (№ 1, 2, 3; фигура), соответствующих формуле $Fe_{96-x}Si_xMg_4$, в которых концентрация кремния составляла 4, 6 и 8 ат.%. Сплавы изготовлялись методом скоростной закалки из жидкого состояния в виде аморфных лент толщиной 20–22 мкм. Кроме этого, для сравнения, тем же методом были изготовлены сплавы $Fe_{86-x}Si_xB_{13}Zn_1$ и $Fe_{86-x}Si_xB_{13}Al_1$ (№ 4 и № 5; фигура), в которых концентрация кремния составляла 6 ат.%, то есть х=6.

Измерения магнитных свойств изготовленных сплавов проводилось по стандартным методикам. Термостабильность сплавов оценивалась терморентгеновским методом в диапазоне температур от комнатной до 1100°C. На фигуре представлены характеристики и магнитные свойства нескольких сплавов: х – концентрация атомов кремния, N – концентрация «немагнитных» атомов, $B_{800}\left(B_{10}\right)$ – магнитная индукция в поле напряженностью 800 А/м или 10 Эрстед; ΔT – интервал термической стабильности сплава. Из табл. 1 видно, что по сравнению с прототипом материал имеет более высокую магнитную индукцию, измеряемую в поле напряженностью 800 А/м (10 Эрстед), и сохраняет аморфную структуру до существенно более высоких температур.

(57) Формула изобретения

Аморфный магнитный сплав на основе системы железо-кремний, отличающийся тем, что он дополнительно содержит магний при следующем соотношении компонентов, в ат.%:

Железо – 88-92;

Магний – 4;

20

25

30

35

40

45

Кремний – 4–8.

№	Сплав	х, ат. %	N ат. %	В ₈₀₀ (В ₁₀), Тл	ΔT, °C
1	Fe _{96-x} Si _x Mg ₄	4	8	1,55	20–1100
2	Fe _{96-x} Si _x Mg ₄	6	10	1,51	20–1100
3	Fe _{96-x} Si _x Mg ₄	8	12	1,48	20–1100
4	$Fe_{86-x}Si_xB_{13}Zn_1$	6	20	1,41	20–400
5	$Fe_{86-x}Si_xB_{13}Al_1$	6	20	1,35	20–400