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Abstract. An increase in inflation volatility implies higher uncertainty about future prices. 
As a result, producers and consumers can be affected by the increased inflation volatil-
ity, because it increases the uncertainty and the risk in the market. Thus, inflation vola-
tility attracts the attention of researchers to find a suitable model which can predict the 
future conditions of the market. This study aims to fit appropriate ARMA-GARCH fam-
ily models for food and non-food inflation rate of from the period January 1971 through 
June 2020. Since the main objective of the study is identifying an appropriate model for 
inflation series, the null and alternative hypotheses are defined in comparison of the two 
types of models. H0: The symmetric GARCH models better capture inflation volatility of 
Ethiopia. H1: The asymmetric GARCH models better capture inflation volatility of Ethiopia. 
The ARMA-GARCH family models were applied to capture the stylized facts of financial 
time series such us leptokurtic, volatility clustering and leverage effects. The mean mod-
el results show that, an ARMA (1, 2) and ARIMA (0, 1, 1) models are identified as the best 
fitted model for food and non-food inflation, respectively. From the estimation results of 
volatility model, an asymmetric TGARCH (1, 1) model with Student’s t- distributional as-
sumptions of the residual is the best model for non-food inflation. Thus, modeling of in-
formation, news of events is very significant determinants of volatility and GARCH family 
models are appropriate for the given series (monthly food-inflation volatility) of Ethiopia 
under the study period considered.

Key words: food inflation; non-food inflation; ARMA-GARCH family; Ethiopia.

JEL С10, С53

1.	Introduction
Historically, Ethiopia inflationary ex-

perience was moderate and not consid-
ered as serious as the issue of economic 
growth. Since 2004, however, the country 
has experienced high and persistent infla-
tion growth. Several macro-economic sta-
bilization measures and policies were im-
plemented over the past and seemed to be 
a complete failure. The booming economy 
has yet remained principally constrained by 
dual macroeconomic problems, i. e. price 
inflation and low international reserves [1].

A rising inflation has become one 
of the major economic challenges facing 

Ethiopian as the rate of inflation increase; 
people will lose confidence with state of 
the currency since the currency depreci-
ates. The aforementioned creates a need 
of high wages in the economy and conse-
quently the companies increase the pric-
es of goods and services to overcome the 
wage increase and at the same time to 
continue making profits in offering their 
services [2].

Furthermore, an unanticipated infla-
tion has a distributive effect from creditors 
to debtors, which increases uncertainty af-
fecting consumption, savings, and borrow-
ing and investment decisions. This raises 
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the question of knowing the pattern of in-
flation rate by consumers, producers, gov-
ernment and economists to plan budgeting. 
Thus, modeling food inflation and non-
food inflation were attracting the atten-
tion of macroeconomists and policy mak-
ers for many years both at the theoretical 
and at the empirical level.

The volatility of inflation has broad 
economic and financial implications, and 
this has motivated a vast literature on 
modeling such volatility. In this regard, 
Engle [3] first introduces the autoregres-
sive conditional heteroscedasticity (ARCH) 
model to assess the validity of the conjec-
ture of Friedman [4] that the unpredict-
ability of inflation was a primary cause of 
business cycles since uncertainty due to 
this unpredictability would affect the in-
vestors’ behavior. Pursuing this idea re-
quired a model in which this uncertainty 
could change over time [5]. Consequently, 
Bollerslev  [6] proposed independently 
a more generalize ARCH (GARCH) mod-
el which is more parsimonious model of 
the conditional variance than a higher or-
der ARCH model.

The GARCH model, however, cannot 
account for leverage effect, even though it 
accounts for volatility clustering and lep-
tokurtosis in a series. This necessitated the 
development of new and extended models 
over GARCH that resulted into new mod-
els such as EGARCH, GJRGARCH, and 
TGARCH models because the behavior of 
inflation volatility is asymmetric rather 
than symmetric resulting in that the sym-
metric GARCH model provides misleading 
estimates of inflation uncertainty.

Moreover, Power GARCH (PGARCH) 
is a model introduced by Ding et al. [7]. It 
is able to capture and model the long mem-
ory property often observed in the series of 
volatility and with Engle and Lee [8] com-
ponent GARCH model decomposing con-
ditional variance into a short run and long 
run volatility, separately. In this regard, 

various researchers such as, Barimah [9], 
Okeyo et al. [10], Syed et al. [11], Asemota 
et al. [12] and among others tried to ana-
lyze inflation volatility using GARCH fam-
ily models.

In the case of Ethiopia, few studi-
es  (Shiferaw  [13], Anteneh et al.  [14], 
Abebe et al. [15], Abebe [16], and among 
others) were carried out to evaluate the per-
formance of GARCH models on explaining 
different agricultural product price volatil-
ity. However, to the best of my knowledge, 
not enough studies were performed sepa-
rately to model food and food inflation vol-
atility of Ethiopia using various GARCH 
family models.

The overall objective of this study is 
to fit an appropriate GARCH type mod-
els for food and non-inflation uncertain-
ty  (volatility) in Ethiopia over the peri-
od of January 1971 through June 2020. 
Unlike the existing literature where the 
inflation uncertainty is generally prox-
ied by symmetric GARCH, in this study, 
the asymmetric GARCH and component 
GARCH (CGARCH) models were also 
used to compare the performance of vari-
ous model in fitting inflation uncertainty 
of Ethiopia under the study period.

Since the main objective of the study 
is identifying an appropriate model for in-
flation series, the null and alternative hy-
potheses are defined in comparison of the 
two types of models as stated below:

H0: The symmetric GARCH mod-
els better capturing inflation volatility of 
Ethiopia.

H1: The asymmetric GARCH mod-
els better capture inflation volatility of 
Ethiopia.

2.	Literature Review
2.1. Theoretical literature review
Theoretically, there are a number of 

literatures that describe a rise in inflation 
increases uncertainty about future infla-
tion. Okun’s [17] study was one of the first 
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attempts to examine systematically the re-
lationship between inflation and its vari-
ability. Consequently, Friedman [4] stat-
ed that rising inflation increases private 
agents’ uncertainty about future monetary 
policy. He states that the more uncertain in-
flation is to extract the signal about relative 
prices from the absolute prices. When in-
flation is engrained in an economic system, 
it is difficult and costly to lower it because 
inflationary expectations become inertial 
and cannot be quickly and easily lowered 
to a sustainably low level.

Ball [18] added that, higher inflation 
rates generate greater uncertainty about the 
future policy so about future inflation rate. 
In a market economy, inflation uncertainty 
reduces the price system’s efficiency in co-
ordinating economic activity (Wilson [19]). 
Poon [20] also postulated that uncertain-
ty (volatility) may disrupt the normal ac-
tivity of day-to-day life of each individual 
and greatly affect economic performance.

Given that inflation uncertainty is an 
unobserved variable, many different mea-
sures have been proposed in the litera-
ture. Some studies rely on survey-based 
measures, others depend on volatility de-
rived from time series models, and some 
use realized forecast errors. However, each 
measure is depending on the nature of the 
data and derived from different assump-
tions which are most likely not fulfilled 
completely.

Mostly, macroeconomic data are tend-
ing (time series), volatility derived from 
time series models are the interest of most 
studies. Even though, inflation uncertain-
ty (volatility) measure captures the extent of 
fluctuations in inflation is clearly import-
ant for structural analysis, forecasting and 
policy purposes, the issue of finding suit-
able proxy for inflation volatility or uncer-
tainty has been challenging. Although there 
could be several ways to estimate inflation 
volatility from the survey-based methods to 
empirical models, the most common used 

method is to estimate inflation volatility 
is the univariate autoregressive condition-
al heteroscedasticity (ARCH) models pro-
posed by Engle [3] and Bollerslev [6] gen-
eralized ARCH (GARCH) model are the 
pioneer one.

It has been argued that the behavior 
of inflation volatility is asymmetric rath-
er than symmetric. Fountas et al. [21] and 
Baunto et al. [22] are of the view that pos-
itive inflation shocks have a significant-
ly greater impact on volatility compared 
to the negative’s inflation shocks. Thus, 
given the nature of the data, the symmet-
ric ARCH and GARCH models may pro-
vide misleading estimates of inf lation 
uncertainty.

Thus, modifications to the orig-
inal GARCH model were necessari-
ly to overcome these shortcomings of 
symmetric GARCH model in inf la-
tion series. The common asymmetric 
GARCH family models are an exponen-
tial GARCH  (EGARCH) model intro-
duced by Nelson  [23], GJR-GARCH of 
Glosten et al. [24] and TGARCH model 
by Zakoian [25]. Subsequently, Engle and 
Lee [8] generalize introduced a component 
GARCH (CGARCH) model that decom-
poses the conditional variance into transi-
tory and permanent components.

2.2. Empirical literature review
There are ample empirical studies con-

ducted on modeling inflation volatility us-
ing the standard GARCH family models.

Barimah [9] examined the asymmet-
ric effects of inflation-on-inflation uncer-
tainty in Ghana for the period 1963:4 to 
2014:2. He applied an EGARCH model on 
monthly inflation rates to estimate infla-
tion uncertainty. From the result, the vari-
ance equation indicates that inflation un-
certainty varies directly with the rate of 
inflation in highly inflationary periods.

Okeyo et al. [10] investigates inflation 
rate volatility in Kenya using ARCH type 
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model on the data spanning from January 
1985 to April 2016. The result of the study 
showed that the EGARCH (1, 1) with GED 
was the best in modeling and forecasting 
Kenya’s monthly inflation rate. They rec-
ommended that governments, policy mak-
ers interested in modeling and forecasting 
monthly rates of inflation should take in-
to consideration heteroscedasticity mod-
els since it captures the volatilities in the 
monthly rates of inflation.

Syed et al. [11] studied inflation vol-
atility in 10 Asian economies using quar-
terly data from 1991 to 2012 by applying 
different GARCH family models. The re-
sult showed that the leverage parameter is 
statistically significant, indicating the ex-
istence of an asymmetric GARCH model 
in the model specifications. Thus, the GJR-
GARCH model was an important model in 
estimating the existence of inflation stabi-
lization of bidirectional causality running 
between inflation and inflation volatility.

Few empirical researches that were con-
ducted to analyze inflation volatility using 
GARCH type models are discussed below.

Shiferaw [13] analyzed the log-returns 
price volatility of agricultural products 
under consideration using GARCH type 
models over the period from May 2001 to 
April 2011. From the result of model esti-
mation, the GARCH (1, 1), GARCH (1, 2) 
and GARCH (2, 1) models are the most ap-
propriate fitted models to evaluate the vol-
atility of the log-returns of price of Cereal, 
pulse and oil crops respectively.

Anteneh et al. [14] model and identi-
fy determinants of monthly domestic price 
volatility of sugar in Ethiopia over the study 
period from December 2001 to December 
2011 using GARCH family approach. From 
the results EGARCH model with Student-t 
distributional assumptions for residual was 
selected as the best fitted model for the se-
ries under the period considered.

Abebe et al. [15] applied multiplicative 
GARCH-MIDAS two component models 

for price return volatility of selected com-
modities traded at the Ethiopian com-
modity exchange (ECX). The component 
model helps to can capture the time-vary-
ing conditional as well as uncondition-
al volatilities, and accommodates macro-
economic variables observed at different 
frequencies through mixed interval data 
sampling (MIDAS) specification. From the 
result it is observed that the fitted GARCH-
MIDAS component models capture the 
stylized facts of financial time series.

Abebe [16] analyzed the average dai-
ly coffee price volatility of Ethiopia from 
1 January 2010 to 30 June 2019 using 
GARCH-MIDAS component model which 
decomposes the conditional variance in-
to short run component which follows a 
mean-reverting unit GARCH process and 
long-run component which consider differ-
ent frequency macroeconomic indicators 
via mixed interval data sampling (MIDAS) 
specification. From the result of estimat-
ed model, all selected indicators are cru-
cial in explaining price volatility. Moreover, 
the estimated GARCH-MIDAS model with 
money supply as a main driver is used for 
out-sample forecast. Based on, DM test 
statistic multiplicative GARCH-MIDAS 
model provides an explanation for stylized 
facts that cannot be captured by standard 
GARCH model.

Given the compatibility of the afore-
mentioned GARCH family models for in-
flation series as discussed in both theoret-
ical and empirical literature review, the 
researcher in the current study try to com-
pare the performance of different GARCH 
type models, for monthly food and non-
food inflation uncertainty of Ethiopia.

3.	Data Source and Methodology
3.1. Data and Nature of the series
This study uses secondary data. The 

variables are monthly food and non-food in-
flation rate, which were compiled from the 
National Bank of Ethiopia. Theoretically, 
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linear time series models such as ARIMA 
models are unable to explain a number of 
important features. Those common fea-
tures are leptokurtosis, volatility clustering, 
leverage effects and long memory. Thus, 
GARCH family models proposed to ana-
lyze the stylized facts of the series under 
this study.

3.2. Stationary and Unit Root Test
The foundation of time series analysis 

is stationarity. Stationary series is charac-
terized by a kind of statistical equilibrium 
around a constant mean level as well as a 
constant dispersion around that mean lev-
el (Box and Jenkins [26]). If a time series 
is not stationary, it is necessary to look for 
possible transformations that might induce 
stationarity.

Several statistical tests may be car-
ried out to determine whether a series 
is stationary or non-stationary. In this 
study, the commonly used unit root test, 
the Augmented Dickey Fuller  (ADF) 
test, which controls higher-order correla-
tion, is used. In ADF test, if the null unit 
root (non-stationarity) is not rejected, apply 
differencing to make the series stationary.

3.3. ARMA Model Specification
The Box–Jenkins method (ARIMA) 

requires that the discrete time series da-
ta be equally spaced over time and that 
there be no missing values in the series. 
The ARMA model states that the current 
value of the series depends linearly on its 
own previous values plus a combination 
of current and previous values of a white 
noise error term.

The general stationary process yt un-
der an ARMA (p, q) process is given by

∑ εβ−ε+∑α+µ=
=

−
=

−

q

j
itjt

p

i
itit yy

11
,   (1)

where, yt is inflation series, α0, α1, α2, ..., 
αр are the coefficients of an AR model and 
β0, β1, β2, ..., βр are MA coefficients, while 

p and q are integers indicating the lags of 
AR and MA model, respectively.

3.4. Model selection criteria
When we estimate the mean ARMA 

model, there are various model selection 
criteria, which are based on the likeli-
hood function and the number of free pa-
rameters from the fitted ARMA model. 
This study used the Akaike’s Information 
Criterion (AIC), the Bayesian Information 
Criterion  (BIC) and the Hannan Quin 
Information Criterion (HQIC).

3.5. Parameter Estimation ARMA 
Models
In order to estimate the parameters 

of an ARMA (p, q) model, the maximum 
likelihood estimation method that maxi-
mizes the joint probability density func-
tion of the innovation terms ε1, ε2, ..., εТ  
was applied.

3.6. Model Diagnostic Checking
After estimating the ARMA model 

and before interpreting its result, it is man-
datory to check whether the model is ap-
propriately specified or whether the mod-
el assumptions are satisfied.

1.	Breusch-Godfrey Lagrange 
Multiplier (LM) Test for Serial Correlation. 
This test was developed by Breusch [27] 
and Godfrey [28] in 1978 and is used to test 
for serial correlation in the error terms. The 
Lagrange Multiplier (LM) test for serial 
correlation is computed first by estimating 
the sample residuals tε̂  by ordinary least 
squares  (OLS) and regress the current 
residual tε̂  on the p lagged residuals.

The auxiliary regression model of re-
siduals is given by:

1 1 2 2ˆ ˆ ˆ ˆ...t t t t p t p t− − −ε = γµ + λ ε + λ ε + + λ ε + υ

1 1 2 2ˆ ˆ ˆ ˆ...t t t t p t p t− − −ε = γµ + λ ε + λ ε + + λ ε + υ ,                 (2)

where μt is the original regressors in the 
ARMA model and υt is a white noise 
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process. The null hypothesis of no serial 
c o r r e l a t i o n  u p  t o  l a g  p  i s 

0...: 210 =λ==λ=λ pH .
The Obs*R-squared statistic is the 

Breusch-Godfrey LM test statistic. If the 
R2 statistic from the auxiliary regression 
is computed for this model, then the fol-
lowing asymptotic approximation can be 
used for the distribution of the test statis-
tic, TR2 ~ X 2(p).

2.	Testing Normality of the Residual. 
Normality tests are used to ascertain 
whether the residuals of the regression 
are normally distributed or not. The null 
hypothesis is that the residuals are normally 
distributed. Several tests for normality are 
available but the most commonly used test 
for normality of regression disturbances is 
due to Jarque and Bera [29]. The Jarque-
Bera test statistic is given by

( ) ( )

2

3 43 222 2

ˆ ˆ
3

ˆˆ
6 24JB T

  µ µ − 
  σσ   = +
 
 
  

( ) ( )

2

3 43 222 2

ˆ ˆ
3

ˆˆ
6 24JB T

  µ µ − 
  σσ   = +
 
 
  

,         (3)

where T is the sample size. Under the null 
hypothesis of normality, the test statistic is 
asymptotically distributed as χ2(2). Thus, if 
JB test statistic is greater than χ2(2), we re-
ject the null hypothesis.

3.	Testing for ARCH Effect. The 
Lagrange multiplier test of Engle (1982) 
is equivalent to the usual F test. To test 
the null hypothesis that there is no ARCH 
up to order p in the residuals, we run the 
regression of squared the residuals on my 

own lags to test for ARCH of order m as 
given by:

tmtmtt η+εγ++εγ+εγ+γ=ε −−−
22

22
2

110
2
t ˆ...ˆˆˆ

tmtmtt η+εγ++εγ+εγ+γ=ε −−−
22

22
2

110
2
t ˆ...ˆˆˆ .                 (4)

Then obtain R2 from this auxiliary re-
gression. The test statistic is defined as 
LM = TR2 (the number of observations mul-
tiplied by the coefficient of multiple cor-
relations) from the last regression, which is 
Engle’s LM test statistic. The LM test sta-
tistic is asymptotically distributed as a 
χ2(m) under quite general conditions. The 
n u l l  h y p o t h e s i s  g i v e n  b y 

0...: 210 =γ==γ=γ mH . The decision 
rule is to reject the null hypothesis.

3.7. Volatility Model Specification
One of the mean features of financial 

time series is time varying volatility which 
refers to a tendency of small values being 
followed by small values and large values 
being followed by large values (Torben et 
al. [5]).

1.	The ARCH Model. As stated in 
Tsay [30] the basic idea of ARCH models 
is that: the shock εt is serially uncorrelat-
ed, but dependent and the dependence of 
εt can be described by a simple quadratic 
function of its lagged values.

Then the ARCH (q) process proposed 
by Engle [3] is given by

∑ εα+ω=σ
=

−

q

i
itit

1

22 ,                (5)

where 2
tσ  is the conditional variance of the 

error term in the mean model, εt is innova-
tion or error term from the mean (ARMA) 
model. The positivity of 2

tσ  is assured by 
the following sufficient restrictions: ω > 0 
and αi ≥ 0.

An ARCH (q) model is covariance sta-
tionary if and only if ∑ <α

=

q

i
i

1
1 .

2.	Generalized ARCH  (GARCH) 
models. A Generalized ARCH (GARCH) 
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model introduced by Bollerslev [6] gives 
parsimonious way of estimating the 
parameters and successful in predicting 
conditional variances.

Thus, GARCH  (p, q)  (generalized 
ARCH due to Bollerslev [6] is given by:

∑ σβ+∑ εα+ω=σ
=

−
=

−

p

j
jtj

q

i
itit

1

2

1

22 ,     (6)

where ω > 0 is the constant term, αi ≥ 0 , for 
i = 1, 2, …, q is the effect of shocks (the 
ARCH effect), and 0≥β j , for j = 1, 2, …, p 
is the effect of the previous periods’ vari-
ance (the GARCH effect). Bollerslev [6] 
shows that the necessary and sufficient 
condition for the second-order stationarity 
of model (6) is 1

11
<∑β∑ +α

==

p

j
j

q

i
i . In this case, 

conditional variance forecasts converge up-
on the long-term average value of the vari-
ance (unconditional variance) as the pre-
diction horizon increases.

3.	The EGARCH model. Nelson [23] 
i n t r o d u c e d  t h e  e x p o n e n t i a l 
GARCH  (EGARCH) model. GARCH 
successfully captures thick-tailed returns, 
and volatility clustering. However, it is not 
well suited to capture the «leverage effect» 
since the conditional variance in GARCH 
model is only a function of the magnitude 
of the lagged residual and not their signs. 
However, in EGARCH model, 2

tσ  depends 
on both the size and the sign of lagged 
residuals and which accounts for such an 
asymmetric response to a shock (negative 
shocks).

The EGARCH (p, q) model specifies 
conditional variance in logarithmic form, 
which means that there is no need to im-
pose an estimation constraint in order to 
avoid negative variance.

( )∑ σβ+∑
σ
εγ+∑ 


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where αi is magnitude effect, βj is lagged 
log conditional variance, γk is the asymmet-
ric response parameter or leverage param-
eter. We expect γk < 0, indicating that with 
appropriate conditioning of the parameters, 
this specification captures the stylized fact 
that a negative shock (bad news) leads to 
a higher conditional variance in the subse-
quent period than a positive shock (good 
news). The logarithmic formulation of the 
model guarantees positive conditional vari-
ance, without imposing restrictions on the 
parameters.

4.	The GJR GARCH model. It is 
model developed by Glosten et al.  [24] 
expressed the leverage effect in a quadratic 
form while EGARCH expressed in the 
exponential form.

The conditional variance is now giv-
en by:

∑ σβ+∑ εγ+∑ εα+ω=σ
=

−
=

−−
=

−

p

j
jtj

r

k
ktktk

q

i
itit I

1

2

1

2

1

22 , (8)

where It-k is an indicator variable in which
1, 0, " "
0, 0, " "

t
t

t

if represents the bad news
I

if represents the good news
ε
ε

<
=  ≥ .

In this case, γk > 0 indicating negative 
shocks (bad news) have a deeper impact on 
future volatility than positive shocks.

5.	The Power TGARCH Model. 
Zakoian  [25] introduced threshold 
GARCH (TGARCH) model in 1994. The 
threshold GARCH is similar to the GJR 
model, different only because of the 
conditional standard deviation and absolute 
return instead of the conditional variance.

Threshold GARCH (p, r, q)) process 
is defined as:

∑ σβ+∑ εγ+∑ εα+ω=σ
=

−
=

−−
=

−

p

j
jtj

r

k
ktktk

q

i
itit I

111
. (9)

The conditional volatility is positive 
when ω >0, αi ≥ 0, βj ≥ 0 and αi + γi ≥ 0.

In TGARCH we expect γi to be positive, 
so that bad news would have a more pow-
erful effect on volatility than good news.
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6.	The Power GARCH  (PGARCH) 
Model. Ding et al. [7] introduced the power 
GARCH model that has the advantage 
of being able to capture and model the 
long memory property often observed in 
volatility series. The primary feature of the 
power GARCH (p, q) model is the presence 
of a Box-Cox power trans- formation of the 
conditional variances.

The Power GARCH (PGARCH) is de-
fined as:

( ) ∑ σβ+∑ εα+ω=σ
=

δ
−

=

δ
−

δ
p

j
jtj

q

i
itit

11
,    (10)

where δ is the power term parameter and 
should be greater than zero. The asymmet-
ric effect presents if γi ≠ 0, and –1< γi < 1.

7.	T he  Compone n t  GARCH 
(CGARCH) Model. Component GARCH 
model introduced by Engle and Lee [8] 
decompose conditional variance into a 
temporary or a permanent component. In 
this study, the component GARCH models 
are employed to decompose inf lation 
uncertainty into short-run and long-
run component by permitting transitory 
deviations of the conditional volatility 
around a time-varying trend.

The component GARCH (1, 1) model 
can be expressed as follows:

( ) ( ) ( )
( ) ( ) ( )termlongqq

termshortqqq
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2

, (11)

where α and β indicates short run memory, 
while qt is the time varying long-run vola-
tility (long run memory). The first equation 
describes the transitory (short-term) com-
ponent, which converges to zero with pow-
er(α + β). The second equation describes the 
long-run component, which converges to α0 
with powers of ρ.

3.8. Estimation of ARCH/GARCH 
models
The ARCH family models are esti-

mated by maximum likelihood estima-
tion method. It can be employed to find 

parameter values for both linear and 
non-linear models  (see, Brooks  [31]). 
However, the GARCH type model needs 
specification of the distribution assump-
tion of the error term: normal (Gaussian), 
t-distribution and, Generalized Error 
Distribution (GED).

1.	Normal Distribution. Engle [3] and 
Bollerslev [6] developed the distribution of 
the innovations zt which has a standardized 
normal probability function.

( )
2 2

22 2
2

1 1* ,
22

t

t

z

t

f z e e z
ε− −σ= = − ∞ < < ∞

ππσ

( )
2 2

22 2
2

1 1* ,
22

t

t

z

t

f z e e z
ε− −σ= = − ∞ < < ∞

ππσ
,                (12)

where ( )z*f  the probability function or 
density is named standardized, marked by 
a star because ( )z*f  has zero mean and 
unit variance.

2.	Student-t-Distribution. Bollers- 
lev [32] proposed the standardized Student-
t-distribution with V > 2 degree of freedom, 
which better captures the observed kurtosis.

The Standardized Student-t-distribution 
density function ( )νz*f  expressed as

( ) ( )[ ]
( ) ∞<<∞−
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

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Vzf ,

1
2

2/1* 2/12

( ) ( )[ ]
( ) ∞<<∞−







+



Γπ

+Γ=ν +ν z

V
zVV

Vzf ,

1
2

2/1* 2/12
,                 (13)

where Г(.) is the usual gamma function, 
V is the degree of freedom which represents 
the parameter to be estimated. Like, the 
normal distribution, the t-distribution is 
symmetric around zero mean 20 ≥=µ Vfor  

and its variance, 3
2

2 ≥
−

=σ Vfor
V
V

t  and 

kurtosis 5
4

6 ≥
−

= Vfor
V

K , respectively. 

However, for ∞→V  the density of stan-
dardized student-t distribution converges 
to the density function of standardized stu-
dent normal distribution.
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3.	Generalized Error Distribution 
(GED). Nelson  [23] suggested consid-
ering the family of Generalized Error 
Distributions, GED. The GED is a sym-
metric distribution that can be both lep-
tokurtic and platykurtic depending on the 
degree of freedom V(V > 1).

When ( )νz*f  assume a GED has the 
following density function:

( )
( )

1
2

1 /
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1 2
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V V

Vef z z V

V
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where λ is tail -thickness parameter,
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For V = 2, the GED is a standard nor-

mal distribution whereas the tails are thick-
er than in the normal case when V < 2, and 
thinner when V > 2. The GED becomes a 
uniform distribution on the interval [ ]33 ,−  when ∞→V .

3.9. Model selection
An important practical problem is the 

determination of the ARCH order p and 
the GARCH order q for a particular series. 
Since GARCH models can be treated as 
ARMA models for squared residuals, tra-
ditional model selection criteria such as 
the Akaike information criterion (AIC), 
the Bayesian information criterion (BIC) 
and Hannan-Quinn Criteria (HQC) may 
be used.

3.10. Model Adequacy Checking
After a GARCH model has been fitted 

to the data, the adequacy of the fit should 
be evaluated. In this study, we apply the 
ARCH-LM Test for standardized residuals 
of the fitted GARCH type models.

3.11. Volatility Forecasting
Tsay [30] stated again that the fore-

casts of the GARCH model are obtained 
similarly as the forecasts of an ARMA 
model. If we consider a GARCH (1, 1) 
model, which is one of the GARCH mod-
els under study at the forecast origin k, the 
1-step ahead forecast of 2

1+σk

( ) 2
1

2
10

2 1ˆ kkk σβ+εα+α=σ .
For the general GARCH (1, 1) l-step 

head forecast of 2
1+σk , at origin k, is 

( ) ( ) 1,1ˆ 2
110

2 >σβ+α+α=σ lkk .

3.12. Measuring the Accuracy 
of Volatility Models forecasting
Evaluation of univariate volatility fore-

casts is relatively straightforward and relies 
on standard forecast evaluation techniques. 
Among the common statistical methods, 
which can be used to observe the predic-
tion accuracy of a model, the root means 
square error (RMSE), the mean absolute 
error (MAE), the mean absolute percent er-
ror (MAPE), and the Theil inequality co-
efficient (TIC) are used in this study. The 
forecasting statistics are as follows:

( )∑ σ−σ=
=

T

t
ttT

RMSE
1

222ˆ1

,      (15)
where 2ˆ tσ  is one-step head volatility fore-
cast, 2

tσ  is the actual volatility and T is the 
number of forecasts or the number of time 
or year in the out-of-sample period.

∑ σ−σ=
=

T

t
ttT

MAE
1

22ˆ1 .          (16)

∑
σ

σ−σ
=

=

T

t t

tt

T
MAPE

1 2

22ˆ1 .        (17)

The Mean Absolute Deviation (MAD) 
is interesting since it is very robust to out-
liers and this criterion actually gives equal 
weighting to a large deviation of size z as 
to a sum of several deviations accumulat-
ing to z.



Fig. 1. The time plot of food-inflation rate Fig. 2. Time plot of non-food inflation rate
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The Theil Inequality Coefficient (TIC) 
is a scale invariant measure that always lies 
between zero and one, where zero indicates 
a perfect fit.

∑
σ+∑σ

∑
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==
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t
T

t
t
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t

tt

TT

TTIC

1

2

1

2

1

22

ˆ1

ˆ

.        (18)

The smaller is the error in the first 
three forecast error statistics, the better the 
forecasting ability of that model according 
to that criterion.

4.	Results and Discussions
4.1. Results of Descriptive Statistics
The data used in this study were 

monthly food and non-food inflation rate 
of Ethiopia from the period January 1971 
through June 2020. To analyze the series, 
ARMA-GARCH family models were used.

The first step in time series analysis 
is time plot of the original series in lev-
el against time and observes its graphical 
properties. This help in understanding the 
trend as well as pattern of movement of 
the original series. Here we plot the origi-
nal series of food & non-food inflation rate 
in Ethiopia as function of time. The time 
plots are depicted in Figure 1 & 2.

On Figure 1, food inflation rate looks 
like white noise series and varying about 
zero, i. e. close to stationary, while non-
food inf lation rate on Figure 2 shows 

somehow non-stationary since the fluctu-
ation rate is relatively high. However, the 
plot of series by itself is not an end, rather 
we use as a clue.

Table 1 shows the summary statistics 
of food and non-food inflation rate. The 
table reveals the positive mean food and 
non-food inflation rate of 10.77 and 8.03, 
respectively. It also shows that monthly 
food inflation falls to lowest level (–52.6) 
on July 2001 and reaches its maximum lev-
el (91.7) on July 2008.

Moreover, a very high Jarque 
Berra (J-B) value 343.3 for food inflation 
and 42.7 for non-food inflation rate and a 
very small corresponding p-value, there-
fore, the null hypothesis of normality was 
rejected for the data. To support the in-
ference on normality, the skewness (0.99) 
and (0.65) for food and non-food inflation, 
respectively are greater than 0 (skewness of 
a normal distribution is 0) and the kurto-
sis (6.14) and (3.03) are higher than 3 (kur-
tosis of a normal distribution is 3). The 
positive skewness is an indication that the 
upper tail of the distribution is thicker than 
the lower tail which implies that it rises 
more often than it drops, reflecting the re-
newed confidence in the market.

4.2. Unit root test results
The time series should be checked for 

stationarity before we fit a suitable mod-
el. In this study, an Augmented Dickey-
Fuller test (ADF) test is used to check the 



Table 1. Descriptive statistics of food and non-food inflation rate

Statistics Food inflation rate Non-food inflation rate

Mean 10.77712 8.034845

Std. Dev. 16.7424 7.645212

Min -52.64756 -8.082834

Max 91.73248 30.2925

Skewness 0.993686 0.656414

Kurtosis 6.149851 3.037737

Jarque-Bera 343.3124 42.69227

Probability 0.000000 0.000000

Obs 594 594
Source: Author’s Computation

Table 2. Unit root tests for the series at level and difference

Variables
ADF Test Critical values

t-statistic 1 % 5 % 10 % P-value

Food inflation 
rate (level)

With constant -4.7067 -3.441 -2.866 -2.5693 0.0001

Constant & linear 
trend -4.7756 -3.973 -3.4175 -3.1312 0.0005

Non-Food inflation 
rate (level)
Non-Food 
inflation rate(first 
difference)

Constant -2.4757 -3.4413 -2.8662 -2.5693 0.1220

Constant & linear 
trend
Constant
Constant & linear 
trend

-2.6456
-12.374
-12.363

-3.9739
-3.4413
-3.9739

-3.4175
-2.8662
-3.4175

-3.1312
-2.569
-3.131

0.2601
0.0000
0.0000

Source: Author’s Computation
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stationarity of the monthly inflation series. 
In the case of Dickey-Fuller test, there may 
be autocorrelation problems. To tackle such 
autocorrelation problem, Dickey-Fuller has 
developed a test called Augmented Dickey 
Fuller (ADF) test. In ADF test, the null hy-
pothesis stated that the variable is not sta-
tionary or have a unit root test.

The results of the ADF test statis-
tic for food and non-food inflation series 
are depicted in Table 2. Normally we use 
5 % critical value to evaluate the station-
arity condition of the series. For exam-
ple, the test statistic for food inflation rate 

with constant term and constant & linear 
trend are 4.7067 and 4.7756 in absolute val-
ue, which is greater than 5 % critical val-
ue (2.86 & 3.4175), respectively, indicating 
rejection of the null hypothesis of non-sta-
tionarity. However, the non-food inflation 
rate is non-stationary at level since the test 
statistic with constant (2.47) and constant & 
linear trend (2.6456) in absolute value is 
less than 5 % critical value (2.86 & 3.41), 
respectively, indicating failure to reject the 
null hypothesis of non-stationarity. Thus, 
we need to apply first difference to make 
it stationary as indicated in the Table 2.



Table 3. Estimation Results of ARMA Models for food inflation with Information 
               Criteria

Model Parameter Coefficients Std. error t-statistic P-value
Information criteria

AIC BIC HQIC

ARMA 
(1, 0)

μ 10.8766 3.6322 2.9944 0.0029
6.543 6.565 6.551

α1 -0.9244 0.0099 92.6001 0.0000

ARMA 
(2, 0)

μ 10.860 3.2048 3.3887 0.0007

6.531 6.560 6.542α1 1.0395 0.0357 29.06785 0.0000

α2 -0.1242 0.03691 -3.36549 0.0008

ARMA 
(1, 1))

μ 10.8624 3.1966 3.39806 0.0007

6.524 6.554 6.536α1 0.8965 0.0119 75.0989 0.0000

β1 0.1942 0.0266 7.2963 0.0000

ARMA 
(1, 2)

μ 10.896 3.6709 2.9683 0.0031

6.512 6.549 6.526
α1 0.9198 0.0170 53.9630 0.0000

β1 0.1647 0.0404 4.0706 0.0001

β2 -0.1217 0.0256 -4.7477 0.0000
Source: Author’s Computation 
Note: Models with no serial correlation in the residuals are considered.
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From the results, the first difference of 
non- food inflation rate is stationary since 
the test statistic with constant (12.37) and 
constant & linear trend (12.36) in abso-
lute value is greater than 5 % critical value 
(2.86 & 3.13), respectively.

4.3. ARIMA type model estimation 
results
Before we specify volatility model for 

the given series, we should specify a mean 
equation. In this study, an Autoregressive 
Moving Average model  (ARMA) type 
models specify the conditional mean 
equations for the food and non-food in-
flation rate.

Given the significance of the coeffi-
cients and absence of serial correlation in 
the residuals and smallest value of infor-
mation criteria, the following models are 
determined. From the results on Table 3, 
ARMA (1, 2) model was identified as the 

best mean model for estimating the coef-
ficients of food inflation rate.

From the results of Table 4, ARIMA 
(0, 1, 1) model was identified as the best 
mean model for estimating the coefficients 
of non-food inflation rate using the AIC, 
BIC and HQIC.

4.4. Model adequacy checking
Before we consider the fitted model 

as the best fit and interpret its results, it is 
mandatory to check whether the model as-
sumptions are satisfied. If the basic model 
assumptions are violated, then a new mod-
el should be specified until it provides an 
adequate fit to the data.

Test of serial correlation in the resid-
uals. In this case, serial correlation in the 
residuals was tested using the Breusch-
Godfrey Serial Correlation LM Test for 
each of the tentatively selected ARMA 
models: ARMA (1, 2) and ARIMA (0, 1, 1) 



Table 4. Estimation Results of ARIMA Models for non-food inflation with 
                Information Criteria

Model Parameter Coefficients Std. error t-statistic P-value
Information criteria

AIC BIC HQIC

ARIMA 
(1, 1, 0)

μ 0.0343 0.1023 0.3354 0.7374
5.111 5.133 5.119

α1 -0.2616 0.0275 -9.5036 0.0000

ARIMA 
(2, 1, 0)

μ 0.0342 0.0970 0.3523 0.7247

5.111 5.140 5.122α1 -0.2771 0.0299 -9.2520 0.0000

α2 -0.0592 0.0299 -1.9768 0.0485

ARIMA 
(0, 1, 1)

μ 0.0340 0.0956 0.3563 0.7217
5.110 5.132 5.119

β1 -0.2605 0.0301 -8.6345 0.0000
Source: Author’s Computation
Note: Models with no serial correlation in the residuals are considered.

Table 5. Results of Breusch-Godfrey Serial Correlation LM Test of the fitted 
               model

Test statistic Food inflation rate Non-food inflation rate

F-statistic
2.247 0.9405

(0.106) (0.391)

Obs*R-squared
14.571 1.897

(0.104) (0.387)
Source: Author’s Computation
Note: Values inside the bracket are p-values
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models for the conditional mean of food 
inflation and non-food inflation rate, re-
spectively. The null hypothesis asserts that 
there is no serial correlation in the resid-
ual series. As we observe from Table 5, 
the serial correlation LM test results for 
this equation with 1 lag in the test equa-
tion strongly reject the null of no serial 
correlation.

Normality test of residuals from the 
mean equation. To investigate whether the 
residuals of the fitted model (mean equa-
tion) are normally distributed, the Jarque-
Bera test was applied. The residuals nor-
mality from ARMA (1, 2) for food inflation 
and ARIMA (0, 1, 1) for non-food infla-
tion rate were conducted and reported 

in Table 6. We can see from Table 6 that 
the Jarque-Bera statistic is not significant, 
and hence, there is no significant evidence 
to reject the null hypothesis of normali-
ty. This indicates that the residuals of the 
fitted models are normally distributed for 
both of the series under consideration.

Test of ARCH Effect Results. Before 
we estimate ARCH type models, there 
should be volatility clustering and ARCH 
effect in the residuals of the estimat-
ed ARMA (1, 2) for food inflation and 
ARIMA (0, 1, 1) for non-food inflation rate.

From the Table 7, we observed that the 
p-value for food inflation rate is greater 
than 5 % which indicates fail to reject the 
null of homoscedastic variance in the error 



Table 6. Normality test of the residuals from the fitted mean model

Variables Skweness Kurtosis Jarque-Bera 
Statistic P-value

Food inflation rate -0.035 3.528 2.711 0.257

Non-food inflation rate -0.1085 3.722 4.008 0.134
Source: Author’s Computation

Table 7. Result for ARCH LM Test for the fitted models

Test statistic Food inflation rate Non-food inflation rate

F-statistic
0.2627 6.183054

(0.6084) (0.01325)

Obs*R-squared
0.2635 6.139671

(0.6077) (0.0132)
Source: Author’s Computation
Note: Values inside parenthesis are p-values.
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term of ARMA (1, 2) model. However, the 
p-value on ARMA (0, 1, 1) model of non-
food inflation rate is less than 5 % indi-
cating to reject the null of homoscedastic 
variance. Therefore, food inflation rate has 
a constant variance while non-food infla-
tion rate has a non-constant variance (het-
eroscedasticity), which requires an appli-
cation of GARCH type model for non-food 
inflation rate.

4.5. Estimation result of ARMA 
model for food inflation rate
In order to identify the appropriate 

ARMA model, the minimum information 
criteria, absence of serial correlation on 
the residual, and the most significant co-
efficients were used. The AR slope coeffi-
cients of the model are statistically signif-
icant at the 1 % marginal significant levels. 
Thus, the first and second lags of non-food 
inflation rate have positively predicted the 
future value of non-food inflation rate. 
That is the past realization of non-food in-
flation rate will influence non-food infla-
tion rate at a 1 % level. The moving aver-
age coefficient is negative and statistically 

significant at the 1 % level, which means 
the residuals of the first lag will negative-
ly predict non-food inflation rate at the 1 % 
level. Table 8 summarizes the results as 
below.

4.6. Forecasting
Before we use the fitted model to 

forecast the value of the of food inflation 
rate, we should compare the forecasting 
performance of the candidate model us-
ing different error criteria, such as RMSE, 
MAE, MAPE and Theil’s inequality coef-
ficient. From the results in Table 9, the fit-
ted ARMA (1, 2) model has minimum error 
as compared to other fitted ARMA models 
which are determined based on minimum 
information criteria and absence of serial 
correlation on the residuals. Forecasting 
the food inflation rate using ARMA (1, 2) 
model are shown in Fig. 3.

4.7. Estimation Results of GARCH 
type models
Once the presence of ARCH effects 

on the residuals of the fitted mean mod-
el is confirmed, then we need to estimate 



Table 8. Interpretation of ARMA (1, 2) model for food inflation rate

Fitted Model Parameters Coefficients Std. error t-statistic P-value

ARMA (1, 2)

μ 10.89654 3.670936 2.968327 0.0031

α1 0.919852 0.017046 53.96304 0.0000

β1 0.164757 0.040475 4.070606 0.0001

β2 -0.121749 0.025643 -4.747798 0.0000
Source: Author’s Computation
Note: Models with no serial correlation in the residuals are considered.

Table 9. Forecasting evaluation of different ARMA type model for food  
                inflation rate

Model
Forecasting accuracy Measure

RMSE MAE MAPE Theil

ARMA (1, 0) 16.697 11.8568 9.577 0.5441

ARMA (2, 0) 16.651 11.8207 9.742 0.5439

ARMA (1, 1) 16.7104 11.8663 8.995 0.5445

ARMA (1, 2) 16.6380 11.8120 6.244 0.5433
Source: Author’s Computation
Note: Models with no serial correlation in the residuals are considered.

Fig. 3. Forecasting the food inflation rate using ARMA (1, 2) model
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the series using GARCH type models. 
However, before we define the final model, 
the optimal lag for GARCH family models 
has to be determined. In this case, the pa-
rameters of the models are estimated using 

maximum likelihood method under the as-
sumption of different error distributions.

Model Selection of GARCH Family 
Model. In order to determine the order 
of GARCH type models, the Akaikian 



Table 10. Optimal lag selection-based AIC, BIC and HQIC under different error 
                 distribution

Model Error distribution AIC BIC HQIC Asymmetric 
effect

GARCH (1, 1) Generalized error distribution 4.6513 4.6956 4.6686 *

EGARCH (1, 1) Student’s t-distribution 4.6354 4.6871 4.6555 Significant

EGARCH (1, 1) Generalized error distribution 
(GED) 4.6488 4.7006 4.6690 Significant

TGARCH (1, 1) Normal distribution 4.7120 4.7564 4.7293 Significant

TGARCH (1, 1) Student’s t distribution 4.6293 4.6811 4.6495 Significant

TGARCH (1, 1) Generalized error distribution 
(GED) 4.6437 4.6954 4.6638 Significant

PGARCH (1, 1) Normal distribution 4.7161 4.7604 4.7333 Significant

PGARCH (1, 1) Student’s t-distribution 4.6357 4.6875 4.6559 Significant

PGARCH (1, 1) Generalized error distribution 4.6498 4.7016 4.6700 Significant

CGARCH (1, 1) Student’s t distribution 4.6386 4.6977 4.6616 *
Source: Author’s Computation
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information criterion (AIC), Bayesian infor-
mation criterion (BIC) and Hannan-Quinn 
Information Criteria (HQIC) are used for 
selecting the symmetric, asymmetric, and 
component fitted GARCH models. From 
Table 10, we observed that TGARCH (1, 1) 
and PGARCH (1,1) models under normal dis-
tribution, EGARCH (1, 1), TGARCH (1, 1), 
PGARCH  (1,  1) and CGARCH  (1,  1) 
models under Student’s t-distribu-
tion, and GARCH (1, 1), EGARCH (1, 1), 
TGARCH (1, 1) and PGARCH (1, 1) mod-
els under Generalized error distributional 
assumption of the residuals were selected as 
candidate models using minimum AIC, BIC 
and HQIC. Thus, based on the minimum in-
formation criteria, TGARCH (1, 1) with stu-
dent’s t-distributional assumption for residu-
als identified as the best performing model 
selected candidate model.

In addition to information criteria, 
forecasting performance of the candidate 
GARCH type models are used to identify 
an appropriate conditional volatility model. 

The basic accuracy statistics are RMSE, 
MAE, MAPE and Theil inequality coef-
ficient as shown in Table 11. The models 
with the smallest statistics are used as the 
best fit for modeling the conditional vola-
tility of non-food inflation rate.

From the results on Table 11, 
TGARCH  (1, 1) with Student’s t-distri-
butional assumption for residuals per-
form better to describe inflation volatility 
since they possess the smallest forecast er-
ror measures in the majority of the statis-
tics considered for non-food inflation rate. 
Therefore, the null hypothesis that infla-
tion should be better captured by the sym-
metric GARCH model is rejected and the 
alternative which states that the asymmet-
ric GARCH model better capture inflation 
series of Ethiopia under the period of in-
vestigation is accepted.

Parameter Estimation Results. Once 
the TGARCH (1, 1) model with student’s 
t-distributional assumption for residu-
als is selected as the better fit based on 



Table 11. Forecast accuracy statistics for GARCH type model for non-food 
                 inflation

Model Error distribution
Forecasting accuracy Measure

RMSE MAE MAPE Theil

GARCH (1, 1) Generalized error distribution 3.2130 2.1538 104.696 *0.9802

EGARCH (1, 1) Student’s t-distribution 3.2141 2.1550 112.481 0.9637

EGARCH (1, 1) Generalized error distribution 
(GED) 3.2135 2.1543 109.192 0.9702

TGARCH (1, 1) Student’s t distribution 3.2131 2.1542 111.165 0.9662

TGARCH (1, 1) Generalized error distribution 
(GED) 3.2134 2.1542 108.461 0.9717

PGARCH (1, 1) Student’s t-distribution 3.2138 2.1547 111.035 0.9664

PGARCH (1, 1) Generalized error distribution 3.2134 2.1542 108.289 0.9721

CGARCH (1, 1) Student’s t distribution 3.2133 2.1541 107.833 0.9730
Source: Author’s Computation

Table 12. Estimation results of TGARCH (1, 1) model for non-food inflation rate

Variables Coefficients Std. error t-statistic P-value

с 0.0304 0.0259 1.1755 0.2398

β1 0.1590 0.0450 3.5329 0.0004

γ 0.1376 0.0489 2.8101 0.005

β2 0.9199 0.0210 43.7219 0.0000
Source: Author’s Computation
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information criteria and forecast accura-
cy measures, then the next step is to in-
terpret the result and forecasting future 
value of the series. The parameters in the 
TGARCH (1, 1) model are estimated us-
ing the maximum likelihood (ML) method, 
which are presented on Table 12.

The result on Table 12 indicates that a 
one month lagged shocks (i. e. ARCH (–1)) 
of the monthly non-food inflation rate is 
statistically significant at the 1 % lev-
el. This indicates that the current month 
non-food inflation volatility is affected by 
its 1-month lagged shocks. This may be 
an indication that current non-food infla-
tion volatility is sensitive to past inflation 

movements. Similarly, GARCH (–1) terms 
are which indicates volatility persistence 
is statistically significant at the 1 % level. 
This indicates that current month inflation 
volatility affected by its 1-month lagged in-
flation volatility.

Moreover, the coefficient of the asym-
metric term is positive (0.1376) and statis-
tically significant at the 1 % level, indi-
cates that bad news (unexpected increase 
in monthly non-food inflation) has larger 
impact on the non-food inflation volatili-
ty than good news (unexpected decrease 
in monthly food-inflation volatility). Thus, 
modeling of information, news of events is 
very significant determinants of volatility.



Table 13. ARCH-LM Test for Standardized Residuals of the Fitted TGARCH (1, 1) 
                 model

Test statistic Estimates

F-statistic
0.3756

(0.5501)

Obs*R-squared
0.3585

(0.5493)
Source: Author’s Computation
Note: Values in parenthesis are p-values.

Fig. 4. In-sample forecast of non-food inflation volatility using TGARCH (1, 1) model
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4.8. Model Checking
In order to check whether the fitted 

models are good fit to the data ARCH-LM 
Test for standardized residuals of the fit-
ted TGARCH (1, 1) model was performed. 
As can be seen in Table 13, the ARCH-LM 
test indicates that the standardized residu-
als of the fitted model did not exhibit any 
additional ARCH effect. Therefore, the se-
lection of TGARCH (1, 1) model with stu-
dent’s t distributional assumption of resid-
uals to investigate non-food inflation rate 
volatility was well justified.

4.9. Forecasting
One of the fundamental uses of de-

veloping GARCH model is forecasting. In 
this section, we examine the forecasting 

accuracy of the fitted models and then 
we make in-sample forecasts. As we ob-
serve from Figure 4, a continuous rise in 
the volatility of non-food inflation rate is 
observed.

5.	Conclusion
An increase in inflation volatility im-

plies higher uncertainty about future pric-
es. As a result, producers and consumers 
can be affected by the increased inflation 
volatility, because it increases the uncer-
tainty and the risk in the market. Thus, in-
flation volatility attracts the attention of re-
searchers to find a suitable model, which 
can predict the future conditions of the 
market. This study aims to fit appropriate 
ARMA-GARCH family models for food 
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and non-food inflation rate of from the pe-
riod January 1971 through June 2020.

In the preliminary analysis, food infla-
tion rate shows a white noise property, while 
non-food inflation rate has somehow fluctu-
ation having the characteristics of financial 
time series such as leptokurtic distributions, 
which leads to an adequate ground to apply 
GARCH family models. The result of unit 
root test shows that food inflation is station-
ary at level, while non-food inflation rate is 
stationary at first difference.

On the estimation results of the mean 
equation, an ARMA type model is appro-
priate for food inflation rate since ARCH-
LM test on the squared residuals of the best 
fitted ARMA (1, 2) model confirmed the 
absence of remaining ARC H effect. Thus, 
we apply an ARMA (1, 2) model for food 
inflation rate to estimate the coefficients 
and forecast the future series. However, 
the ARCH–LM test on the residual of 
ARIMA (0, 1, 1) model on non-food infla-
tion rate shows the existence of remaining 
ARCH effect which needs to require the ap-
plication of GARCH family models.

In the estimation of volatility fam-
ily models for non-food inflation rate, 
TGARCH (1, 1) model with Student’s t-dis-
tributional assumption of residual was select-
ed as the best fitted model among different 
kind of candidate models using information 
criteria (AIC, BIC & HQIC) and forecast er-
ror criteria (such us: MAE, MAPE, RMSE 
and Theil inequality coefficient).

The result of TGARCH (1, 1) model 
shows that one month lagged shocks (i. e. 
ARCH  (–1)) of the monthly non-food 

inflation rate that are statistically signif-
icant at the 1 % level indicate that the cur-
rent month non-food inflation volatility was 
affected by its 1-month lagged shocks. This 
may be an indication that current non-food 
inflation volatility is sensitive to past infla-
tion movements. Similarly, GARCH (–1) 
terms are which indicates volatility per-
sistence is statistically significant at the 1 % 
level. This indicates that current month in-
flation volatility is affected by its 1-month 
lagged inflation volatility. Moreover, the 
coefficient of the asymmetric term is pos-
itive and statistically significant at the 1 % 
level, indicating that bad news (an unex-
pected increase in monthly non-food in-
flation) has larger impact on the non-food 
inflation volatility than good news (an un-
expected decrease in monthly food-infla-
tion volatility). Thus, modeling of infor-
mation, news of events are very significant 
determinants of volatility and GARCH 
family models are appropriate for the given 
series (monthly food-inflation volatility) of 
Ethiopia under the study period considered.

Therefore, inflation volatility brings 
risks to consumers, especially fixed in-
come earners as compared to producer. 
Then the concerned stakeholders, partic-
ularly the government pays careful atten-
tion because attempting to avoid such vol-
atility costs the economy far more than its 
direct costs and leads to inefficiencies and 
benefits to only some parts of society. This 
is due to direct government interventions 
to curb inflation volatility, which can dis-
tort markets and lead to resource misallo-
cation if markets are not regulated properly.
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Использование моделей семейства GARCH для оценки уровня 
продовольственной и непродовольственной инфляции 

в Эфиопии

Т. Х. Абебе  
Университет Амбо, 
Амбо, Эфиопия 

 teshome251990@gmail.com

Аннотация. Повышение волатильности инфляции подразумевает более высокую 
неопределенность относительно будущих цен. В результате производители и по-
требители могут пострадать от повышенной волатильности инфляции, посколь-
ку это увеличивает неопределенность и риски на рынке. Таким образом, вола-
тильность инфляции привлекает внимание исследователей к поиску подходящей 
модели, которая может предсказывать будущие условия рынка. Это исследова-
ние направлено на то, чтобы соответствовать подходящим моделям семейства 
ARMA-GARCH для продовольственных и непродовольственных темпов инфляции 
за период с января 1971 г. по июнь 2020 г. Поскольку основной целью исследова-
ния является определение подходящей модели для рядов инфляции, определе-
ны две гипотезы исследования в сравнении двух типов моделей. Первая гипо-
теза – ​симметричные модели GARCH лучше отражают волатильность инфляции 
в Эфиопии. Вторая гипотеза – ​асимметричные модели GARCH лучше отражают во-
латильность инфляции в Эфиопии. Модели семейства ARMA-GARCH были примене-
ны для фиксации стилизованных фактов финансовых временных рядов, таких как 
лептокуртические распределения, кластеризации волатильности инфляции и эф-
фектов левериджа. Усредненные результаты показывают, что модели ARMA (1, 2) 
и ARIMA (0, 1, 1) определены как наиболее подходящие для продовольственной 
и непродовольственной инфляции, соответственно. По результатам оценок вола-
тильности, асимметричная модель TGARCH (1, 1) с допущениями Стьюдента о t-рас-
пределении остатка является лучшей моделью для непродовольственной инфля-
ции. Моделирование информации, новостей о событиях является весьма значимым 
детерминантом волатильности и модели семейства GARCH подходят для данного 
ряда (ежемесячная волатильность продовольственной инфляции) Эфиопии в рас-
сматриваемом исследуемом периоде.

Ключевые слова: продовольственная инфляция; непродовольственная инфляция; 
семейство моделей ARMA-GARCH; Эфиопия.
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