EFFECT METALORGANIC FRAMEWORK ON THE ELECTROCHEMICAL PERFORMANCE OF LICOPO₄

<u>Aboraia A. M.^{1, 2}</u>, Shapovalov V. V.¹, Guda A. A¹, Butova V. V¹, Soldatov A. V¹

¹⁾ The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, Russia

²⁾ Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt E-mail: <u>a.m.aboraia@gmail.com</u>

We coated the LiCoPO₄ by Mteal-organic framework. The LiCoPO₄/C@Mil-88 and LiCoPO₄/C@UiO-66 were synthesized via the microwave-assisted solvothermal route, and 100, 147 mA h/ g discharge capacity, respectively, was obtained in the first cycle.

LiCoPO₄ is an attractive material due to high voltage cathode materials but undergoes low conductivity, thus poor in electrochemical performance. To overcome this issue, we coated the LiCoPO₄ by Metal-organic framework. The LiCoPO₄/C@Mil-88 and LiCoPO₄/C@UiO-66 were synthesized via the microwave-assisted solvothermal route, and 100, 147 mAh / g discharge capacity, respectively, was obtained in the first cycle. The MOF acts as a source of both carbon and metal atoms, which improves conductivity.

A.M. Aboraia and AVS acknowledge RFBR for financial support according to the project No 19-32-90214.

- 1. RSC Advances, 2020, 10(58), pp. 35206–35213
- 2. Radiation Physics and Chemistry, 2020, 175, 108065