ТВЕРДЫЕ РАСТВОРЫ La_{1.4}A_{0.6}Ni_{0.6}Fe_{0.4}O_{4+δ} (A=Ca, Sr, Ba) КАК КАТОДНЫЕ МАТЕРИАЛЫ ДЛЯ ТОТЭ

Суханов К.С., Гилев А.Р., Киселев Е.А., Черепанов В.А. Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

В настоящее время никелат лантана $La_2NiO_{4+\delta}$ и его производные со структурой типа K_2NiF_4 могут найти потенциальное применение в качестве катодных материалов для твердооксидных топливных элементов (ТОТЭ) на основе кислород- и протонпроводящих электролитов. Целью данной работы являлось получение и аттестация сложных оксидов $La_{1,4}A_{0,6}Ni_{0,6}Fe_{0,4}O_{4+\delta}$ (A=Ca, Sr, Ba; LANF0604) как катодов ТОТЭ: исследование общей электропроводности (σ), сборка и исследование симметричных ячеек LANF0604 (A=Ca, Sr, Ba)/Ce_{0,8}Sm_{0,2}O_{2- δ} (SDC) методом импедансной спектроскопии в интервале температур 600–800 °C на воздухе.

Сложные оксиды были синтезированы по цитратно-нитратной технологии. Для измерения общей удельной электропроводности (σ) использовали четырехконтактный метод на постоянном токе. Спектры импеданса для симметричных ячеек LANF0604 (A=Ca, Sr, Ba)/Ce_{0.8}Sm_{0.2}O_{2- δ} (SDC) были измерены двухконтактным методом в интервале частот от 300 кГц до 1 мГц с амплитудой сигнала 20 мВ в интервале температур 600–800 °C на воздухе.

Результаты РФА показали, что исследуемые сложные оксиды были получены однофазными и имели тетрагональную структуру типа K₂NiF₄. Общая электропроводность (б) исследованных оксидов увеличивается при повышении температуры во всем исследуемом интервале температур и практически не зависит от размера катиона щелочноземельного металла (о≈30 См/см при 1000 °C). Энергия активации электропроводности для исследованных оксидов варьировалась в диапазоне 16,5-16,9 кДж/моль. Анализ функций распределения времен релаксации при различных температурах указывает на то, что в полученных спектрах импеданса можно выделить не менее трех вкладов. Полученные в результате обработки спектров импеданса значения емкостей и энергий активаций указывают на то, что наблюдаемые вклады могут быть отнесены к следующим процессам: 1) перенос заряда через межфазную границу электрод/электролит (R_2) ; 2) перенос заряда через межфазную границу электрод/коллектор тока (R_3) ; 3) перенос заряда — ионная диффузия в электродном материале (R_4) ; 4) поверхностный кислородный обмен на границе электрод/газовая фаза (R_5). Основным вкладом в поляризационное сопротивление всех исследуемых ячеек во всем исследованном интервале температур является перенос заряда – ионной диффузией в электродном материале (R_3) . Поляризационное сопротивление (R_p) электродов LCNF0604, LSNF0604 и LBNF0604 в контакте с SDC при 800 °C составило 1,85; 2,61 и 0,42 Ω см² соответственно.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования $P\Phi$ (FEUZ-2023-0016).