МОЛЕКУЛЫ ВОКРУГ V645 СҮС

А. Д. Гималиева¹, С. В. Салий¹, М. С. Кирсанова^{1,2}

¹Уральский федеральный университет, ²Институт астрономии РАН

В работе исследовалось излучение линий молекул на длинах волн 3—4 мм в направлении молодой звезды типа Ae/Be Хербига V645 Суg. Получены карты интегральных интенсивностей линий переходов молекул ¹³CO, C¹⁸O, CS, C³⁴S, HCO⁺, HNC, CH₃OH, N₂H⁺ и HCN и исследована кинематика облака вокруг звезды. Проведены оценки лучевых концентраций и обилий 23 молекул. Показано, что астрохимические особенности в V645 Суg соответствуют смеси двух сред на луче зрения: темного плотного облака и области фотодиссоциации.

MOLECULES AROUND V645 CYG

A. D. Gimalieva¹, S. V. Salii¹, M. S. Kirsanova^{1,2}

¹Ural Federal University, ²Institute of Astronomy, Russian Academy of Sciences

In this work we studied the 3–4 μ m radiation of a clump around young Ae/Be star V645 Cyg. We built molecular line emission maps for ¹³CO, C¹⁸O, CS, C³⁴S, HCO+, HNC, HCN, N₂H+ and CH₃OH. We estimated column densities and abundances of 23 molecules and found that we observe a mixture of dark cloud and photodissociation region towards V645 Cyg.

Введение

Звезды типа Ae/Be Хербига — это молодые (≤ 10 млн лет) звезды до главной последовательности промежуточной массы ($2-10 \text{ M}_{\odot}$). В оптическом диапазоне звезды данного типа имеют спектры, характерные для звезд спектральных классов A и B, но с эмиссионными линиями, чаще всего в линиях серий водорода. В ИК-области у таких звезд наблюдается избыток излучения, что указывает на наличие околозвездного вещества и остатков родительского молекулярного облака вокруг них. Изучение молекулярного газа, окружающего объекты этого типа, дает возможность связать между собой представления о химической эволюции массивных и маломассивных протозвезд.

Наблюдения и методы исследования

Наблюдения проведились в декабре 2016 г., феврале 2017 г. и марте 2019 г. на 20-м телескопе Онсала (Швеция). Обработка данных наблюдений проводилась в пакете GILDAS (https://www.iram.fr/IRAMFR/GILDAS/).

Для определения характеристик молекулярного газа было использовано предположение о локальном термодинамическом равновесии (ЛТР), поскольку сложные молекулы образуются и излучают в молекулярных облаках с высокой плотностью. Оценка температуры возбуждения газа проводилась методом вращательных диаграмм, подробно описанном, например, в работе [1].

[©] Гималиева А. Д., Салий С. В., Кирсанова М. С., 2022

Рис. 1. Карты интегральных интенсивностей линий излучения молекул 13 CO (1—0), C¹⁸O (1—0), CS (2—1), C³⁴S (2—1), HCO⁺ (1—0), HNC (1—0), CH₃OH (2_K — 1_K), N₂H⁺ (1—0), HCN (1—0). Градации серого — интегральные интенсивности в интервалах скоростей (приведены в верхнем правом углу); красные контуры — излучение пыли на 850 мкм [2]; желтым крестиком отмечено положение звезды

Результаты и обсуждение

Были построены карты распределения интегральных интенсивностей в линиях переходов молекул: ¹³CO (1–0), C¹⁸O (1–0), CS(2–1), C³⁴S (2–1), HCO⁺ (1–0), HNC (1–0), HCN (1–0), N₂H⁺ (1–0) и CH₃OH (2_K – 1_K) (рис. 1).

На картах излучения абсолютного большинства молекул, за исключением CH₃OH, пик излучения совпадает с положением звезды и пиком излучения в пыли. Пик излучения в квартете линий CH₃OH смещен к северо-востоку. Излучение в N₂H⁺ распределено наиболее компактно, граница излучения этой молекулы лежит внутри более широких границ излучения изотопологов CO, молекулы CS и иона HCO⁺. Согласно [3], N₂H⁺ считается индикатором внутренних областей облаков, что подтверждается и в нашем случае.

Для молекулы CH₃CCH было отождествлено 4 линии из серии $6_K - 5_K$ и 2 линии из серии $5_K - 4_K$. По этим линиям была построена вращательная диаграмма, представленная на рис. 2.

Рис. 2. Вращательная диаграмма по сериям лини
и 6_K-5_K и 5_K-4_K молекулы CH₃CCH

Оценка вращательной температуры $T_{rot} = 35 \pm 8$ К, полученная по диаграмме 2, в пределах погрешности совпадает с оценкой температуры пыли, 38 К, приведенной в работе [2]. Тепловое излучение CH₃CCH наблюдается при плотностях $n \approx 10^3 - 10^4$ см⁻³ [4, 5]. При таких плотностях можем считать адекватным использование предположения об ЛТР и надежность полученного значения T_{rot} в качестве оценки кинетической температуры газа.

Полученная оценка температуры возбуждения газа $T_{rot} = 35 \pm 8$ К использовалась при расчете лучевых концентраций молекул, для которых отождествлены только одиночные линии. По данным ИК-обзора SASSY [6], оценена лучевая концентрация молекулярного водорода, $N_{\rm H_2} = 2.2 \times 10^{22}$ см⁻², что позволило рассчитать значения обилий для 23 молекул $x = \frac{N_{mol}}{N_{H_2}}$. Полученные значения лучевых концентраций и обилий приведены в таблице.

Основываясь на сравнении полученных значений обилий молекул со значениями обилий молекул в облаках разных типов, мы пришли к выводу, что сгусток, окружающий V645 Cyg, имеет признаки как темного плотного облака, так и ФДО. Не исключено, что ФДО присутствует во внутренней области сгустка, поскольку V645 Cyg, будучи звездой типа Ae/Be Хербига, может являться мощными источником УФ-излучения. Признаки плотного облака могут наблюдаться из-за наличия в спектре излучения сложных молекул, которые не были разрушены УФ-излучением звезды. Скорее всего излучение сложных молекул было получено либо из остатков родительского молекулярного облака звезды, либо из внешней части интересующего нас сгустка.

Молекула	$N, (cm^{-2})$	x
CO	$(4.4 \pm 0.1) \times 10^{18}$	2.1×10^{-4}
H_2CO	$(1.3 \pm 0.1) \times 10^{14}$	$6.3 imes 10^{-9}$
CCH	$(1.2 \pm 0.1) \times 10^{14}$	$5.7 imes 10^{-9}$
$\rm HCO^+$	$(1.0 \pm 0.1) \times 10^{14}$	4.8×10^{-9}
CS	$(9.1 \pm 0.6) \times 10^{13}$	$4.3 imes 10^{-9}$
CH_3OH	$(9.0 \pm 7.0) \times 10^{13}$	4.2×10^{-9}
HCN	$(6.6 \pm 0.4) \times 10^{13}$	3.1×10^{-9}
N_2H^+	$(6.1 \pm 0.1) \times 10^{13}$	$2.9 imes 10^{-9}$
CH_3CCH	$(6.0 \pm 2.0) \times 10^{13}$	2.9×10^{-9}
SO	$(3.7 \pm 0.1) \times 10^{13}$	1.8×10^{-9}
HNC	$(2.7 \pm 0.1) \times 10^{13}$	$1.3 imes 10^{-9}$
H_2CS	$(7.0 \pm 0.7) \times 10^{12}$	3.3×10^{-10}
CH_3CHO	$(4.4 \pm 1.4) \times 10^{12}$	2.1×10^{-10}
HC_3N	$(3.8 \pm 0.1) \times 10^{12}$	$1.8 imes 10^{-10}$
SO_2	$(3.4 \pm 0.4) \times 10^{12}$	1.5×10^{-10}
CCS	$(2.6 \pm 0.2) \times 10^{12}$	1.2×10^{-10}
$c-C_3H_2$	$(2.1 \pm 0.3) \times 10^{12}$	1.0×10^{-10}
HCO	$(2.1 \pm 0.6) \times 10^{12}$	1.0×10^{-10}
HNCO	$(1.6 \pm 0.1) \times 10^{12}$	$7.6 imes 10^{-11}$
CH_3CN	$(1.1 \pm 0.2) \times 10^{12}$	5.2×10^{-11}
DCO^+	$(1.7 \pm 0.2) \times 10^{12}$	8.1×10^{-11}
DNC	$(4.4 \pm 0.9) \times 10^{11}$	2.1×10^{-11}
SiO	$(3.5 \pm 0.7) \times 10^{11}$	1.7×10^{-11}

Лучевые концентрации Nи об
илия $x=\frac{N_{mol}}{N_{H_2}}$ молекул

Благодарности

Работа С. В. Салий (построение карт распределения интегральных интенсивностей, обсуждение результатов) выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации, тема FEUZ-2023-0019.

Библиографические ссылки

- Kalenskii S. V., Kurtz S. Analytical methods for measuring the parameters of interstellar gas using methanol observations // Astronomy Reports. - 2016. - Vol. 60, № 8. - P. 702-717. 1710.07605.
- [2] Sandell Göran, Weintraub David A., Hamidouche Murad. A Submillimeter Mapping Survey of Herbig AeBe Stars // Astrophys. J. - 2011. - Vol. 727, № 1. - P. 26. 1011.3747.
- [3] Bergin Edwin A., Alves João, Huard Tracy, Lada Charles J. N₂H⁺ and C¹⁸O Depletion in a Cold Dark Cloud // Astrophys. J. Lett. - 2002. - Vol. 570, № 2. - P. L101-L104. astro-ph/0204016.
- [4] Askne J., Hoglund B., Hjalmarson A., Irvine W. M. Methyl acetylene as a temperature probe in molecular clouds // Astron. Astrophys. - 1984. - Vol. 130. - P. 311-318.
- [5] Bergin Edwin A., Goldsmith Paul F., Snell Ronald L., Ungerechts Hans. CH 3C 2H as a Temperature Probe in Dense Giant Molecular Cloud Cores // Astrophys. J. – 1994. – Vol. 431. – P. 674.
- [6] Thompson M. A., Serjeant S., Jenness T. et al. The SCUBA-2 "All-Sky" Survey // arXiv e-prints. 2007. – P. arXiv:0704.3202. 0704.3202.