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Abstract: We study the sharp inequality between the uniform norm and Lp(0, π/2)-norm of polynomials in
the system C = {cos(2k+1)x}∞

k=0
of cosines with odd harmonics. We investigate the limit behavior of the best

constant in this inequality with respect to the order n of polynomials as n → ∞ and provide a characterization
of the extremal polynomial in the inequality for a fixed order of polynomials.
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1. Problem statement, backgroung, and some preliminaries

1.1. Some notation

This paper considers classical spaces of complex-valued functions of one variable; in fact, we
use not the spaces themselves but the norms of these spaces on some subspaces of polynomials. Let
I = [a, b] be an interval on the real axis, and let υ be a nonnegative, integrable function on I called
a weight. For 0 < p < ∞, the space Lp

υ = Lp
υ(I) consists of complex-valued, Lebesgue measurable

on I functions f such that the function υ|f |p is integrable on I. The functional

‖f‖p = ‖f‖Lp
υ(I) =

(

1

b− a

∫ b

a
|f(x)|pυ(x) dx

)1/p

, f ∈ Lp
υ, (1.1)

is a norm in the space Lp
υ = Lp

υ(I) for 1 ≤ p < ∞, but not for 0 < p < 1. Nevertheless, for all
0 < p <∞, we will refer to (1.1) as a norm or, more precisely, as a p-norm. The space L2

υ = L2
υ(I)

(here p = 2) is a Hilbert space with the inner product

〈f, g〉 = 1

b− a

∫ b

a
f(x)g(x)υ(x) dx, f, g ∈ L2

υ.
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In the case of unit weight υ(x) ≡ 1, the weight symbol is omitted in the notation of spaces and
their norms. By L∞ = L∞(I) we mean the space C = C(I) of functions continuous (bounded) on
the interval I with the uniform norm

‖f‖∞ = ‖f‖C(I) = max
{

|f(x)| : x ∈ (I)
}

.

The space C = C(I) contains the subspace C0 = C(I)0 of functions f vanishing at the right end
point of the interval: f(b) = 0. In what follows, the parameter a is equal to zero: a = 0, and b is 1,
π/2, or π depending on the situation.

We define the spaces of 2π-periodic functions accordingly: the spaces Lp
2π, 0 < p < ∞, with

p-norm

‖f‖p = ‖f‖Lp
2π

=

(

1

2π

∫ π

−π
|f(x)|pdx

)1/p

and the space C2π of continuous 2π-periodic functions with the uniform norm

‖f‖∞ = ‖f‖C2π
= max{|f(x)| : x ∈ R} = max{|f(x)| : x ∈ [−π, π]}.

1.2. Nikol’skii C–Lp inequality: the classical case

Let Fn = Fn(C), n ≥ 1, be the set of trigonometric polynomials

fn(x) =
a0
2

+
n
∑

k=1

(ak cos kx+ bk sin kx)

of order (at most) n with complex coefficients. In function theory and its applications, inequalities
between two different norms of polynomials are of great importance. Such inequalities arose in
Jackson’s paper [19], but they were thoroughly investigated and applied by Nikol’skii [25]; [26,
Ch. 3, Sect. 3.3], in this connection, they are called Nikol’skii inequalities or inequalities of different
metrics. Large studies have been devoted to such inequalities, see [25]; [26, Ch. 3, Sect. 3.3];
[21, Ch. 3, Sects. 3.5–3.6]; [11, Ch. 8, Sect. 8.4]; [17, 24] and the bibliography therein. In this
paper, the authors will need some information about the Nikol’skii inequalities

‖fn‖∞ ≤ C(n)p‖fn‖p, fn ∈ Fn, (1.2)

between the uniform norm and p-norm of polynomials (see, the same sources [21, Ch. 3,
Sects. 3.5, 3.6]; [17, 24]). We assume that C(n)p is the best (the smallest possible) constant in
this inequality. Employing harmonic analysis, it is easy to obtain (see, for example, [21, Ch. 3,
Sect. 3.5, Theorem 3.5.1]) that if p = 2, then

C(n)2 =
√
2n+ 1 (1.3)

and inequality (1.2) becomes an equality at the Dirichlet kernel

Dn(x) =
1

2
+

n
∑

k=1

cos kx, (1.4)

i.e., the Dirichlet kernel is an extremal polynomial. The exact values of C(n)p for p 6= 2 are
unknown. There are constructive estimates for C(n)p, 0 < p <∞,mostly upper ones; see [11, Ch. 8,
Sect. 8.4]; [1]; [12, Sect. 7.2]; [15–18] and the bibliography therein. Note for the future the upper
estimate of Badkov [12, Sect. 7.2, Theorem 7.2]

C(n)p ≤ 4n1/p, 0 < p <∞. (1.5)
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It is not the best at the moment, but sufficient for us in what follows.
Much research has been devoted to inequality (1.2) for p = 1; information about the history

and results related to this inequality can be found in [10, 15–17, 29, 30]. The following estimates
are simple and quite rough:

n+ 1 ≤ C(n)1 ≤ 2n+ 1. (1.6)

The upper estimate follows from the representation of polynomials fn ∈ Fn in the form of convo-
lution

fn(x) =
1

π

∫ π

−π
fn(t)Dn(x− t)dt, fn ∈ Fn,

with the Dirichlet kernel (1.4). The Fejér kernel

Fn(t) =

n
∑

k=0

Dk(t) =

=
n+ 1

2
+

n
∑

k=1

(n+ 1− k) cos kt =
1

2

(

sin(n+ 1) t2
sin t

2

)2

, t 6= 2νπ, ν ∈ Z,

provides the former inequality in (1.6). This kernel is nonnegative (see, for example, [27, Vol. 2,
Part 6, Sect. 3, Problem 18]) and such that

‖Fn‖∞ = Fn(0) =
(n+ 1)2

2
, ‖Fn‖1 =

1

π

∫ π

0
Fn(t)dt =

n+ 1

2
.

This implies the former inequality in (1.6).
Taikov in [29] gives the result of S.B. Stechkin that (for p = 1) there exists a constant c > 0

such that
C(n)1 = c n+ o(n), n→ ∞. (1.7)

Stechkin’s proof of this result is given in [30]. Estimates (1.6) imply that 1 ≤ c ≤ 2. Taikov [29]
obtained substantially closer two-sided bounds for the constant c. Hörmander and Bernhardsson
have obtained [14] the best estimates currently:

1.081857643 ≤ c ≤ 1.081857645.

Let E(σ) be the space of entire functions of exponential type (at most) σ > 0, and let E(σ)p for
0 < p ≤ ∞ be the space of functions f ∈ E(σ) belonging on the real axis to the spaces Lp = Lp(R)
with finite norms

‖f‖p = ‖f‖Lp(R) =

(
∫

R

|f(x)|pdx
)1/p

, 0 < p <∞,

‖f‖∞ = ‖f‖C(R) = sup{|f(x)| : x ∈ R}, p = ∞.

For any 0 < p <∞ on E(σ)p, we have the inequality

‖f‖∞ ≤ Apσ
1/p‖f‖p, f ∈ E(σ)p, (1.8)

ascending to Nikol’skii [25]; [26, Ch. 3, Sect. 3.3], in which Ap is a finite constant depending only
on the parameter p; see details in [15, 16]. In what follows, we assume that Ap is the least possible,
i.e., best constant in (1.8). The exact value of this quantity is currently known only for p = 2;
namely, A2 = 1/

√
π; see, for example, [31, Ch. IV, Sect. 4.9, Subsect. 4.9.53, (28)].

Gorbachev [16] obtained a significantly more informative assertion in comparison with (1.7).
Namely, he proved that the following limit relation is true:

lim
n→∞

C(n)1
2πn

= A1. (1.9)
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Actuality, Gorbachev obtained [16] an even more precise result; namely, he proved the following
two-sided inequality:

A1 ≤
C(n)1
2πn

≤ n+ 1

n
A1,

which entails, in particular, (1.9).

The following statement belongs to Levin and Lubinsky [22, Theorem 2.1, (2.1)]; it means that
a relation similar to (1.9) holds for all 0 < p <∞.

Theorem A. The following limit relation is valid for 0 < p <∞:

lim
n→∞

C(n)p

(2πn)1/p
= Ap. (1.10)

This statement is part of a more general result of Ganzburg and Tikhonov [15, Theo-
rem 1.5, (1.19)]. Nikol’skii inequalities and, more generally, Bernstein–Nikol’skii inequalities

‖f (r)n ‖q ≤ C(r)(n)p,q‖fn‖p, fn ∈ Fn, (1.11)

for trigonometric polynomials and similar inequalities for entire functions are a broad area of
function theory. Ganzburg and Tikhonov, in the already cited paper [15], and Gorbachev and
Mart’yanov in [18] studied the relationship between exact constants in Bernstein–Nikol’skii (C,Lp)-
inequalities and, more generally, (Lq, Lp)-inequalities for polynomials and entire functions of expo-
nential type. We presented here in Theorem A only some results on this topic, which we will need
in what follows; for a rich overview of these studies, see [17].

Over the last century, extensive investigations have been carried out on sharp inequalities,
i.e., the study of exact constants and extremal functions in inequalities (1.11) for trigonometric
polynomials, as well as for algebraic polynomials and entire functions of exponential type; for
specific results and further references, see [1, 2, 10, 12, 13, 15, 17, 21, 23, 24, 28, 31].

1.3. Nikol’skii inequality between the uniform norm and Lp-norm on the
interval [0, π/2] for polynomials in the cosine system with odd harmonics

1.3.1. Nikol’skii inequality for Cn-polynomials

Let Cn = Cn(C), n ≥ 0, be the set of polynomials

φn(x) =

n
∑

k=0

ak cos(2k + 1)x (1.12)

with complex coefficients in the cosine system with odd harmonics

C = {cos(2k + 1)x}∞k=0. (1.13)

The functions (1.12) will be called Cn-polynomials or C -polynomials of order n. The functions (1.12)
are trigonometric polynomials; as trigonometric polynomials they have order 2n+1. Note that the
functions (1.12) vanish at the point x = π/2: ϕn(π/2) = 0, so none of them is the identical unity.

The main goal of this paper is to study the sharp inequality

‖φn‖∞ ≤M(n)p‖φn‖p, φn ∈ Cn, (1.14)
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between the uniform norm

‖φn‖∞ = ‖φn‖C[0,π/2] = max
{

|φn(x)| : t ∈ [0, π/2]
}

,

and integral p-norm (0 < p <∞)

‖φn‖p = ‖φn‖Lp(0,π/2) =

(

2

π

∫ π/2

0
|φn(x)|pdx

)1/p

of Cn-polynomials on the interval [0, π/2]. Inequality (1.14) appeared in the authors’ paper [8] in
connection with the study of a variant of the generalized translation in system (1.13) on an interval.

In connection with inequality (1.14), the question naturally arises of the sharp pointwise in-
equality

|ϕn(t)| ≤M(n, t)p‖ϕn‖Lp(0,π/2), ϕn ∈ Cn, (1.15)

for points t ∈ [0, π/2]. Especially important, as will be seen from what follows, is the inequal-
ity (1.15) at the end point t = 0:

|ϕn(0)| ≤M(n, 0)p‖ϕn‖Lp(0,π/2), ϕn ∈ Cn. (1.16)

The study of inequalities (1.14), (1.15), and (1.16) includes, in particular, the study of the
properties of extremal polynomials at which the inequalities turn into equalities. It is clear that if
the polynomial φ∗n is extremal in one of these inequalities, then, for any constant c, the polynomial
c φ∗n is also extremal. If any extremal polynomial of this inequality has the form c φ∗n with some
constant c, then φ∗n is said to be the unique extremal polynomial.

The following statement is proved in the authors’ paper [8, Theorem 4].

Theorem B. For 1 ≤ p <∞ and n ≥ 0, the following statements hold.
(1) The best constants in inequalities (1.14) and (1.16) coincide:

M(n)p =M(n, 0)p. (1.17)

(2) The polynomial ϕ∗
n extremal in inequality (1.16) attains its uniform norm at the point 0

and is also extremal in inequality (1.14).

The authors do not know whether equality (1.17) holds for 0 < p < 1; in this case, we can only
state that M(n, 0)p ≤M(n)p.

1.3.2. Approximation interpretation of inequalities

The problems of studying inequalities (1.14), (1.15), and (1.16) can be reformulated as approxima-
tion problems; we will do this only for inequality (1.16). Consider the set

Cn[0] = {φn ∈ Cn : φn(0) = 1} (1.18)

of polynomials with fixed value at the point 0: φn(0) = 1. On this set, we define the value

En[0]p = inf
{

‖φn‖Lp(0,π/2) : φn ∈ Cn[0]
}

(1.19)

of the least deviation from zero of the class of polynomials (1.18) in the space Lp(0, π/2). It is clear
that

En[0]p = 1/M(n, 0)p.
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Moreover, extremal polynomials in problem (1.19) and inequality (1.16) coincide. More precisely,
(every) extremal polynomial in (1.19) is also extremal in (1.16); conversely, if ϕ is an extremal
polynomial of inequality (1.16), then the polynomial ϕ/ϕ(0) is extremal in (1.19). Thus, the
problem of sharp inequality (1.16) is equivalent to problem (1.19) on the least deviation from zero
of the class (1.18).

1.3.3. Christoffel–Darboux kernel for system (1.13)

Sometimes, we will use the following shorter notation for the functions of system (1.13):

ηk(x) = cos(2k + 1)x, x ∈ [0, π/2]. (1.20)

This system of functions is orthogonal with respect to the inner product

〈f, g〉 = 2

π

∫ π/2

0
f(t)g(t) dt.

More precisely, as is easy to see, for k,m ≥ 1, the inner products

δk,m = 〈ηk, ηm〉 = 2

π

∫ π/2

0
cos(2k + 1)t cos(2m+ 1)t dt

have the following values: δk,m = 0, k 6= m, and δk,k = 1/2.
Due to the orthogonality of the system {ηk}k≥1, the coefficients of the polynomial

φ(x) =
n
∑

k=0

ak cos(2k + 1)x (1.21)

are expressed in terms of the polynomial itself by the formulas ak = 2〈φ, ηk〉. Substituting these
expressions into (1.21), we obtain

φ(x) =
n
∑

k=0

akηk(x) = 2
n
∑

k=0

〈φ, ηk〉ηk(x) =
〈

φ, 2
n
∑

k=0

ηk(x)ηk

〉

,

which can be written in the form

φ(x) =
2

π

∫ π/2

0
φ(t)Kn(x, t)dt,

where

Kn(x, t) = 2

n
∑

k=0

ηk(x)ηk(t) (1.22)

is the Christoffel–Darboux kernel for the system Cn. Convolute this kernel. Using the formula

2 cos a cos b = cos(a+ b) + cos(a− b), (1.23)

we find

Kn(x, t) = 2

n
∑

k=0

ηk(x)ηk(t) = 2

n
∑

k=0

cos ((2k + 1)x) cos ((2k + 1)t) =

=

n
∑

k=0

(cos ((2k + 1)(x+ t)) + cos ((2k + 1)(x− t))) .
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Using the formula (see, for example, [27, Part 6, Sect. 3, Problem 16])

n
∑

k=0

cos(2k + 1)θ =
sin 2(n + 1)θ

2 sin θ
, θ 6= νπ, ν ∈ Z,

we obtain the following representation for the Christoffel–Darboux kernel:

Kn(x, t) =
1

2

(

sin 2(n + 1)(x+ t)

sin(x+ t)
+

sin 2(n+ 1)(x − t)

sin(x− t)

)

.

The orthogonality of the system of functions (1.20) implies that, for a pair of polynomials

φ(x) =

n
∑

k=0

ak cos(2k + 1)x, ψ(x) =

n
∑

k=0

bk cos(2k + 1)x,

a generalized version of Parceval’s identity holds:

2〈φ, g〉 =
n
∑

k=1

akbk.

In particular, the norm of the polynomial φ ∈ Cn is expressed in terms of its Fourier coefficients {ak}
by Parceval’s identity

2‖φ‖2L2(0,π/2)
=

n
∑

k=0

|ak|2.

Using this equality and Hölder’s inequality, we obtain the inequality

|φ(0)| =
∣

∣

∣

n
∑

k=0

ak

∣

∣

∣
≤

√
n+ 1

( n
∑

k=0

|ak|2
)1/2

=
√

2(n+ 1) ‖φ‖L2(0,π/2),

which at the kernel (1.22) turns into an equality. Thus, in the space L2(0, π/2), we have

M(n)2 =
√

2(n+ 1), n ≥ 0. (1.24)

It is useful to compare this result with the corresponding result (1.2)–(1.3) for the classical case.

1.4. Main results

The authors consider the following statements to be the main ones in this paper.

1.4.1. Limit behavior of the best constants in inequalities (1.14) and (1.16)

For the best constant in inequality (1.14), we have an analog of the above Theorem A.

Theorem 1. The following limit relation holds for constants M(n)p in inequality (1.14) for
0 < p <∞:

lim
n→∞

M(n)p

(2πn)1/p
= Ap. (1.25)



34 Vitalii Arestov and Marina Deikalova

1.4.2. Characterization of a polynomial extremal in inequality (1.16)

Denote by ϕ∗
n = ϕ∗

n,p ∈ Cn a polynomial of order n ≥ 1 with unit leading coefficient that deviates
least from zero in the space Lp

w(0, π/2) with the weight

w(x) = sin2 x (1.26)

on the interval (0, π/2). In other words, ϕ∗
n is a solution to the problem

min{‖φn‖Lp
w(0,π/2) : φn ∈ C

1
n} = ‖ϕ∗

n‖Lp
w(0,π/2)

on the set C 1
n of polynomials (1.12) of order n with leading coefficient 1: an = 1.

Theorem 2. For all 1 ≤ p < ∞ and n ≥ 1, the polynomial ϕ∗
n of order n with unit leading

coefficient that deviates least from zero in the space Lp
w(0, π/2) with weight (1.26) is the unique

extremal polynomial in inequality (1.16).

There are statements similar to Theorem 2 in [5, Theorem 1; 6, Theorem 2; 7, Theorem 2;
9, Theorem 3; 4, Theorem 2; 3].

We will also give some estimates for the best constant M(n)p in inequality (1.14); see, in
particular, Section 2.4.

2. Behavior with respect to n of the best constant in the Nikol’skii inequality
for C -polynomials

2.1. Case p = 2

According to (1.3) and (1.24), for n ≥ 0, we have

C(n)2 =
√
2n + 1,

M(n)2 =
√

2(n + 1).

Thus,

lim
n→∞

M(n)2

n1/2
= lim

n→∞

C(n)2

n1/2
=

√
2.

Both limits exist and coincide; this fact served as an argument for the authors that this property
of the quantities M(n)p will hold for all 0 < p <∞.

2.2. Expression of C -polynomials in terms of the classical trigonometric
polynomials

Let Cn be the set of even (complex) trigonometric polynomials

fn(x) =
n
∑

k=0

ak cos kx

of order (at most) n ≥ 1. On this set, we consider the uniform norm

‖fn‖∞ = ‖fn‖C[0,π] = max
{

|fn(x)| : x ∈ [0, π]
}
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and the integral p-norm (for 0 < p <∞)

‖fn‖p = ‖fn‖Lp(0,π) =

(

1

π

∫ π

0
|fn(x)|pdx

)1/p

.

It is well known (however, it is easy to show) that the best constants C(n)p in inequality (1.2) and
the inequality

|fn(0)| ≤ C(n)p ‖fn‖p, fn ∈ Cn, (2.1)

coincide.

Lemma 1. For fn ∈ Cn, the function

φn(x) = fn(2x) cos x (2.2)

is a Cn-polynomial. Conversely, every Cn-polynomial φn can be represented in the form (2.2), where
fn ∈ Cn. Thus, formula (2.2) establishes one-to-one correspondence between Cn and Cn.

P r o o f. Let fn ∈ Cn be a trigonometric polynomial. Let

φ(x) = fn(2x) cos x =
n
∑

k=0

ak cos 2kx cos x.

Applying again formula (1.23), we have

2 cos 2kx cos x = cos(2k + 1)x+ cos(2k − 1)x.

Using this relation, we find

2φ(x) = 2fn(2x) cos x = 2

n
∑

k=0

ak cos 2kx cos x =

=
n
∑

k=0

ak cos(2k + 1)x+
n
∑

k=0

ak cos(2k − 1)x =
n
∑

k=0

ak cos(2k + 1)x+
n−1
∑

k=−1

ak+1 cos(2k + 1)x.

As a result, we obtain the representation

2φ(x) =

n
∑

k=−1

(ak + ak+1) cos(2k + 1)x = (2a0 + a1) cos x+

n
∑

k=1

(ak + ak+1) cos(2k + 1)x, (2.3)

where a−1 = 0 and an+1 = 0. The function (2.3) is a Cn-polynomial.
Let us prove the inverse statement, i.e., let us prove that an arbitrary Cn-polynomial

φ(x) =

n
∑

k=0

λk cos(2k + 1)x

can be represented in the form (2.2). Rewrite this polynomial in the form

φ(x) =

n
∑

k=−1

λ′k cos(2k + 1)x, (2.4)

where λ′−1 = λ′0 = λ0/2 and λ′k = λk, 1 ≤ k ≤ n.
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It suffices to represent the polynomial 2φ in the form (2.3). The latter means that the coefficients
{λ′k}nk=−1 of the polynomial (2.4) can be represented as

λ′k = ak + ak+1, −1 ≤ k ≤ n; a−1 = 0, an+1 = 0. (2.5)

It is easy to see that the formulas

ak =

n−k
∑

ℓ=0

(−1)ℓλ′k+ℓ = λ′k − ak+1, k = n, n− 1, . . . , 0,

give a solution to system (2.5). Lemma 1 is proved. �

Representation (2.2) implies that inequality (1.16) is equivalent to the inequality

|fn(0)| ≤ C(n, σ)p‖fn‖Lp
σ(0,π)

, fn ∈ Cn, (2.6)

on the set Cn with weight σ(t) = cosp(t/2). More exactly, the following assertion holds.

Lemma 2. For 0 < p < ∞ and n ≥ 1, inequality (1.16) on the set Cn and inequality (2.6)
on Cn are equivalent ; specifically :

(1) the best constants in inequalities (2.6) and (1.16) are related by the equality

C(n, σ)p =M(n, 0)p; (2.7)

(2) extremal polynomials in these inequalities are related by (2.2).

P r o o f. Using relation (2.2), we find that, for an arbitrary polynomial φn ∈ Cn,

|fn(0)| = |φn(0)| ≤M(n, 0)p‖φn‖Lp(0,π/2),

where

‖φn‖Lp(0,π/2) =

(

2

π

∫ π/2

0
|fn(2x) cos x|pdx

)1/p

=

(

1

π

∫ π

0
|fn(t) cos(t/2)|pdt

)1/p

= ‖fn‖Lp
σ(0,π).

Lemma 2 is proved. �

The following statement contains a quantitative relation between the constants in inequali-
ties (1.14), (1.16), and (1.2).

Lemma 3. For 0 < p <∞ and n ≥ 1, the best constants in inequalities (1.14), (1.16), and (2.1)
(or, equivalently, (1.2)) are related as follows:

C(n)p ≤M(n, 0)p, (2.8)

M(n)p ≤ C(n+ 1)p. (2.9)

P r o o f. For polynomials fn ∈ Cn, we have ‖fn‖Lp
σ(0,π) ≤ ‖fn‖Lp(0,π). Therefore, the best con-

stants in (2.1) and (2.6) are related by the inequality C(n)p ≤ C(n, σ)p. This and (2.7) imply (2.8).
Let us prove inequality (2.9). A polynomial φn ∈ Cn has the form

φn(x) =

n
∑

k=0

ak cos(2k + 1)x.
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Writing it in exponential form, we find

2φn(x) =
n
∑

k=0

ak

(

ei(2k+1)x + e−i(2k+1)x
)

=
n
∑

k=0

ake
i(2k+1)x +

n
∑

k=0

ake
−i(2k+1)x =

= e−ix
n
∑

k=0

ake
i2(k+1)x + e−ix

n
∑

k=0

ake
−i2kx = e−ix

( n+1
∑

k=1

ak−1e
i2kx +

n−1
∑

k=0

ak+1e
−i2kx

)

.

The function

gn+1(x) =

n+1
∑

k=1

ak−1e
ikx +

n−1
∑

k=0

ak+1e
−ikx

is a trigonometric polynomial of order n + 1. The functions 2φn and gn+1 are related as
2φn(x) = e−ixgn+1(2x), x ∈ R, or, equivalently, as

2φn(x/2) = e−ix/2gn+1(x), x ∈ R. (2.10)

The following inequality holds for the polynomial gn+1 (cf. (1.2)):

‖gn+1‖C2π
≤ C(n+ 1)p‖gn+1‖Lp

2π
. (2.11)

As a consequence of (2.10), we have ‖gn+1‖C2π
= 2‖φn‖C[0,π/2] and

‖gn+1‖Lp
2π

=

(

1

2π

∫ 2π

0
|gn+1(x)|pdx

)1/p

= [x/2 = t] = 2

(

1

π

∫ π

0
|φn(t)|pdt

)1/p

=

= 2

(

2

π

∫ π/2

0
|φn(t)|pdt

)1/p

= 2‖φn‖Lp(0,π/2).

Consequently, inequality (2.11) is equivalent to the inequality

‖φn‖C[0,π/2] ≤ C(n+ 1)p‖φn‖Lp(0,π/2).

Comparing this inequality with (1.14), we conclude that inequality (2.9) holds. Lemma 3 is proved
completely. �

2.3. Proof of Theorem 1

By Lemma 3, for all 0 < p <∞ and n ≥ 1, we have the inequalities

C(n)p ≤M(n)p ≤ C(n+ 1)p.

As a consequence, we have

C(n)p

(2πn)1/p
≤ M(n)p

(2πn)1/p
≤ C(n+ 1)p

(2π(n + 1))1/p

(

n

n+ 1

)1/p

.

Passing here to the limit as n → ∞ and using the result (1.10) of Theorem A, we obtain (1.25).
Theorem 1 is proved. �
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2.4. Estimates

2.4.1. Monotonicity of a constant in (1.14) in p

Let 0 < p1 < p2 <∞. For an arbitrary φn ∈ Cn, we have

‖φ‖p2 =

(

2

π

∫ π/2

0
|φ(t)|p2dt

)1/p2

=

(

2

π

∫ π/2

0
|φ(t)|p1 |φ(t)|p2−p1dt

)1/p2

≤

≤
(

2

π

∫ π/2

0
|φ(t)|p1dt

)1/p2
(

‖φ‖C[0,π/2]

)(p2−p1)/p2 = (‖φ‖p1)p1/p2
(

‖φ‖C[0,π/2]

)(p2−p1)/p2 .

Consider inequality (1.14) with the parameter p2:

‖φ‖C[0,π/2] ≤M(n)p2‖φ‖p2 ≤M(n)p2 (‖φ‖p1)p1/p2
(

‖φ‖C[0,π/2]

)(p2−p1)/p2 .

Dividing by the latter factor, we obtain the inequality

(

‖φ‖C[0,π/2]

)p1/p2 ≤M(n)p2 (‖φ‖p1)p1/p2 .

Raise it to the power p2/p1:

‖φ‖C[0,π/2] ≤ (M(n)p2)
p2/p1 ‖φ‖p1 .

This inequality holds for any polynomial φ ∈ Cn; hence,

M(n)p1 ≤ (M(n)p2)
p2/p1 ,

or

(M(n)p1)
p1 ≤ (M(n)p2)

p2 , 0 < p1 < p2 <∞; (2.12)

this is the required property of monotonicity.

2.4.2. Estimates for a constant in (1.14)

As a special case of (2.12), we have the inequality

M(n)p ≥ (M(n)1)
1/p , 1 < p <∞.

Using now inequalities (2.8) and (1.6), we obtain the lower estimate

M(n)p ≥ (n+ 1)1/p , 1 ≤ p <∞.

Using (2.12) and (1.24), we obtain the estimates

M(n)p ≤ (2(n+ 1))1/p , 0 < p ≤ 2,

M(n)p ≥ (2(n + 1))1/p , p ≥ 2.

Finally, inequalities (2.9) and (1.5) imply the estimate

M(n)p ≤ 4(n+ 1)1/p, 0 < p <∞.
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3. Characterization of an extremal C -polynomial in the Nikol’skii inequality

The primary purpose of this section is to prove Theorem 2, which characterizes the extremal Cn-
polynomial in the Nikol’skii inequality (1.16). As mentioned above, statements similar to Theorem 2
can be found in the authors’ papers, personal and with co-authors: [5–7, 9]. The ideas contained
in these statements have been summarized in [3]. The fact that we need [3] holds for inequalities
similar to inequality (1.16) for algebraic polynomials in spaces Lp with weight. Because of this, we
first rewrite inequality (1.16) in terms of algebraic polynomials, use Theorem 4 from [3], and then
make a conclusion related to inequality (1.16).

3.1. Equivalent to (1.16) inequality for algebraic polynomials on an interval

We can associate inequalities (1.14) and (1.16) on the set Cn with equivalent inequalities on the
set of algebraic polynomials. For this, we describe C -polynomials in terms of algebraic polynomials.
Denote by Pn the set of algebraic polynomials

ρn(t) =

n
∑

ℓ=0

cℓt
ℓ (3.1)

of degree (at most) n with complex coefficients. In further consideration, we will need some
properties of the Chebyshev polynomials

Tν(t) = cos(νx), x = arccos t, t ∈ [−1, 1], (3.2)

of the first kind of degree ν ≥ 0; these properties can be found, for example, in [21, Ch. 2, Sect. 2.2]).
A polynomial Tν , ν ≥ 1, can be represented as

Tν(t) =
ν

2

[ν/2]
∑

k=0

(−1)k

ν − k
Ck
ν−k(2t)

ν−k = 2ν−1tν − ν2ν−3tν−2 + · · · . (3.3)

A polynomial Tν is even or odd in accordance with the evenness of the number ν, and its leading
coefficient (for ν ≥ 1) is 2ν−1.

Lemma 4. For n ≥ 1, the relation

φn(x) = tρn(t
2), t = cos x, x ∈ [0, π], t ∈ [−1, 1], (3.4)

establishes a bijection between the set of polynomials φn ∈ Cn of order n and the set Pn of alge-
braic polynomials ρn of degree n. Under this correspondence, the leading coefficient an(φn) of a
C -polynomial φn and the leading coefficient cn(ρn) of the polynomial ρn are related by the formula

cn(ρn) = 22nan(φn); (3.5)

in addition, the following equalities hold :

φn(0) = ρn(1), (3.6)

‖φn‖Lp(0,π/2) = ‖ρn‖Lp
υ(0,1), υ(u) = υ(u)p =

u(p−1)/2

π
√
1− u

. (3.7)
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P r o o f. First, let us show that an arbitrary C -polynomial

φn(x) =

n
∑

k=0

ak cos(2k + 1)x (3.8)

of order n ≥ 0 can be presented in the form (3.4), where ρn is an algebraic polynomial (3.1) of
degree n. Replace cos(2k + 1)x with T2k+1(t), t = cos x, t ∈ [−1, 1], in (3.8). A polynomial T2k+1

is odd, and consequently, can be represented in the form T2k+1(t) = tRk(t
2), where Rk is a real

algebraic polynomial of degree k. The leading coefficient of the polynomial Rk is 22k and Rk(1) = 1.
Therefore, polynomial (3.8) can be represented as (3.4), where ρn is some algebraic polynomial (3.1)
of degree n; the leading coefficients of the polynomials φn and ρn satisfy the relation (3.5).

Conversely, let ρn ∈ Pn. Consider the function f(x) = cos x ρn(cos
2 x). Based on the represen-

tation (3.1), we have

f(x) = cosx ρn(cos
2 x) =

n
∑

ℓ=0

cℓ cos
2ℓ+1 x. (3.9)

The function cos2ℓ+1 x is an even trigonometric polynomial of order 2ℓ+ 1:

cos2ℓ+1 x =

ℓ
∑

k=0

ρℓ,k cos(2k + 1)x. (3.10)

This fact is, of course, known. However, it is easy to obtain (by induction on ℓ) starting from the
representations (3.2) and (3.3). In particular, it follows from (3.3) that the leading coefficient of
the representation (3.10) is ρℓ,ℓ = 2−2ℓ. Thus, function (3.9) is a C -polynomial of the form (3.8).

Relation (3.4) establishes a bijection between Cn and Pn. Formula (3.6) is obvious. Let us
verify (3.7):

‖φn‖Lp(0,π/2) =

(

2

π

∫ π/2

0
|φn(x)|pdx

)1/p

=

(

2

π

∫ π/2

0
| cos xρn(cos2 x)|pdx

)1/p

= [cos x = t] =

=

(

2

π

∫ 1

0
|tρn(t2)|p

dt√
1− t2

)1/p

=
[

t2 = u
]

=

(

1

π

∫ 1

0
|ρn(u)|p

u(p−1)/2du√
1− u

)1/p

=

=

(
∫ 1

0
|ρn(u)|pυ(u)du

)1/p

, υ(u) = υ(u)p =
u(p−1)/2

π
√
1− u

.

Thus, we obtain equality (3.7). Lemma 4 is proved completely. �

Corollary 1. The representation (3.4) implies that for n ≥ 1 the polynomial φ ∈ Cn, φ 6≡ 0, can
have on [0, π/2) at most n zeros, taking into account their multiplicities, i.e., Cn is the Chebyshev
system on [0, π/2).

Corollary 2. Lemma 4 implies that inequalities (1.14) and (1.16) can be associated with equiv-
alent sharp inequalities on the set of algebraic polynomials:

‖ρn‖∞ ≤ M(n)p‖ρn‖Lp
υ(0,1), ρn ∈ Pn, (3.11)

with constant M(n)p =M(n)p and

|ρn(1)| ≤ M(n, 1)p‖ρn‖Lp
υ(0,1), ρn ∈ Pn, (3.12)

with constant M(n, 1)p = M(n, 0)p. Moreover, a polynomial ̺n ∈ Pn is extremal in inequali-
ties (3.11) and (3.12) if and only if the polynomial ϕn ∈ Cn related to ̺n by formula (3.4) is
extremal in inequalities (1.14) and (1.16).
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Let us reformulate the problem of studying inequality (3.12) as an approximation problem.
Consider the set

Pn[1] =
{

ρn ∈ Pn : ρn(1) = 1
}

(3.13)

of polynomials with a fixed unit value at unity: ρn(1) = 1. On this set, we define the value

en[1]p = inf
{

‖ρn‖Lp
υ(0,1) : ρn ∈ Pn[1]

}

(3.14)

of the least deviation from zero in the space Lp
υ(0, 1) of the class of polynomials (3.13). It is clear that

en[1]p = 1/M(n, 1)p. Moreover, polynomials extremal in problem (3.14) and in inequality (3.12)
coincide (up to a multiplicative constant). Thus, the problem on the sharp inequality (3.12) is
equivalent to problem (3.14) on the least deviation from zero of the class (3.13).

Lemma 5. For 1 ≤ p <∞ and n ≥ 1, the following statements hold for a polynomial ̺n ∈ Pn

extremal in inequality (3.12) and such that ̺n(1) = 1.

(1) The polynomial ̺n is characterized by the property

∫ 1

0
ρn−1(u)(1 − u)υ(u)|̺n(u)|p−1sign ̺n(u)du = 0, ρn−1 ∈ Pn−1. (3.15)

(2) The polynomial ̺n has degree n, all its n roots are real, simple, and lie on the interval (0, 1);
in this sense, the polynomial ̺n is real.

(3) The polynomial ̺n is unique.

P r o o f. Most of the results of this lemma are contained in [3]. We find it difficult in some cases
to make precise references to this paper. Therefore, we have to repeat some arguments from [3]
with clarifications and explanations.

In Theorem 4 of [3], in particular, the following properties of a polynomial ̺n extremal in the
inequality (3.12) were proved.

(1′) The polynomial ̺n is real; more exactly, it has real coefficients and, hence, takes real values
on the real axis.

(2′) The polynomial ̺n is characterized by the property (3.15).

It follows that the polynomial ̺n has n sign changes on the interval (0, 1). Otherwise, the
polynomial with simple zeros at the sign change points of the polynomial ̺n would have order at
most n− 1 and the property (3.15) would not hold on it.

Finally, let us verify that an extremal polynomial ̺n is unique for all 1 ≤ p <∞. In fact,
let ̺n and ζn be two polynomials that solve problem (3.14). By the inequality ‖̺n + ζn‖Lp

υ
≤

‖̺n‖Lp
υ
+ ‖ζn‖Lp

υ
, their half-sum (̺n + ζn)/2 has the same property; hence, we have the equality

‖̺n + ζn‖Lp
υ
= ‖̺n‖Lp

υ
+ ‖ζn‖Lp

υ
. For 1 < p < ∞, since the space Lp

υ(0, 1) is strictly normalized,
it immediately follows that ζn = ̺n. If p = 1, then we can only assert so far that the signs of the
polynomials ζn and ̺n coincide almost everywhere on [0, 1]. The zeros of these polynomials are
simple and lie on the interval (0, 1), so the polynomials ζn and ̺n have the same set of zeros and
the same value at the point u = 1: ζn(1) = ̺n(1) = 1, hence, these polynomials coincide. Thus,
the extremal polynomial is unique for p = 1 too.

Lemma 5 is proved completely. �

Based on the weight υ defined in (3.7), let us define the following weight on the interval (0, 1):

̟(x) = (1− u)υ(u) =
u(p−1)/2

√
1− u

π
. (3.16)
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Consider the problem on the least deviation from zero

u(P1
n)Lp

̟(0,1) = min{‖ρn‖Lp
̟(0,1) : ρn ∈ P1

n} (3.17)

in the space Lp
̟(0, 1) of the set P1

n of algebraic polynomials of degree n whose leading coefficient
is 1. Denote by ̺∗n = ̺∗n,̟,p a polynomial solving this problem:

u(P1
n)Lp

̟(0,1) = ‖̺∗n‖Lp
̟(0,1);

it is called a polynomial of degree n with unit leading coefficient that deviates least from zero in
the space Lp

̟(0, 1).

Theorem 3. For all 1 ≤ p < ∞ and n ≥ 1, the polynomial ̺∗n of degree n with unit leading
coefficient that deviates least from zero in the space Lp

̟(0, 1) with weight (3.16) is the unique
extremal polynomial in inequality (3.12).

P r o o f. The polynomial ̺∗n is characterized by the property that the function |̺∗n|p−1sign ̺∗n
is orthogonal to the space Pn−1 (see, for example, [20, Ch. 3, Sect. 3.3, Theorems 3.3.1 and 3.3.2]):

∫ 1

0
̟(x) ρn−1(x)|̺∗n(x)|p−1sign ̺∗n(x) dx = 0, ρn−1 ∈ Pn−1.

This property is the same as property (3.15). Therefore, the polynomials ̺n and ̺∗n can differ only
by a multiplicative constant. Theorem 3 is proved. �

3.2. Characterization of a C -polynomial extremal in inequality (1.16)

Let us apply the results of the previous section to describing the characteristic properties of
Cn-polynomials extremal in inequalities (1.14) and (1.16).

3.2.1. An analog of Lemma 5 in the set of C -polynomials

Let us reformulate Lemma 5 for the extremal Cn-polynomial of inequality (1.16).

Lemma 6. For 1 ≤ p < ∞ and n ≥ 1, the following statements hold for polynomials ϕn ∈ Cn

extremal in inequality (1.16) and such that ϕn(0) = 1.
(1) The polynomial ϕn is characterized by the property

∫ π/2

0
φn−1(t)(sin

2 t) |ϕn(t)|p−1signϕn(t)dt = 0, φn−1 ∈ Cn−1. (3.18)

(2) The polynomial ϕn has order n. The polynomial ϕn has n simple roots on the inter-
val (0, π/2).

(3) The polynomial ϕn is unique.

P r o o f. Let us employ the statements of Lemmas 4 and 5. Let ̺n ∈ Pn be an extremal
(algebraic) polynomial in inequality (1.16) with the property ̺n(1) = 1. The polynomial ̺n and
the polynomial ϕn are related by (3.4).

Let us check that the relation (3.18) coincides with (is equivalent to) (3.15). For this, we
transform the functional on the left-hand side of (3.15). For a polynomial ρn−1 ∈ Pn−1, we define a
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polynomial φn−1 ∈ Cn−1 that is expressed in terms of ρn−1 by formula (3.4). Based on the left-hand
side of (3.15), we find

∫ 1

0
ρn−1(u)(1 − u)υ(u)|̺n(u)|p−1sign ̺n(u)du =

=
1

π

∫ 1

0
ρn−1(u)(1 − u)

1√
1− u

|
√
u̺n(u)|p−1sign ̺n(u)du =

=
1

π

∫ 1

0
ρn−1(u)

√
1− u|

√
u̺n(u)|p−1sign ̺n(u)du =

[

u = t2
]

=

=
2

π

∫ 1

0
tρn−1(t

2)
√

1− t2|t̺n(t2)|p−1sign ̺n(t
2)dt = [t = cos x] =

=
2

π

∫ π/2

0
φn−1(x) sin

2 x |ϕn(x)|p−1signϕn(x)dt.

Now you can see that the conditions (3.18) and (3.15) hold or do not hold simultaneously.
Lemma 6 is proved. �

Consider a problem similar (3.17) on the value

U(C 1
n )Lp

σ(0,π/2) = min{‖φn‖Lp
σ(0,π/2) : φn ∈ C

1
n} (3.19)

of the least deviation from zero in the space Lp
σ(0, π/2) with weight σ(x) = sin2 x of the set C 1

n

of algebraic polynomials of degree n whose leading coefficient is 1. Denote by ϕ∗
n = ϕ∗

n,σ,p the
polynomial of degree n with unit leading coefficient that deviates least from zero in the space
Lp
σ(0, π/2), i.e., the polynomial that solves problem (3.19):

U(C 1
n )Lp

σ(0,π/2) = ‖ϕ∗
n‖Lp

σ(0,π/2).

Lemma 7. For 1 ≤ p < ∞ and n ≥ 1, the following statements hold for problems (3.17)
and (3.19).

(1) The values of the problems are related by the equality

U(C 1
n )Lp

σ(0,π/2) = 22n u(P1
n)Lp

̟(0,1).

(2) A polynomial ̺∗n ∈ P1
n extremal in problem (3.17) and a polynomial ϕ∗

n ∈ C 1
n extremal in

problem (3.19) are related by the equality

ϕ∗
n(x) = 22nt ̺∗n(t

2), t = cos x, x ∈ [0, π/2], t ∈ [0, 1].

P r o o f. Let ρn ∈ Pn, and let φn ∈ Cn be the polynomial expressed in terms of ρn by
formula (3.4). We have

‖ρn‖pLp
̟(0,1)

=
1

π

∫ 1

0
u(p−1)/2

√
1− u|ρn(u)|pdu = [u = t2] =

=
2

π

∫ 1

0

√

1− t2|tρn(t2)|pdt = [t = cos x] =
2

π

∫ π/2

0
sin2 x|φn(x)|pdx = ‖φn‖pLp

σ(0,π/2)
.

Consequently, the norms satisfy the equality

‖ρn‖Lp
̟(0,1) = ‖φn‖Lp

σ(0,π/2).

According to (3.5), we have
φn ∈ C

1
n ⇐⇒ 2−2nρn ∈ P1

n.

From here, all the assertions of Lemma 7 follow. Lemma 7 is proven. �
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3.2.2. The proof of Theorem 2

For an algebraic polynomial ρ ∈ Pn and a Cn-polynomial φ ∈ Cn related by (3.4), we will say that
they are (3.4)-related.

(1) According to Corollary 2, the polynomials ̺ ∈ Pn and φ ∈ Cn extremal in the Nikol’skii
inequalities (1.14) and (1.16) and inequalities (3.11) and (3.12), respectively, are (3.4)-related.
According to Lemmas 5 and 6, these polynomials are unique up to numerical factors.

(2) Let ̺∗ ∈ P1
n and ϕ∗

n ∈ C 1
n be extremal polynomials, i.e., polynomials that deviate least

from zero in problems (3.17) and (3.19), respectively. According to Lemma 7, the polynomials ρ∗n
and 22nϕ∗ are also (3.4)-related.

(3) According to Theorem 3, the polynomial ̺∗ is extremal in inequalities (3.11) and (3.12).
Consequently, ϕ∗ is also extremal in inequalities (1.14) and (1.16).

Thus, Theorem 2 is proved. �

4. Conclusions

The system of functions (1.20) is in some sense a “quarter” of the classical trigonometric system.
However, as it turned out (see Theorem 1 and Lemma 3), the best constants in inequalities (1.2)
and (1.14) are very close. The reason for this is not clear to the authors. What will be the situation
with other extremal problems in these systems, the authors also do not know.
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9. Arestov V., Deikalova M., Horváth Á. On Nikol’skii type inequality between the uniform norm and the
integral q-norm with Laguerre weight of algebraic polynomials on the half-line. J. Approx. Theory, 2017.
Vol. 222. P. 40–54. DOI: 10.1016/j.jat.2017.05.005

10. Babenko V., Kofanov V., Pichugov S. Comparison of rearrangement and Kolmogorov–Nagy type in-
equalities for periodic functions. Approx. Theory: A volume dedicated to Blagovest Sendov, B. Bo-
janov (ed.). Sofia: DARBA, 2002. P. 24–53.

11. Babenko V. F., Korneichuk N.P., Kofanov V., Pichugov S. Inequalities for Derivatives and Their Appli-
cations. Kyiv: Naukova Dumka, 2003. 590 p. (in Russian)

https://doi.org/10.1007/BF01140526
https://doi.org/10.1070/IM1982v018n01ABEH001375
https://doi.org/10.15826/umj.2017.2.004
https://doi.org/10.1007/s10476-018-0103-6
https://doi.org/10.1134/S0081543814020023
https://doi.org/10.1007/s40315-015-0134-y
https://doi.org/10.1007/s10476-016-0201-2
https://doi.org/10.1016/j.jat.2017.05.005


On One Inequality of Different Metrics for Trigonometric Polynomials 45

12. Badkov V.M. Asymptotic and extremal properties of orthogonal polynomials corresponding to weight
having singularities. Proc. Steklov Inst. Math., 1994. Vol. 198. P. 37–82.
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