РАЗРАБОТКА МЕТОДА СИНТЕЗА КАРБОКСИМЕТИЛХИТОЗАНА

Веретенникова Е.А., Пестов А.В. Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Карбоксиметилхитозан (КМХ) является наиболее используемым в промышленности производным хитозана за счет своих высоких биоактивных свойств: антибактериальная, фунгистатическая, биохимическая активность. Также он является нетоксичным и растворимым в воде полимером.

Данная работа посвящена разработке метода синтеза КМХ путем обработки хитозана хлорацетатами щелочных металлов (Li, Na, K, Cs) и аммония в условиях полимераналогичных превращений «синтез в геле».

Модифицирование хитозана со степенью ацетилирования 0.18 осуществляли в водном геле с концентрацией полимера 18 % массовых при 70 °C в течение 24 ч (см. таблицу). Продукт выделяли в виде кислоты или натриевой соли. Состав и строение полученных соединений подтверждено данными элементного анализа, ИК- и ЯМР 1 Н спектроскопии, а также потенциометрическим титрованием.

Условия проведения реакции и степень модификации (СМ) КМХ

Соль	Мольное соотношение	Общая	СМ по амино-
хлорацетата	хлорацетат : хитозан	CM	группе
Li	1:1	1,01	0,53
Li	1:2	0,78	0,26
Na	1:1	0,63	0,15
Na	1:2	1,08	0,57
K	1:1	0,77	Нет данных
Cs	1:1	0,42	Нет данных
NH ₄	1:1	0,40	Нет данных

Как следует из полученных данных, высокая степень модификации достигается с использованием хлорацетатов Na и Li. Вероятно наблюдаемые явления обусловлены высокой сольватационной способностью ионов Na^+ и Li^+ , а также лучшим сродством к хлорид-ионам.