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Abstract. Anincrease in inflation volatility implies higher uncertainty about future prices.
As a result, producers and consumers can be affected by the increased inflation volatil-
ity, because it increases the uncertainty and the risk in the market. Thus, inflation vola-
tility attracts the attention of researchers to find a suitable model which can predict the
future conditions of the market. This study aims to fit appropriate ARMA-GARCH fam-
ily models for food and non-food inflation rate of from the period January 1971 through
June 2020. Since the main objective of the study is identifying an appropriate model for
inflation series, the null and alternative hypotheses are defined in comparison of the two
types of models. Ho: The symmetric GARCH maodels better capture inflation volatility of
Ethiopia. H:: The asymmetric GARCH models better capture inflation volatility of Ethiopia.
The ARMA-GARCH family models were applied to capture the stylized facts of financial
time series such us leptokurtic, volatility clustering and leverage effects. The mean mod-
el results show that, an ARMA (1, 2) and ARIMA (0, 1, 1) models are identified as the best
fitted model for food and non-food inflation, respectively. From the estimation results of
volatility model, an asymmetric TGARCH (1, 1) model with Student's t- distributional as-
sumptions of the residual is the best model for non-food inflation. Thus, modeling of in-
formation, news of events is very significant determinants of volatility and GARCH family
models are appropriate for the given series (monthly food-inflation volatility) of Ethiopia

under the study period considered.
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1. Introduction

Historically, Ethiopia inflationary ex-
perience was moderate and not consid-
ered as serious as the issue of economic
growth. Since 2004, however, the country
has experienced high and persistent infla-
tion growth. Several macro-economic sta-
bilization measures and policies were im-
plemented over the past and seemed to be
a complete failure. The booming economy
has yet remained principally constrained by
dual macroeconomic problems, i. e. price
inflation and low international reserves [1].

A rising inflation has become one
of the major economic challenges facing

Ethiopian as the rate of inflation increase;
people will lose confidence with state of
the currency since the currency depreci-
ates. The aforementioned creates a need
of high wages in the economy and conse-
quently the companies increase the pric-
es of goods and services to overcome the
wage increase and at the same time to
continue making profits in offering their
services [2].

Furthermore, an unanticipated infla-
tion has a distributive effect from creditors
to debtors, which increases uncertainty af-
fecting consumption, savings, and borrow-
ing and investment decisions. This raises
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the question of knowing the pattern of in-
flation rate by consumers, producers, gov-
ernment and economists to plan budgeting.
Thus, modeling food inflation and non-
food inflation were attracting the atten-
tion of macroeconomists and policy mak-
ers for many years both at the theoretical
and at the empirical level.

The volatility of inflation has broad
economic and financial implications, and
this has motivated a vast literature on
modeling such volatility. In this regard,
Engle [3] first introduces the autoregres-
sive conditional heteroscedasticity (ARCH)
model to assess the validity of the conjec-
ture of Friedman [4] that the unpredict-
ability of inflation was a primary cause of
business cycles since uncertainty due to
this unpredictability would affect the in-
vestors’ behavior. Pursuing this idea re-
quired a model in which this uncertainty
could change over time [5]. Consequently,
Bollerslev [6] proposed independently
a more generalize ARCH (GARCH) mod-
el which is more parsimonious model of
the conditional variance than a higher or-
der ARCH model.

The GARCH model, however, cannot
account for leverage effect, even though it
accounts for volatility clustering and lep-
tokurtosis in a series. This necessitated the
development of new and extended models
over GARCH that resulted into new mod-
els such as EGARCH, GJRGARCH, and
TGARCH models because the behavior of
inflation volatility is asymmetric rather
than symmetric resulting in that the sym-
metric GARCH model provides misleading
estimates of inflation uncertainty.

Moreover, Power GARCH (PGARCH)
is a model introduced by Ding et al. [7]. It
is able to capture and model the long mem-
ory property often observed in the series of
volatility and with Engle and Lee [8] com-
ponent GARCH model decomposing con-
ditional variance into a short run and long
run volatility, separately. In this regard,

various researchers such as, Barimah [9],
Okeyo et al. [10], Syed et al. [11], Asemota
et al. [12] and among others tried to ana-
lyze inflation volatility using GARCH fam-
ily models.

In the case of Ethiopia, few studi-
es (Shiferaw [13], Anteneh et al. [14],
Abebe et al. [15], Abebe [16], and among
others) were carried out to evaluate the per-
formance of GARCH models on explaining
different agricultural product price volatil-
ity. However, to the best of my knowledge,
not enough studies were performed sepa-
rately to model food and food inflation vol-
atility of Ethiopia using various GARCH
family models.

The overall objective of this study is
to fit an appropriate GARCH type mod-
els for food and non-inflation uncertain-
ty (volatility) in Ethiopia over the peri-
od of January 1971 through June 2020.
Unlike the existing literature where the
inflation uncertainty is generally prox-
ied by symmetric GARCH, in this study,
the asymmetric GARCH and component
GARCH (CGARCH) models were also
used to compare the performance of vari-
ous model in fitting inflation uncertainty
of Ethiopia under the study period.

Since the main objective of the study
is identifying an appropriate model for in-
flation series, the null and alternative hy-
potheses are defined in comparison of the
two types of models as stated below:

Hy: The symmetric GARCH mod-
els better capturing inflation volatility of
Ethiopia.

H;: The asymmetric GARCH mod-
els better capture inflation volatility of
Ethiopia.

2. Literature Review

2.1. Theoretical literature review

Theoretically, there are a number of
literatures that describe a rise in inflation
increases uncertainty about future infla-
tion. Okun’s [17] study was one of the first
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attempts to examine systematically the re-
lationship between inflation and its vari-
ability. Consequently, Friedman [4] stat-
ed that rising inflation increases private
agents’ uncertainty about future monetary
policy. He states that the more uncertain in-
flation is to extract the signal about relative
prices from the absolute prices. When in-
flation is engrained in an economic system,
it is difficult and costly to lower it because
inflationary expectations become inertial
and cannot be quickly and easily lowered
to a sustainably low level.

Ball [18] added that, higher inflation
rates generate greater uncertainty about the
future policy so about future inflation rate.
In a market economy, inflation uncertainty
reduces the price system’s efficiency in co-
ordinating economic activity (Wilson [19]).
Poon [20] also postulated that uncertain-
ty (volatility) may disrupt the normal ac-
tivity of day-to-day life of each individual
and greatly affect economic performance.

Given that inflation uncertainty is an
unobserved variable, many different mea-
sures have been proposed in the litera-
ture. Some studies rely on survey-based
measures, others depend on volatility de-
rived from time series models, and some
use realized forecast errors. However, each
measure is depending on the nature of the
data and derived from different assump-
tions which are most likely not fulfilled
completely.

Mostly, macroeconomic data are tend-
ing (time series), volatility derived from
time series models are the interest of most
studies. Even though, inflation uncertain-
ty (volatility) measure captures the extent of
fluctuations in inflation is clearly import-
ant for structural analysis, forecasting and
policy purposes, the issue of finding suit-
able proxy for inflation volatility or uncer-
tainty has been challenging. Although there
could be several ways to estimate inflation
volatility from the survey-based methods to
empirical models, the most common used

method is to estimate inflation volatility
is the univariate autoregressive condition-
al heteroscedasticity (ARCH) models pro-
posed by Engle [3] and Bollerslev [6] gen-
eralized ARCH (GARCH) model are the
pioneer one.

It has been argued that the behavior
of inflation volatility is asymmetric rath-
er than symmetric. Fountas et al. [21] and
Baunto et al. [22] are of the view that pos-
itive inflation shocks have a significant-
ly greater impact on volatility compared
to the negative’s inflation shocks. Thus,
given the nature of the data, the symmet-
ric ARCH and GARCH models may pro-
vide misleading estimates of inflation
uncertainty.

Thus, modifications to the orig-
inal GARCH model were necessari-
ly to overcome these shortcomings of
symmetric GARCH model in infla-
tion series. The common asymmetric
GARCH family models are an exponen-
tial GARCH (EGARCH) model intro-
duced by Nelson [23], GIR-GARCH of
Glosten et al. [24] and TGARCH model
by Zakoian [25]. Subsequently, Engle and
Lee [8] generalize introduced a component
GARCH (CGARCH) model that decom-
poses the conditional variance into transi-
tory and permanent components.

2.2. Empirical literature review
There are ample empirical studies con-
ducted on modeling inflation volatility us-
ing the standard GARCH family models.
Barimah [9] examined the asymmet-
ric effects of inflation-on-inflation uncer-
tainty in Ghana for the period 1963:4 to
2014:2. He applied an EGARCH model on
monthly inflation rates to estimate infla-
tion uncertainty. From the result, the vari-
ance equation indicates that inflation un-
certainty varies directly with the rate of
inflation in highly inflationary periods.
Okeyo et al. [10] investigates inflation
rate volatility in Kenya using ARCH type
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model on the data spanning from January
1985 to April 2016. The result of the study
showed that the EGARCH (1, 1) with GED
was the best in modeling and forecasting
Kenya’s monthly inflation rate. They rec-
ommended that governments, policy mak-
ers interested in modeling and forecasting
monthly rates of inflation should take in-
to consideration heteroscedasticity mod-
els since it captures the volatilities in the
monthly rates of inflation.

Syed et al. [11] studied inflation vol-
atility in 10 Asian economies using quar-
terly data from 1991 to 2012 by applying
different GARCH family models. The re-
sult showed that the leverage parameter is
statistically significant, indicating the ex-
istence of an asymmetric GARCH model
in the model specifications. Thus, the GJR-
GARCH model was an important model in
estimating the existence of inflation stabi-
lization of bidirectional causality running
between inflation and inflation volatility.

Few empirical researches that were con-
ducted to analyze inflation volatility using
GARCH type models are discussed below.

Shiferaw [13] analyzed the log-returns
price volatility of agricultural products
under consideration using GARCH type
models over the period from May 2001 to
April 2011. From the result of model esti-
mation, the GARCH (1, 1), GARCH (1, 2)
and GARCH (2, 1) models are the most ap-
propriate fitted models to evaluate the vol-
atility of the log-returns of price of Cereal,
pulse and oil crops respectively.

Anteneh et al. [14] model and identi-
fy determinants of monthly domestic price
volatility of sugar in Ethiopia over the study
period from December 2001 to December
2011 using GARCH family approach. From
the results EGARCH model with Student-t
distributional assumptions for residual was
selected as the best fitted model for the se-
ries under the period considered.

Abebe et al. [15] applied multiplicative
GARCH-MIDAS two component models

for price return volatility of selected com-
modities traded at the Ethiopian com-
modity exchange (ECX). The component
model helps to can capture the time-vary-
ing conditional as well as uncondition-
al volatilities, and accommodates macro-
economic variables observed at different
frequencies through mixed interval data
sampling (MIDAS) specification. From the
result it is observed that the fitted GARCH-
MIDAS component models capture the
stylized facts of financial time series.

Abebe [16] analyzed the average dai-
ly coffee price volatility of Ethiopia from
1 January 2010 to 30 June 2019 using
GARCH-MIDAS component model which
decomposes the conditional variance in-
to short run component which follows a
mean-reverting unit GARCH process and
long-run component which consider differ-
ent frequency macroeconomic indicators
via mixed interval data sampling (MIDAYS)
specification. From the result of estimat-
ed model, all selected indicators are cru-
cial in explaining price volatility. Moreover,
the estimated GARCH-MIDAS model with
money supply as a main driver is used for
out-sample forecast. Based on, DM test
statistic multiplicative GARCH-MIDAS
model provides an explanation for stylized
facts that cannot be captured by standard
GARCH model.

Given the compatibility of the afore-
mentioned GARCH family models for in-
flation series as discussed in both theoret-
ical and empirical literature review, the
researcher in the current study try to com-
pare the performance of different GARCH
type models, for monthly food and non-
food inflation uncertainty of Ethiopia.

3. Data Source and Methodology

3.1. Data and Nature of the series

This study uses secondary data. The
variables are monthly food and non-food in-
flation rate, which were compiled from the
National Bank of Ethiopia. Theoretically,
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linear time series models such as ARIMA
models are unable to explain a number of
important features. Those common fea-
tures are leptokurtosis, volatility clustering,
leverage effects and long memory. Thus,
GARCH family models proposed to ana-
lyze the stylized facts of the series under
this study.

3.2. Stationary and Unit Root Test

The foundation of time series analysis
is stationarity. Stationary series is charac-
terized by a kind of statistical equilibrium
around a constant mean level as well as a
constant dispersion around that mean lev-
el (Box and Jenkins [26]). If a time series
is not stationary, it is necessary to look for
possible transformations that might induce
stationarity.

Several statistical tests may be car-
ried out to determine whether a series
is stationary or non-stationary. In this
study, the commonly used unit root test,
the Augmented Dickey Fuller (ADF)
test, which controls higher-order correla-
tion, is used. In ADF test, if the null unit
root (non-stationarity) is not rejected, apply
differencing to make the series stationary.

3.3. ARMA Model Specification

The Box—Jenkins method (ARIMA)
requires that the discrete time series da-
ta be equally spaced over time and that
there be no missing values in the series.
The ARMA model states that the current
value of the series depends linearly on its
own previous values plus a combination
of current and previous values of a white
noise error term.

The general stationary process yt un-
der an ARMA (p, q) process is given by

P q
Ye=u+ ziaiyt—i +€ — Zlﬁjat—i , (D
i= Jj=
where, y, is inflation series, o, 0, 05, ...,

a, are the coefficients of an AR model and
Bos Bi, P, ..., B, are MA coefficients, while

p and ¢q are integers indicating the lags of
AR and MA model, respectively.

3.4. Model selection criteria

When we estimate the mean ARMA
model, there are various model selection
criteria, which are based on the likeli-
hood function and the number of free pa-
rameters from the fitted ARMA model.
This study used the Akaike’s Information
Criterion (AIC), the Bayesian Information
Criterion (BIC) and the Hannan Quin
Information Criterion (HQIC).

3.5. Parameter Estimation ARMA

Models

In order to estimate the parameters
of an ARMA (p, ¢) model, the maximum
likelihood estimation method that maxi-
mizes the joint probability density func-
tion of the innovation terms ¢, €, ..., &7
was applied.

3.6. Model Diagnostic Checking

After estimating the ARMA model
and before interpreting its result, it is man-
datory to check whether the model is ap-
propriately specified or whether the mod-
el assumptions are satisfied.

1. Breusch-Godfrey Lagrange
Multiplier (LM) Test for Serial Correlation.
This test was developed by Breusch [27]
and Godfrey [28] in 1978 and is used to test
for serial correlation in the error terms. The
Lagrange Multiplier (LM) test for serial
correlation is computed first by estimating
the sample residuals €, by ordinary least
squares (OLS) and regress the current
residual €, on the p lagged residuals.

The auxiliary regression model of re-
siduals is given by:
€ =YL +AE, _ +AE ,+...

t

Tt AE Y,

A @)

where L, is the original regressors in the
ARMA model and v, is a white noise
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process. The null hypothesis of no serial
correlation up to lag p is
Hy:h=ky=..=L,=0.

The Obs*R-squared statistic is the
Breusch-Godfrey LM test statistic. If the
R2 statistic from the auxiliary regression
is computed for this model, then the fol-
lowing asymptotic approximation can be
used for the distribution of the test statis-
tic, TR? ~ X*(p).

2. Testing Normality of the Residual.
Normality tests are used to ascertain
whether the residuals of the regression
are normally distributed or not. The null
hypothesis is that the residuals are normally
distributed. Several tests for normality are
available but the most commonly used test
for normality of regression disturbances is
due to Jarque and Bera [29]. The Jarque-
Bera test statistic is given by

1133
JB=T (6°)° A
. 2
1
@)
+ 2 | @

where T is the sample size. Under the null
hypothesis of normality, the test statistic is
asymptotically distributed as ¥*(2). Thus, if
JB test statistic is greater than y?(2), we re-
ject the null hypothesis.

3. Testing for ARCH Effect. The
Lagrange multiplier test of Engle (1982)
is equivalent to the usual F test. To test
the null hypothesis that there is no ARCH
up to order p in the residuals, we run the
regression of squared the residuals on my

own lags to test for ARCH of order m as
given by:

A2 A2 A2
& =Y tVi€ i tY2E , t.
A2
et Y€, TN, - 4

Then obtain R? from this auxiliary re-
gression. The test statistic is defined as
LM =TR? (the number of observations mul-
tiplied by the coefficient of multiple cor-
relations) from the last regression, which is
Engle’s LM test statistic. The LM test sta-
tistic is asymptotically distributed as a
¥*(m) under quite general conditions. The
null hypothesis given by
Hy:v,=v,=..=v, =0. The decision
rule is to reject the null hypothesis.

3.7. Volatility Model Specification

One of the mean features of financial
time series is time varying volatility which
refers to a tendency of small values being
followed by small values and large values
being followed by large values (Torben et
al. [5]).

1. The ARCH Model. As stated in
Tsay [30] the basic idea of ARCH models
is that: the shock ¢, is serially uncorrelat-
ed, but dependent and the dependence of
g can be described by a simple quadratic
function of its lagged values.

Then the ARCH (q) process proposed
by Engle [3] is given by

q
o, =0+ Yo, 5)
i=1

where o7 is the conditional variance of the
error term in the mean model, ¢, is innova-
tion or error term from the mean (ARMA)
model. The positivity of o7 is assured by
the following sufficient restrictions: ®>0
and a,;>0.

An ARCH (q) model is covariance sta-
tionary if and only if ioci <1.

i=1

2. Generalized ARCH (GARCH)

models. A Generalized ARCH (GARCH)
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model introduced by Bollerslev [6] gives
parsimonious way of estimating the
parameters and successful in predicting
conditional variances.

Thus, GARCH (p, q) (generalized
ARCH due to Bollerslev [6] is given by:

Gzz =0+ ilocietz—i + ilﬁjGtZ—j’ ©)
i= Jj=
where ®>0 is the constant term, o;>0 , for
i=1, 2, ..., q is the effect of shocks (the
ARCH effect), and B, >0, forj=1,2, ..., p
is the effect of the previous periods’ vari-
ance (the GARCH effect). Bollerslev [6]
shows that the necessary and sufficient
condition for theq secor},d-order stationarity
of model (6) is Zl(xl. + .21[3.]. <1. In this case,
=
conditional variance forecasts converge up-
on the long-term average value of the vari-
ance (unconditional variance) as the pre-
diction horizon increases.

3. The EGARCH model. Nelson [23]
introduced the exponential
GARCH (EGARCH) model. GARCH
successfully captures thick-tailed returns,
and volatility clustering. However, it is not
well suited to capture the «leverage effect»
since the conditional variance in GARCH
model is only a function of the magnitude
of the lagged residual and not their signs.
However, in EGARCH model, 67 depends
on both the size and the sign of lagged
residuals and which accounts for such an
asymmetric response to a shock (negative
shocks).

The EGARCH (p, ¢) model specifies
conditional variance in logarithmic form,
which means that there is no need to im-
pose an estimation constraint in order to
avoid negative variance.

]+

+ iyke’—"‘+ il[ij log((s,z__,), 7
=

=

€

t=i

9

€

=i

o

logcf:w+§q‘,ai( -E

i=1

t—i t—i

where o, is magnitude effect, B; is lagged

log conditional variance, y; is the asymmet-
ric response parameter or leverage param-
eter. We expect v, <0, indicating that with

appropriate conditioning of the parameters,
this specification captures the stylized fact

that a negative shock (bad news) leads to

a higher conditional variance in the subse-
quent period than a positive shock (good

news). The logarithmic formulation of the

model guarantees positive conditional vari-
ance, without imposing restrictions on the

parameters.

4. The GJR GARCH model. 1t is
model developed by Glosten et al. [24]
expressed the leverage effect in a quadratic
form while EGARCH expressed in the
exponential form.

The conditional variance is now giv-
en by:

2 _ d 2 a I g2 £ 2 (g
Gt =0+ z{aigt—i + kZ]’Yk t—ket—k + _Z]Bjct—ja ( )
1= = J=

where I, is an indicator variable in which
{1, if € <0, represents the"bad news"
t —

0,if € =20, represents the" good news"

In this case, y,>0 indicating negative
shocks (bad news) have a deeper impact on
future volatility than positive shocks.

5. The Power TGARCH Model.
Zakoian [25] introduced threshold
GARCH (TGARCH) model in 1994. The
threshold GARCH is similar to the GJR
model, different only because of the
conditional standard deviation and absolute
return instead of the conditional variance.

Threshold GARCH (p, r, q)) process
is defined as:

q r 2
o, =0+ ziaigt—i + kZIYkIt—kgt—k + ,21[3-/6"-/' (9)
= = J=

The conditional volatility is positive
when ©>0, 0,>0, ;>0 and a,+7y,>0.

In TGARCH we expect v, to be positive,
so that bad news would have a more pow-
erful effect on volatility than good news.
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6. The Power GARCH (PGARCH)
Model. Ding et al. [7] introduced the power
GARCH model that has the advantage
of being able to capture and model the
long memory property often observed in
volatility series. The primary feature of the
power GARCH (p, ¢) model is the presence
of a Box-Cox power trans- formation of the
conditional variances.

The Power GARCH (PGARCH) is de-
fined as:

o’ =0+ Yo, (e)) + iB,G?_jv (10)
j=

i=1

where ¢ is the power term parameter and
should be greater than zero. The asymmet-
ric effect presents if y,#0, and —1<y;<1.

7.The Component GARCH
(CGARCH) Model. Component GARCH
model introduced by Engle and Lee [§]
decompose conditional variance into a
temporary or a permanent component. In
this study, the component GARCH models
are employed to decompose inflation
uncertainty into short-run and long-
run component by permitting transitory
deviations of the conditional volatility
around a time-varying trend.

The component GARCH (1, 1) model
can be expressed as follows:

ol =g, +ole?, —q, ) +Blo — ., ) (short - term)
q, =0y +plg, — )+ ¢(9rz—l _Gf—l) (long — term) (11)

where o and B indicates short run memory,
while ¢, is the time varying long-run vola-
tility (long run memory). The first equation
describes the transitory (short-term) com-
ponent, which converges to zero with pow-
er(c+ ). The second equation describes the
long-run component, which converges to o,
with powers of p.

3.8. Estimation of ARCH/GARCH

models

The ARCH family models are esti-
mated by maximum likelihood estima-
tion method. It can be employed to find

parameter values for both linear and
non-linear models (see, Brooks [31]).
However, the GARCH type model needs
specification of the distribution assump-
tion of the error term: normal (Gaussian),
t-distribution and, Generalized Error
Distribution (GED).

1. Normal Distribution. Engle [3] and
Bollerslev [6] developed the distribution of
the innovations z, which has a standardized
normal probability function.

*(z)= e X% =
f*e) 216, Jan

—o0 < z< 0o, (12)
where f *(z) the probability function or
density is named standardized, marked by
a star because f *(z) has zero mean and
unit variance.

2. Student-t-Distribution. Bollers-
lev [32] proposed the standardized Student-
t-distribution with V>2 degree of freedom,
which better captures the observed kurtosis.

The Standardized Student-t-distribution
density function f * (z/v) expressed as

f*(Z/V) F[(V+l)/22] (v+1)/2 °
Ml‘[ }[HV]

—°°<Z<°<>’

(13)
where I'() is the usual gamma function,
V is the degree of freedom which represents
the parameter to be estimated. Like, the
normal distribution, the #-distribution is
symmetric around zero mean u =0 forV =2

and its variance, c7 =% forV >3 and

kurtosis K = % JorV =5, respectively.
However, for V' — oo the density of stan-
dardized student-t distribution converges
to the density function of standardized stu-
dent normal distribution.
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3. Generalized Ervror Distribution
(GED). Nelson [23] suggested consid-
ering the family of Generalized Error
Distributions, GED. The GED is a sym-
metric distribution that can be both lep-
tokurtic and platykurtic depending on the
degree of freedom V(}V>1).

When f *(z/v) assume a GED has the
following density function:

v
1|z

2
I (z/ V) _ Ve ,
r (1)x2(m)/v

~

A

l1<z<oo, O0<V <o
9

(14)

where A is tail -thickness parameter,

. 2%2[%]

1)
V

For V=2, the GED is a standard nor-
mal distribution whereas the tails are thick-
er than in the normal case when V'<2, and
thinner when V>2. The GED becomes a

uniform distribution on the interval
l—\/g, \/§J when V' — oo

3.9. Model selection

An important practical problem is the
determination of the ARCH order p and
the GARCH order q for a particular series.
Since GARCH models can be treated as
ARMA models for squared residuals, tra-
ditional model selection criteria such as
the Akaike information criterion (AIC),
the Bayesian information criterion (BIC)
and Hannan-Quinn Criteria (HQC) may
be used.

3.10. Model Adequacy Checking

After a GARCH model has been fitted
to the data, the adequacy of the fit should
be evaluated. In this study, we apply the
ARCH-LM Test for standardized residuals
of the fitted GARCH type models.

3.11. Volatility Forecasting

Tsay [30] stated again that the fore-
casts of the GARCH model are obtained
similarly as the forecasts of an ARMA
model. If we consider a GARCH (1, 1)
model, which is one of the GARCH mod-
els under study at the forecast origin k, the
1-step ahead forecast of o},

6;(1)= oy + o83 +B,0; )

For the general GARCH (1, 1) [-step
head forecast of of,,, at origin k, is
6;(1)=0, + (o, +B,)o;, I>1.

3.12. Measuring the Accuracy

of Volatility Models forecasting

Evaluation of univariate volatility fore-
casts is relatively straightforward and relies
on standard forecast evaluation techniques.
Among the common statistical methods,
which can be used to observe the predic-
tion accuracy of a model, the root means
square error (RMSE), the mean absolute
error (MAE), the mean absolute percent er-
ror (MAPE), and the Theil inequality co-
efficient (TIC) are used in this study. The
forecasting statistics are as follows:

RMSE = | L5 (62 ~ o2 )

T =1 , (15
where 67 is one-step head volatility fore-
cast, o is the actual volatility and T is the
number of forecasts or the number of time
or year in the out-of-sample period.

1 7). 2
MAE =—=3'|6; —0;|. (16)
T =1
1z 6t2_Gt
MAPE =—73% (17)
y ‘Gtz‘

The Mean Absolute Deviation (MAD)
is interesting since it is very robust to out-
liers and this criterion actually gives equal
weighting to a large deviation of size z as
to a sum of several deviations accumulat-
ing to z.
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The Theil Inequality Coefficient (TIC)
is a scale invariant measure that always lies
between zero and one, where zero indicates
a perfect fit.

é@tz—ﬁtz
ic=—=_T__ ()
l§62+§67t
TS ' Ar

The smaller is the error in the first
three forecast error statistics, the better the
forecasting ability of that model according
to that criterion.

4. Results and Discussions

4.1. Results of Descriptive Statistics

The data used in this study were
monthly food and non-food inflation rate
of Ethiopia from the period January 1971
through June 2020. To analyze the series,
ARMA-GARCH family models were used.

The first step in time series analysis
is time plot of the original series in lev-
el against time and observes its graphical
properties. This help in understanding the
trend as well as pattern of movement of
the original series. Here we plot the origi-
nal series of food & non-food inflation rate
in Ethiopia as function of time. The time
plots are depicted in Figure 1 & 2.

On Figure 1, food inflation rate looks
like white noise series and varying about
zero, i. e. close to stationary, while non-
food inflation rate on Figure 2 shows

100
L

Food inflation rate
50
|

0
|

=
3

T T T T T T
1970m1 1980m1 1990m1 T 2000m1 2010m1 2020m1
ime

Fig. 1. The time plot of food-inflation rate

somehow non-stationary since the fluctu-
ation rate is relatively high. However, the
plot of series by itself is not an end, rather
we use as a clue.

Table 1 shows the summary statistics
of food and non-food inflation rate. The
table reveals the positive mean food and
non-food inflation rate of 10.77 and 8.03,
respectively. It also shows that monthly
food inflation falls to lowest level (—52.6)
on July 2001 and reaches its maximum lev-
el (91.7) on July 2008.

Moreover, a very high Jarque
Berra (J-B) value 343.3 for food inflation
and 42.7 for non-food inflation rate and a
very small corresponding p-value, there-
fore, the null hypothesis of normality was
rejected for the data. To support the in-
ference on normality, the skewness (0.99)
and (0.65) for food and non-food inflation,
respectively are greater than 0 (skewness of
a normal distribution is 0) and the kurto-
sis (6.14) and (3.03) are higher than 3 (kur-
tosis of a normal distribution is 3). The
positive skewness is an indication that the
upper tail of the distribution is thicker than
the lower tail which implies that it rises
more often than it drops, reflecting the re-
newed confidence in the market.

4.2. Unit root test results

The time series should be checked for
stationarity before we fit a suitable mod-
el. In this study, an Augmented Dickey-
Fuller test (ADF) test is used to check the

Non food inflation rate
10 20 30
| |

0
L
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T T T
2000m1 2010m1 2020m1

Time

o & T T
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Fig. 2. Time plot of non-food inflation rate
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Table 1. Descriptive statistics of food and non-food inflation rate

Statistics Food inflation rate Non-food inflation rate
Mean 10.77712 8.034845
Std. Dev. 16.7424 7.645212
Min -52.64756 -8.082834
Max 91.73248 30.2925
Skewness 0.993686 0.656414
Kurtosis 6.149851 3.037737
Jarque-Bera 343.3124 42.69227
Probability 0.000000 0.000000
Obs 594 594

Source: Author’s Computation

stationarity of the monthly inflation series.
In the case of Dickey-Fuller test, there may
be autocorrelation problems. To tackle such
autocorrelation problem, Dickey-Fuller has
developed a test called Augmented Dickey
Fuller (ADF) test. In ADF test, the null hy-
pothesis stated that the variable is not sta-
tionary or have a unit root test.

The results of the ADF test statis-
tic for food and non-food inflation series
are depicted in Table 2. Normally we use
5% critical value to evaluate the station-
arity condition of the series. For exam-
ple, the test statistic for food inflation rate

with constant term and constant & linear
trend are 4.7067 and 4.7756 in absolute val-
ue, which is greater than 5% critical val-
ue (2.86 & 3.4175), respectively, indicating
rejection of the null hypothesis of non-sta-
tionarity. However, the non-food inflation
rate is non-stationary at level since the test
statistic with constant (2.47) and constant &
linear trend (2.6456) in absolute value is
less than 5% critical value (2.86 & 3.41),
respectively, indicating failure to reject the
null hypothesis of non-stationarity. Thus,
we need to apply first difference to make
it stationary as indicated in the Table 2.

Table 2. Unit root tests for the series at level and difference

ADF Test Critical values
Variables
t-statistic 1% 5% 10% P-value
With constant -47067 | -3.441 -2.866 | -2.5693 | 0.0001
Food inflation -
rate (level) Constant & linear | 2956 | 3973 | 34175 | -3.1312 | 0.0005
trend
Constant 24757 | 34413 | 2.8662 | -2.5693 | 0.1220
Non-Food inflation
rate (level) Constant & linear
Non-Food trend -2.6456 | -3.9739 | -3.4175 | -3.1312 0.2601
inflation rate(first Constant -12.374 | -3.4413 | -2.8662 | -2.569 0.0000
difference) Constant & linear | -12.363 | -3.9739 | -3.4175 -3.131 0.0000
trend

Source: Author’s Computation
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From the results, the first difference of
non- food inflation rate is stationary since
the test statistic with constant (12.37) and
constant & linear trend (12.36) in abso-
lute value is greater than 5% critical value
(2.86 & 3.13), respectively.

4.3. ARIMA type model estimation

results

Before we specify volatility model for
the given series, we should specify a mean
equation. In this study, an Autoregressive
Moving Average model (ARMA) type
models specify the conditional mean
equations for the food and non-food in-
flation rate.

Given the significance of the coeffi-
cients and absence of serial correlation in
the residuals and smallest value of infor-
mation criteria, the following models are
determined. From the results on Table 3,
ARMA (1, 2) model was identified as the

best mean model for estimating the coef-
ficients of food inflation rate.

From the results of Table 4, ARIMA
(0, 1, 1) model was identified as the best
mean model for estimating the coefficients
of non-food inflation rate using the AIC,
BIC and HQIC.

4.4. Model adequacy checking

Before we consider the fitted model
as the best fit and interpret its results, it is
mandatory to check whether the model as-
sumptions are satisfied. If the basic model
assumptions are violated, then a new mod-
el should be specified until it provides an
adequate fit to the data.

Test of serial correlation in the resid-
uals. In this case, serial correlation in the
residuals was tested using the Breusch-
Godfrey Serial Correlation LM Test for
each of the tentatively selected ARMA
models: ARMA (1, 2) and ARIMA (0, 1, 1)

Table 3. Estimation Results of ARMA Models for food inflation with Information

Criteria
Information criteria
Model Parameter | Coefficients | Std. error t-statistic P-value
AIC BIC HQIC
M 10.8766 3.6322 2.9944 0.0029
ARMA 6.543 | 6.565 | 6.551
(1,0) a -0.9244 0.0099 | 92.6001 | 0.0000
M 10.860 3.2048 3.3887 0.0007
‘éRg;[A o 1.0395 0.0357 | 29.06785 | 0.0000 | 6.531|6.560 | 6.542
o -0.1242 0.03691 | -3.36549 | 0.0008
M 10.8624 31966 | 3.39806 | 0.0007
ﬁRf)/iA o 0.8965 0.0119 750989 | 0.0000 |6.524|6.554 | 6.536
i 0.1942 0.0266 7.2963 0.0000
M 10.896 3.6709 2.9683 0.0031
o 0.9198 0.0170 53.9630 | 0.0000
I IS l 6.5126.549 | 6.526
1,2) B, 0.1647 0.0404 | 4.0706 0.0001
B, -0.1217 0.0256 | -4.7477 0.0000

Source: Author’s Computation

Note: Models with no serial correlation in the residuals are considered.
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Table 4. Estimation Results of ARIMA Models for non-food inflation with

Information Criteria

Information criteria

Model Parameter | Coefficients | Std. error t-statistic P-value
AIC BIC HQIC

M 0.0343 0.1023 0.3354 0.7374

ARIMA 5111 15.133 | 5.119
(1,1,0) o -0.2616 0.0275 | -9.5036 0.0000
M 0.0342 0.0970 0.3523 0.7247

éR%‘)A‘ o -0.2771 0.0299 | -9.2520 0.0000 | 5.111 | 5.140 | 5.122
o -0.0592 0.0299 | -1.9768 0.0485
m 0.0340 0.0956 0.3563 0.7217

ARIMA 5110 | 5.132 | 5.119
O, 11 i -0.2605 0.0301 | -8.6345 | 0.0000

Source: Author’s Computation

Note: Models with no serial correlation in the residuals are considered.

models for the conditional mean of food
inflation and non-food inflation rate, re-
spectively. The null hypothesis asserts that
there is no serial correlation in the resid-
ual series. As we observe from Table 5,
the serial correlation LM test results for
this equation with 1 lag in the test equa-
tion strongly reject the null of no serial
correlation.

Normality test of residuals from the
mean equation. To investigate whether the
residuals of the fitted model (mean equa-
tion) are normally distributed, the Jarque-
Bera test was applied. The residuals nor-
mality from ARMA (1, 2) for food inflation
and ARIMA (0, 1, 1) for non-food infla-
tion rate were conducted and reported

in Table 6. We can see from Table 6 that
the Jarque-Bera statistic is not significant,
and hence, there is no significant evidence
to reject the null hypothesis of normali-
ty. This indicates that the residuals of the
fitted models are normally distributed for
both of the series under consideration.
Test of ARCH Effect Results. Before
we estimate ARCH type models, there
should be volatility clustering and ARCH
effect in the residuals of the estimat-
ed ARMA (1, 2) for food inflation and
ARIMA (0, 1, 1) for non-food inflation rate.
From the Table 7, we observed that the
p-value for food inflation rate is greater
than 5% which indicates fail to reject the
null of homoscedastic variance in the error

Table S. Results of Breusch-Godfrey Serial Correlation LM Test of the fitted

model
Test statistic Food inflation rate Non-food inflation rate
2.247 0.9405
F-statistic
(0.106) (0.391)
14.571 1.897
Obs*R-squared
(0.104) (0.387)

Source: Author’s Computation

Note: Values inside the bracket are p-values
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Table 6. Normality test of the residuals from the fitted mean model

Variables Skweness Kurtosis Jarque.-B.era P-value

Statistic
Food inflation rate -0.035 3.528 2711 0.257
Non-food inflation rate -0.1085 3722 4.008 0.134

Source: Author’s Computation

Table 7. Result for ARCH LM Test for the fitted models

Test statistic Food inflation rate Non-food inflation rate
0.2627 6.183054
F-statistic
(0.6084) (0.01325)
0.2635 6.139671
Obs*R-squared
(0.6077) (0.0132)

Source: Author’s Computation

Note: Values inside parenthesis are p-values.

term of ARMA (1, 2) model. However, the
p-value on ARMA (0, 1, 1) model of non-
food inflation rate is less than 5% indi-
cating to reject the null of homoscedastic
variance. Therefore, food inflation rate has
a constant variance while non-food infla-
tion rate has a non-constant variance (het-
eroscedasticity), which requires an appli-
cation of GARCH type model for non-food
inflation rate.

4.5. Estimation result of ARMA

model for food inflation rate

In order to identify the appropriate
ARMA model, the minimum information
criteria, absence of serial correlation on
the residual, and the most significant co-
efficients were used. The AR slope coeffi-
cients of the model are statistically signif-
icant at the 1 % marginal significant levels.
Thus, the first and second lags of non-food
inflation rate have positively predicted the
future value of non-food inflation rate.
That is the past realization of non-food in-
flation rate will influence non-food infla-
tion rate at a 1% level. The moving aver-
age coefficient is negative and statistically

significant at the 1% level, which means
the residuals of the first lag will negative-
ly predict non-food inflation rate at the 1%
level. Table 8§ summarizes the results as
below.

4.6. Forecasting

Before we use the fitted model to
forecast the value of the of food inflation
rate, we should compare the forecasting
performance of the candidate model us-
ing different error criteria, such as RMSE,
MAE, MAPE and Theil’s inequality coef-
ficient. From the results in Table 9, the fit-
ted ARMA (1, 2) model has minimum error
as compared to other fitted ARMA models
which are determined based on minimum
information criteria and absence of serial
correlation on the residuals. Forecasting
the food inflation rate using ARMA (1, 2)
model are shown in Fig. 3.

4.7. Estimation Results of GARCH

type models

Once the presence of ARCH effects
on the residuals of the fitted mean mod-
el is confirmed, then we need to estimate
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Table 8. Interpretation of ARMA (1, 2) model for food inflation rate

Fitted Model Parameters Coefficients Std. error t-statistic P-value
n 10.89654 3.670936 2.968327 0.0031
oy 0.919852 0.017046 53.96304 0.0000
ARMA (1, 2)
By 0.164757 0.040475 4.070606 0.0001
B2 -0.121749 0.025643 -4.747798 0.0000

Source: Author’s Computation
Note: Models with no serial correlation in the residuals are considered.

Table 9. Forecasting evaluation of different ARMA type model for food
inflation rate

Forecasting accuracy Measure
Model
RMSE MAE MAPE Theil
ARMA (1, 0) 16.697 11.8568 9.577 0.5441
ARMA (2, 0) 16.651 11.8207 9.742 0.5439
ARMA (1, 1) 16.7104 11.8663 8.995 0.5445
ARMA (1, 2) 16.6380 11.8120 6.244 0.5433

Source: Author’s Computation
Note: Models with no serial correlation in the residuals are considered.

the series using GARCH type models. maximum likelihood method under the as-
However, before we define the final model, sumption of different error distributions.
the optimal lag for GARCH family models Model Selection of GARCH Family
has to be determined. In this case, the pa- Model. In order to determine the order
rameters of the models are estimated using  of GARCH type models, the Akaikian
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Fig. 3. Forecasting the food inflation rate using ARMA (1, 2) model
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information criterion (AIC), Bayesian infor-
mation criterion (BIC) and Hannan-Quinn
Information Criteria (HQIC) are used for
selecting the symmetric, asymmetric, and
component fitted GARCH models. From
Table 10, we observed that TGARCH (1, 1)
and PGARCH (1,1) models under normal dis-
tribution, EGARCH (1, 1), TGARCH (1, 1),
PGARCH (1, 1) and CGARCH (1, 1)
models under Student’s t-distribu-
tion, and GARCH (1, 1), EGARCH (1, 1),
TGARCH (1, 1) and PGARCH (1, 1) mod-
els under Generalized error distributional
assumption of the residuals were selected as
candidate models using minimum AIC, BIC
and HQIC. Thus, based on the minimum in-
formation criteria, TGARCH (1, 1) with stu-
dent’s t-distributional assumption for residu-
als identified as the best performing model
selected candidate model.

In addition to information criteria,
forecasting performance of the candidate
GARCH type models are used to identify
an appropriate conditional volatility model.

The basic accuracy statistics are RMSE,
MAE, MAPE and Theil inequality coef-
ficient as shown in Table 11. The models
with the smallest statistics are used as the
best fit for modeling the conditional vola-
tility of non-food inflation rate.

From the results on Table 11,
TGARCH (1, 1) with Student’s t-distri-
butional assumption for residuals per-
form better to describe inflation volatility
since they possess the smallest forecast er-
ror measures in the majority of the statis-
tics considered for non-food inflation rate.
Therefore, the null hypothesis that infla-
tion should be better captured by the sym-
metric GARCH model is rejected and the
alternative which states that the asymmet-
ric GARCH model better capture inflation
series of Ethiopia under the period of in-
vestigation is accepted.

Parameter Estimation Results. Once
the TGARCH (1, 1) model with student’s
t-distributional assumption for residu-
als is selected as the better fit based on

Table 10. Optimal lag selection-based AIC, BIC and HQIC under different error

distribution

Model o @i AIC | BIC | HQIC Asygfem;“ic
GARCH (1, 1) | Generalized error distribution 4.6513 | 4.6956 | 4.6686 *
EGARCH (1, 1) |Student’s t-distribution 4.6354 | 4.6871 | 4.6555 | Significant
EGARCH (1, 1) ((é}eg]‘;r)ahzed error distribution 1 c4ce 147006 |4.6690 | Significant
TGARCH (1, 1) | Normal distribution 4.7120 | 4.7564 | 47293 | Significant
TGARCH (1, 1) | Student’s t distribution 4.6293 | 4.6811 | 4.6495 | Significant
TGARCH (1, 1) (%egle)r)ahzed error distribution | 4 137 | 4 6954 | 4.6638 | Significant
PGARCH (1, 1) | Normal distribution 4.7161 | 4.7604 | 4.7333 | Significant
PGARCH (1, 1) | Student’s t-distribution 4.6357 | 4.6875 | 4.6559 | Significant
PGARCH (1, 1) | Generalized error distribution 4.6498 | 4.7016 | 4.6700 | Significant
CGARCH (1, 1) |Student’s t distribution 4.6386 | 4.6977 | 4.6616 2

Source: Author’s Computation
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Table 11. Forecast accuracy statistics for GARCH type model for non-food

inflation
Forecasting accuracy Measure
Model Error distribution
RMSE MAE MAPE Theil

GARCH (1, 1) | Generalized error distribution 3.2130 | 2.1538 | 104.696 | *0.9802
EGARCH (1, 1) | Student’s t-distribution 3.2141 | 2.1550 | 112.481 | 0.9637
EGARCH (1, 1) | Generalized error distribution |5 5135 | 5 1543 | 109192 | 0.9702

(GED)
TGARCH (1, 1) | Student’s t distribution 3.2131 | 2.1542 | 111.165 | 0.9662
TGARCH (1, 1y | 9eneralized error distribution | 5 13, | 5 1547 | 10461 | 0.9717

(GED)
PGARCH (1, 1) | Student’s t-distribution 3.2138 | 2.1547 | 111.035 | 0.9664
PGARCH (1, 1) |Generalized error distribution 32134 | 2.1542 | 108.289 | 0.9721
CGARCH (1, 1) | Student’s t distribution 3.2133 | 2.1541 | 107.833 | 0.9730

Source: Author’s Computation

information criteria and forecast accura-
cy measures, then the next step is to in-
terpret the result and forecasting future
value of the series. The parameters in the
TGARCH (1, 1) model are estimated us-
ing the maximum likelihood (ML) method,
which are presented on Table 12.

The result on Table 12 indicates that a
one month lagged shocks (i. e. ARCH (1))
of the monthly non-food inflation rate is
statistically significant at the 1% lev-
el. This indicates that the current month
non-food inflation volatility is affected by
its 1-month lagged shocks. This may be
an indication that current non-food infla-
tion volatility is sensitive to past inflation

movements. Similarly, GARCH (-1) terms
are which indicates volatility persistence
is statistically significant at the 1% level.
This indicates that current month inflation
volatility affected by its 1-month lagged in-
flation volatility.

Moreover, the coefficient of the asym-
metric term is positive (0.1376) and statis-
tically significant at the 1% level, indi-
cates that bad news (unexpected increase
in monthly non-food inflation) has larger
impact on the non-food inflation volatili-
ty than good news (unexpected decrease
in monthly food-inflation volatility). Thus,
modeling of information, news of events is
very significant determinants of volatility.

Table 12. Estimation results of TGARCH (1, 1) model for non-food inflation rate

Variables Coefficients Std. error t-statistic P-value
c 0.0304 0.0259 1.1755 0.2398
Bi 0.1590 0.0450 3.5329 0.0004
Y 0.1376 0.0489 2.8101 0.005
B, 0.9199 0.0210 43.7219 0.0000

Source: Author’s Computation
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4.8. Model Checking

In order to check whether the fitted
models are good fit to the data ARCH-LM
Test for standardized residuals of the fit-
ted TGARCH (1, 1) model was performed.
As can be seen in Table 13, the ARCH-LM
test indicates that the standardized residu-
als of the fitted model did not exhibit any
additional ARCH effect. Therefore, the se-
lection of TGARCH (1, 1) model with stu-
dent’s t distributional assumption of resid-
uals to investigate non-food inflation rate
volatility was well justified.

4.9. Forecasting

One of the fundamental uses of de-
veloping GARCH model is forecasting. In
this section, we examine the forecasting

accuracy of the fitted models and then
we make in-sample forecasts. As we ob-
serve from Figure 4, a continuous rise in
the volatility of non-food inflation rate is
observed.

5. Conclusion

An increase in inflation volatility im-
plies higher uncertainty about future pric-
es. As a result, producers and consumers
can be affected by the increased inflation
volatility, because it increases the uncer-
tainty and the risk in the market. Thus, in-
flation volatility attracts the attention of re-
searchers to find a suitable model, which
can predict the future conditions of the
market. This study aims to fit appropriate
ARMA-GARCH family models for food

Table 13. ARCH-LM Test for Standardized Residuals of the Fitted TGARCH (1, 1)

model
Test statistic Estimates
0.3756
F-statistic
(0.5501)
0.3585
Obs*R-squared
(0.5493)
Source: Author’s Computation
Note: Values in parenthesis are p-values.
20
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Fig. 4. In-sample forecast of non-food inflation volatility using TGARCH (7, 1) model
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and non-food inflation rate of from the pe-
riod January 1971 through June 2020.

In the preliminary analysis, food infla-
tion rate shows a white noise property, while
non-food inflation rate has somehow fluctu-
ation having the characteristics of financial
time series such as leptokurtic distributions,
which leads to an adequate ground to apply
GARCH family models. The result of unit
root test shows that food inflation is station-
ary at level, while non-food inflation rate is
stationary at first difference.

On the estimation results of the mean
equation, an ARMA type model is appro-
priate for food inflation rate since ARCH-
LM test on the squared residuals of the best
fitted ARMA (1, 2) model confirmed the
absence of remaining ARC H effect. Thus,
we apply an ARMA (1, 2) model for food
inflation rate to estimate the coefficients
and forecast the future series. However,
the ARCH-LM test on the residual of
ARIMA (0, 1, 1) model on non-food infla-
tion rate shows the existence of remaining
ARCH effect which needs to require the ap-
plication of GARCH family models.

In the estimation of volatility fam-
ily models for non-food inflation rate,
TGARCH (1, 1) model with Student’s t-dis-
tributional assumption of residual was select-
ed as the best fitted model among different
kind of candidate models using information
criteria (AIC, BIC & HQIC) and forecast er-
ror criteria (such us: MAE, MAPE, RMSE
and Theil inequality coefficient).

The result of TGARCH (1, 1) model
shows that one month lagged shocks (i. e.
ARCH (-1)) of the monthly non-food
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is due to direct government interventions
to curb inflation volatility, which can dis-
tort markets and lead to resource misallo-
cation if markets are not regulated properly.
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YOK330.43

Ucnonb3osaHue Mopenen cemenctsa GARCH pns oueHKu ypoBHS
NPoA0BO/IbCTBEHHOM U HENPOA0BO/IbCTBEHHON MHDNALUK
B 3dumonum

T. X. Avebe <

Vuusepcumem Amobo,
Ambo, gpuonus
04 teshome251990@gmail.com

AHHOmayus. [oBbILLEHVE BONATUNBHOCTU MHDAALMM NOAPa3YMEBAET Hosee BbICOKYHO
HeonpegeneHHoCTb 0THOCUTENbHO ByAyLmMX LieH. B pe3ynbTaTe NponM3BOAMTENM M MO-
TpebuTenu Moryt NoCTPaAaTh OT MOBbLILEHHOW BONATUAbHOCTY MHPNALMN, MOCKO/b-
KY 3TO YBE/IMYMBAET HEOMNPEOENEHHOCTb M PUCKM Ha pbiHKE. TakM 0bpa3oMm, Bona-
TUNBHOCTb MHPAALMM NPUBEK3ET BHUMaHWE NCCNeO0BaTENEN K MONCKY NOAXOASALLEN
MOLENW, KOTOPas MOXET NpeAcKasbiBaTb byayLLme Ycnosus pbiHKa. 3TO MCCNenoBa-
HWEe HanpaB/eHO Ha TO, YTObbl COOTBETCTBOBATbL NOAXOASALMM MOLENAM CEMENCTBA
ARMA-GARCH gnst npogoBoNbCTBEHHbIX M HEMPOL4OBO/IbCTBEHHbBIX TEMMOB MHANALLMM
3a nepmog ¢ aHBaps 19771 1. no noHb 2020 r. NoCcKoNbKY 0CHOBHOM LIE/b NCCNea0Ba-
HWA 9BNSETCS onpeeneHre NoaxoasaLlen Mogeny aAna pagos MHMNSLMKY, onpegene-
Hbl ABE rMNOTE3bl UCCNEL0BaHMS B CPABHEHMM ABYX TMNOB Mogenew. Nepsas rvno-
Te3a - CMMMeTpUYHble Mogenn GARCH nyylle oTpa)katoT BONATUNBHOCTb MHDAALMUMK
B 3dmonmun. Bropas runotesa — acummeTpuyHble Mogenn GARCH nyulie oTpa)katoT Bo-
NaTUAbHOCTb MHDAALMK B Sdmonun. Mogenn cemenctea ARMA-GARCH bbinv npumMeHe-
Hbl 815 UKCALMN CTUIN30BAHHbBIX PaKTOB (PUHEHCOBbIX BDEMEHHbBIX PAO0B, TAKUX KaK
NENTOKYPTUYECKME PaCcrpeneneHuns], KNacTepraaLmm BONaTUAbHOCTY MHPASLMN 1 3d-
(heKTOB IeBEPUIKa. YCpeoHEeHHbIE PE3YbTaThl MOKa3biBakoT, 4To Moaenv ARMA (1, 2)
n ARIMA (0, 1, 1) onpegeneHbl Kak Hanbonee NOAXoAALIME A5 NPOAOBOIbCTBEHHOM
1 HENMPOAOBObCTBEHHOM MHDNALMKM, COOTBETCTBEHHO. 10 pe3ynbTaTaM OLEeHOK Boa-
TWUNBHOCTM, aCMMMETpUYHas Mogenb TGARCH (1, 1) ¢ gonyuernamm CTblogeHTa o t-pac-
npeneneHun 0CTaTKa ABASETCA NYYller MOAenbto AN HENPOAOBONbCTBEHHOM MHDNS-
umn. MogenvpoBaHne MHPOPMaLLMK, HOBOCTEW O COBbITUSX ABASETCH BECbMa 3H34YMMbIM
OETePMUHEHTOM BO/1ATUIBbHOCTM 1 Mogenu cemenctea GARCH nogxoasaT Ans 4aHHOro
psaaa (exxemMecauHas BONaTWUIbHOCTb MPOA0BOIbCTBEHHOM MHMNALMK) SdMonmMmM B pac-
CMaTPVBAEMOM UCCEAYEMOM NEPUOLE.

Knioyesbie cnosa: npo0BobCTBEHHAA MHDNALMS; HENPOAOBONbCTBEHHAA MHPNALMS;
cemencteo mogenet ARMA-GARCH; 3dwuonus.
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