ИК-СПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ Со-СОДЕРЖАЩИХ КОМПОЗИТОВ НА ОСНОВЕ АМОРФНОГО SiO_2

Светлакова К.И.⁽¹⁾, Медянкина И.С.⁽²⁾, Пасечник Л.А.⁽²⁾

⁽¹⁾ Уральский федеральный университет
620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт химии твердого тела УрО РАН
620990, г. Екатеринбург, ул. Первомайская, д. 91

Силикат кобальта применяется в качестве синего пигмента в керамической промышленности, для создания анодных слоев литий-ионных аккумуляторов, в материалах конденсаторов. Установлены высокие фотокаталитические свойства $CoSiO_x$ при разложении растворенных в воде органических веществ [1]. Распространенным методом синтеза силикатов является высокотемпературное спекание благодаря достижению их высокой устойчивости и инертности. При этом зачастую сырьем являются кремний-органические соединения.

Целью нашей работы является поиск наиболее фотоактивного композиционного материала на основе аморфного SiO_2 путем варьирования соотношения Si:Co от 1:1 до 1:100 и метода его получения — механохимический или гидротермальный. Аморфный SiO_2 был предварительно получен гидролизом раствора $(NH_4)_2SiF_6$, который является промежуточным продуктом извлечения кремния из кремнийсодержащего сырья. Для механохимического синтеза смешивали смоченные этанолом сухие SiO_2 и Co_3O_4 , полученный термолизом формиата кобальта. При гидротермальном процессе золь из диспергированного SiO_2 в растворе $Co(COOH)_2$ выдерживали при 100° С в автоклаве в течение 12 ч. Полученные материалы были изучены методами $P\Phi A$, ИК-спектроскопии, COM и EOM

В ИК—спектрах образцов с SiO_2 присутствует характерный набор полос колебаний тетраэдра $[SiO_4]^{2-}$: 1000-1200 см $^{-1}$ (валентные), \sim 800 см $^{-1}$ (мостиковые), \sim 470 см $^{-1}$ (деформационные). Для конденсированных силикатов с $[Si_2O_5]^{2-}$ в области 800-600 см $^{-1}$ появляется колебание Si—O—Si, а полоса средней интенсивности 960 см $^{-1}$ отвечает за связь Si—OH. За связи Co—O (металл-кислород) отвечают полосы 560 и 660 см $^{-1}$. Для воды характерны широкая 3600-3000 см $^{-1}$ и средняя 1640 см $^{-1}$ полосы. В образцах гидротермального синтеза снижение интенсивности и уширение полос Co—O также свидетельствуют об образовании гидроксосиликата состава $Co_3(Si_2O_5)_2(OH)_2$. Полученные данные подтверждены $P\Phi A$.

Продукты гидротермального синтеза обладают развитой удельной поверхностью и высокой каталитической активностью, что показывает возможность их применения для разрушения органических загрязнителей в сточных водах, как за счет сорбции, так и фотокаталитического окисления.

1. *Hao S-M., Yu M-Y., Zhang Y-J. et al.* // J. Colloid Interface Sci. 2019. Vol. 545. P. 128–137

Работа выполнена в рамках государственного задания ИХТТ УрО РАН, тема № AAAA-A19-119031890028-0.