КОМПЬЮТЕРНОЕ КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ГИДРОФОБИЗАЦИИ МИКРОСФЕР ДИОКСИДА КРЕМНИЯ СМОЛЯНЫМИ КИСЛОТАМИ

Филиппов Дионис Демокритович,
Пирогов Максим Александрович,
Тараванов Максим Александрович,
Яковенко Андрей Антонович,
студенты
Гвозденко Алексей Алексеевич, ассистент
E-mail: dio5@mail.ru

Северо-Кавказский федеральный университет г. Ставрополь, РФ

Аннотация. Диоксид кремния, гидрофобизированный смоляными кислотами, является инновационным материалом для создания гидрофобных защитных покрытий, разработка которых является актуальной проблей для большинства областей промышленности. В связи с этим в данной работе представлены результаты квантово-химического моделирования процесса гидрофобизации микросфер диоксида кремния смоляными кислотами: пимаровая, изопимаровая, левопимаровая, палюстровая, абиетиновая, неоабиетиновая, дегидроабиетиновая и ламбертиановая кислоты. В работе рассматривалась полная энергия молекулярного комплекса (E), энергия высшей заселенной молекулярной орбитали (HOMO), низшей свободной молекулярной орбитали (LUMO) и химической жесткости системы (η). Анализ полученных данных показал, что наиболее стабильной системой является взаимодействие атома кремния с дегидроабиетиновой кислотой, а наиболее энергетически выгодной системой является взаимодействие атома кремния с карбоксильной группой ламбертиановой кислоты. В работе рассматривались взаимодействие атома кремния с дегидроабиетиновой кислотой ($\eta = 0.140$ эВ).

Ключевые слова. Диоксид кремния, смоляные кислоты, гидрофобизация, квантовохимическое моделирование, химическая жесткость.

В настоящее время актуальной проблей для большинства областей промышленности является разработка гидрофобных защитных покрытий, препятствующих проникновению влаги в различные материалы [1]. Данные покрытия найдут широкое применение как в промышленности, так и в быту [2, 3]. Одним из актуальных материалов для создания таких покрытий является диоксид кремния, гидрофобизированный смоляными кислотами.

Таким образом, целью данной работы является моделирование процесса гидрофобизации микросфер диоксида кремния смоляными кислотами. с помощью компьютерного квантово-химического моделирования. Квантово-химическое моделирование взаимодействия диоксида кремния со смоляными кислотами проводилось в программе QChem с использованием молекулярного редактора IQmol. Параметры моделирования: силовое поле – Ghemical, метод – HF.

Взаимодействие диоксида кремния проводилось со смоляными кислотами: пимаровой, изопимаровой, левопимаровой, палюстровой, абиетиновой, неоабиетиновой, дегидроабиетиновой и ламбертиановой кислотами. Значения полной энергии (E) молекулярной системы, энергии HOMO и LUMO и химической жесткости системы (η) , которая характеризует стабильность системы [4], взаимодействий представлено в таблице.

Результаты компьютерного квантово-химического моделирования

Взаимодей-		П	Б	•	
ствие с диок-	Смоляные кислоты	E, ккал/моль	<i>Е_{номо}</i> , эВ	E_{LUMO} , эВ	η, эΒ
сидом крем-					
кин					
Взаимодей- ствие атома кремния с карбоксиль- ной группой смоляной кис- лоты	Пимаровая	-1360,030	-0,253	-0,005	0,129
	Изопимаровая	-1360,096	-0,250	0,003	0,124
	Левопимаровая	-1360,121	-0,242	-0,017	0,130
	Палюстровая	-1360,148	-0,246	-0,005	0,126
	Абиетиновая	-1360,134	-0,243	-0,010	0,127
	Неоабиетиновая	-1360,137	-0,250	-0,006	0,128
	Дегидроабиетино-	-1359,749	-0,241	-0,039	0,140
	вая				
	Дигидроабиетино-	-1361,256	-0,245	-0,001	0,123
	вая				
	Ламбертиановая	-1433,537	-0,224	-0,021	0,123

Согласно литературным данным, *HOMO* и *LUMO* являются основными орбиталями, характеризующими химическую устойчивость системы. Химическая жесткость характеризует стабильность системы [5].

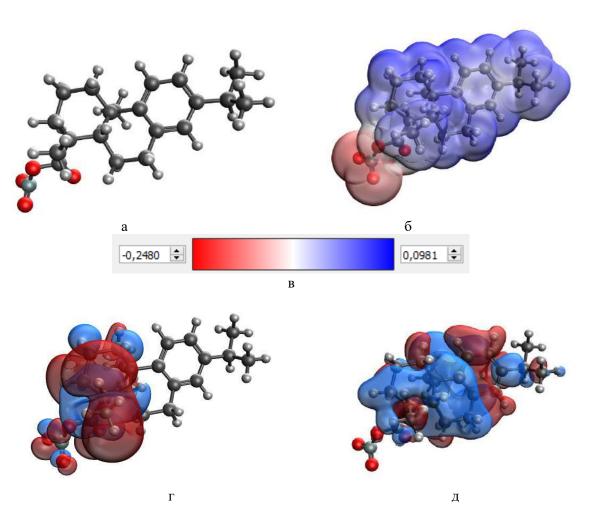


Рисунок. Результаты моделирования взаимодействия диоксида кремния с дегидроабиетиновой кислотой, в котором соединение с кремнием происходит

через карбоксильную группу дегидроабиетиновой растительной смоляной кислоты: модель молекулярного комплекса (а), распределение электронной плотности (б), градиент распределения электронной плотности (в), высшая заселенная молекулярная орбиталь HOMO (г), низшая свободная молекулярная орбиталь LUMO (д)

В ходе анализа полученных данных можно сделать вывод о том, что молекулярный комплекс атома кремния и карбоксильной группы дегидроабиетиновой кислоты является наиболее стабильным из всех представленных (абсолютная химическая жесткость составила $\eta = 0.140$ эВ), а наиболее энергетически выгодным является взаимодействие атома кремния с карбоксильной группой ламбертиановой кислоты (E = -1433.537 ккал/моль).

Библиографический список

- 1. Liu Y. et al. Preparation of a superhydrophobic coating based on polysiloxane modified SiO2 and study on its anti-icing performance //Surface and Coatings Technology. 2022. T. 437. C. 128359.
- 2. Гидрофобные композиционные материалы для формирования защитных покрытий на металлических поверхностях в нефтегазовой промышленности / Д. Г. Маглакелидзе [и др.] // Практические аспекты нефтепромысловой химии. 2022. С. 77–78.
- 3. Фадеев, П. В. Применение наноструктурных покрытий в судостроении и судоремонте: науч.-исслед. работа / П. В. Фадеев, М. В. Огнева, Д. А. Усиков. Мурманск. 15 с. Вход: свободный. URL: https://schoolconf.com/pdf/2/1726.pdf (дата обращения: 14.12.2022). Текст: электронный.
- 4. Маглакелидзе, Д. Г. Компьютерное квантово-химическое моделирование взаимодействия аминокислот и силикат-аниона / Д. Г. Маглакелидзе // Молодежь и наука. Т. 2. Нижний Тагил, 2022. 2022. C. 332–334.
- 5. Цирельсон, В. Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела: учеб. пособие для вузов / В. Г. Цирельсон. 3-е изд., испр. (эл.). Электрон. текстовые дан. (1 файл pdf: 522 с.). Москва: БИНОМ. Лаборатория знаний, 2014.