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ON THE TRANSFORM OF A GUIDANCE GAME

Yu. V. Averboukh UDC 517.972; 519.83

Abstract. This paper is devoted to the study of the structure of solutions of the differential guidance

game in the case where the objective set is contained in the position space and is the controllability

set for some control system.
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1. Introduction

This problem is devoted to the study of the structure of solutions of the differential guidance game
in the case where the objective set is contained in the position space and is the controllability set for
some control system. To such a system, we put in correspondence an equivalent problems of guidance

“at moment” for the transformed system. A guidance game is called a problem “at moment” if one
must guide the system to a set in the phase space at the final instant of time.

The structure of a nonlinear guidance game is exhaustively characterized by the theorem on al-

ternative proved by Krasovskii and Subbotin (see [9–11]), which asserts that, under the condition
of information consistency, there exists a saddle point in the class of the corresponding feedback
strategies. If the condition of information consistency does not hold, a saddle point exists in the

class of pairs counterstrategy/strategy (see [10, 11], where the existence of a saddle point in the pairs
strategy/counterstrategy and mixed strategy/mixed strategy was established [10, 11]). The form of an
optimal strategy for guidance problems [10, 11] is known: a strategy (in the case where the condition

of information consistency of the counterstrategy does not hold) can be constructed by the method of
extremal shift by some set; this set is the maximal u-stable bridge in the sense of Krasovskii. Thus,
the solution of a guidance game is reduced to the construction of the maximal u-stable bridge. If the

problem is considered in the classes mixed strategy/mixed strategy or strategy/counterstrategy, then
the corresponding optimal control can be obtained by the method of extremal shift by a maximal
ũ-stable or u∗-stable bridge, respectively (see [10, 11]).

Together with guidance problems, game problems of minimization of functionals are also studied in
the theory of differential games. For such problems, based on the theorem on alternative, Krasovskii
and Subbotin proved the existence of the value function (see [10, 11]).

The specific construction of the set of positional absorption or the value function can be performed
by using the method of program iterations proposed by Chentsov (see [3–5, 14] and also [7, 12, 15]).

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applica-
tions), Vol. 85, Proceedings of the International Conference on Differential Equations and Dynamical Systems
(Suzdal, June 26–July 2, 2008), 2012.
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An important case of a set invariant with respect to a control system is a cylinder set; it is invariant

with respect to the identity transformation of the phase space. Guidance problems on the cylinder set
are also called guidance “to moment” problems.

In this paper, the transformation of a problem is performed by a peculiar extension of the control
system. We prove that for the case of an autonomous conflict-controlled system, the problem of

guidance to the maximal invariant set is equivalent to the problem of guidance “at moment” of the
extended system. The equivalence of these problems follows from the fact that iterations constructed
by the method of program iterations for both these problems coincide. The method of transformation

of problems proposed here can be applied to game problems of minimization of the path functional.

2. Basic Definitions and Notation

In this paper, we consider convergence/divergence problems with the set M of autonomous conflict-
controlled systems of the form

ẋ = f(x, u, v), u ∈ P, v ∈ Q, (1)

on the time interval [0, ϑ]. Assume that the first player disposing of the control u wants to lead the
system on the set M , M ⊂ [0, ϑ]×R

n, and the second player disposing of the control v aims to prevent
this.

We assume that f is a continuous, locally Lipschitz (with respect to the phase variable) function
satisfying the condition of the sublinear growth, P ⊂ R

p, Q ⊂ R
q, P and Q are compact sets, and M

is closed . This differential game is considered in the class counterstrategy/strategy, i.e., we assume

that the first player (who disposes of the control u) exerts its control in the class of counterstrategies
and the second player (who disposes of the control v) exerts its control in the class of pure feedback
strategies (see [10, 11]). We state the strict definitions of counterstrategies, feedback strategies, and

motions for autonomous games, following the definitions introduced in [10, 11] for the general case.
A counterstrategy of the first player is an arbitrary function U : [0, ϑ] × R

n × Q → P measured
with respect to the third argument. A feedback strategy of the second player is an arbitrary function

V : [0, ϑ] × R
n → Q. A motion generated by a counterstrategy U(t, x, v) on the interval [t∗, t∗] and

started at a point x∗ is defined (following [10, 11]) as the limit of Euler polygonal approximations as
the fineness of the partition tends to zero. The Euler polygonal approximations are constructed as

follows. Let Δ = {τk}rk=0 be a partition of the interval [t∗, t∗] and v(·) be a control of the second player.
On any interval [τk−1, τk), k = 1, r, we define the Euler polygonal approximation as the solution of
the equation

xk[t] = xk−1[τk−1] +

t∫

τk−1

f
(
xk[θ], U

(
τk−1, xk−1[τk−1], v(θ)

)
, v(θ)

)
dθ, x0[τ0] � x∗.

The second player generates his control as follows. Let Ξ = {ξj}mj=0 be a partition of the interval

[t∗, t∗]. The control of the second player is constant on the intervals [ξj−1, ξj), j = 1,m, and is equal

to V (ξj−1, xj−1), where xj−1 is the state of the system at the time instant ξj−1.
By the theorem on alternative (see [10, Theorem 82.2]), the solution of a convergence/divergence

problem is completely defined by the solvability set (the maximal u-stable bridge) W. In this case,

the optimal counterstrategy U(t, x, v) is constructed by the rule of extremal shift by W (see [10, 11]).
A set is called a u-stable bridge (see [10, 11]) if for any v ∈ Q and any position (t∗, x∗) ∈ W , there

exist a solution y(·) of the differential inclusion

ẏ(t) ∈ co{f(x, u, v) : u ∈ P}
and an instant ξ ∈ [t∗, ϑ] such that y(ξ) ∈ M [ξ] and for all t ∈ [t∗, ξ] the inclusion y(t) ∈ W [t] holds.
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If the Isaacs condition (the saddle-point condition in a small game)

∀s, x ∈ R
n min

u∈P
max
v∈Q

〈s, f(x, u, v)〉 = max
v∈Q

min
u∈P

〈s, f(x, u, v)〉

holds, it suffices to consider a differential game in the class of feedback strategies (see [10, 11]); in this
case, strategies of the first player depend only on the realized position.

Except for conflict-controlled systems, in this paper we also use ordinary control systems. Let Λ be
a compact set in a finite-dimensional metric space. Consider the control system

ẋ = h(x, b), b ∈ Λ. (2)

For fix b ∈ Λ, we denote by Sτ
h,b the flow generated by the vector field h(·, b) for time τ (assume

that τ ∈ R). Let (t∗, x∗) ∈ [0, ϑ] × R
n and b(·) : [0, ϑ] → Λ be a measurable function. A motion of

system (2) generated by the control b(·) is a solution of the equation

x(t) = x∗ +
t∫

t∗

h(x(ξ), b(ξ))dξ.

Assume that t is an arbitrary time instant from the interval [0, ϑ]. Denote the motion of the system
starting at the position (t∗, x∗) and generated by the control b(·) by xh

(
t, t∗, x∗, b(·)

)
. Consider the

case where b(·) is a piecewise constant, right-continuous function. Assume that t ≥ t∗. Since b(·) is
a piecewise constant, right-continuous function, there exist a collection of numbers τ1, . . . , τk ∈ [0,∞)

and controls b1, . . . , bk ∈ Λ such that

t = t∗ + τ1 + . . . + τk, b(ξ) = bi

for ξ ∈
[
t∗ + τ1 + . . .+ τi−1, t∗ + τ1 + . . .+ τi−1 + τi

]
. In this case,

xh
(
t, t∗, x∗, b(·)

)
= Sτk

h,bk
◦ . . . ◦ Sτ1

h,b1
(x∗).

This formula is also valid in the case where t < t∗; then τi < 0.

Except for ordinary controls, we consider generalized controls (control measures). Consider the
Borel σ-algebra of subsets of [0, ϑ]× Λ. A generalized control is an arbitrary measure defined on this
σ-algebra. We denote the set of all measures by RΛ. Let (t∗, x∗) ∈ [0, ϑ]×R

n, μ ∈ RΛ. Then a motion

starting at the position (t∗, x∗) and generated by a generalized control μ is the solution of the equation

x(t) = x∗ +
∫

[t∗,t]×Λ

h
(
x(ξ), b

)
μ
(
d(ξ, b)

)

for t ≥ t∗ and the solution of the equation

x(t) = x∗ −
∫

[t,t∗]×Λ

h
(
x(ξ), b

)
μ
(
d(ξ, b)

)

for t < t∗. We denote this motion by ϕh(·, t∗, x∗, μ). It is known (see [8]) that for any generalized

control μ ∈ RΛ, there exists a sequence of piecewise constant, right-continuous, measurable functions
such that

xh
(·, t∗, x∗, bk(·)) ⇒ ϕh(·, t∗, x∗, μ), k → ∞.

Moreover, the set of ordinary controls can be embedded in the space of generalized controls, namely,
for any measurable control b(·), there exists a measure μb(·) such that

∫

[0,ϑ]×Λ

ψ(t, b)μb(·)(d(t, μ)) =
ϑ∫

0

ψ(t, b(t))dt

3



for all ψ ∈ C([0, ϑ]× Λ). Note that

xh
(·, ·, ·, b(·)) = ϕh

(·, ·, ·, μb(·)
)
.

The problem of the solution of a differential game can be reduced to a sequence of control problems
by the method of program iterations proposed by A. G. Chentsov. We define the operator of program
absorption (see [6, 14]), which acts in the space of closed sets by keeping in this set all positions

from which the first player knowing the constant control of the antagonist can lead the system to
the objective set such that the motion does not leave the given set. Consider the conflict-controlled
system (1). For any v ∈ Q, we define the control system

fv(x, u) � f(x, u, v).

The image of the closed set E ⊂ [0, ϑ] × R
n is the set

Af (E) =
{
(t∗, x∗) ∈ E : ∀v ∈ Q ∃μ ∈ R(P ) ∃ξ ∈ [t∗, ϑ] :

ϕfv

(
ξ, t∗, x∗, μ

) ∈ M [ξ] &
(
ϕfv(t, t∗, x∗, μ) ∈ E[t] ∀t ∈ [t∗, ξ]

)}
,

where E[t] is the section of the set E:

E[t] � {x : (t, x) ∈ E}.
Consider the sequence

W0 � [0, ϑ]× R
n, Wk = Af (Wk−1) ∀k ∈ N.

Chentsov proved that the solvability set of the guidance problem can be represented in the form

W =
∞⋂
k=0

Wk.

We also note that the condition of the u-stability can be stated by using the operator of program
absorption: a set W is a u-stable bridge if A(W ) = W .

3. Statement of the Main Result

Consider the convergence/divergence problem for a conflict-controlled system of the form (1) with

the objective set M . Introduce the notation F � M [ϑ]. We assume that M is the controllability set

with the objective set M∗ � {ϑ} × F with respect to some control system g(x, ω), ω ∈ Ω:

M =
{
(t, x) ∈ [0, ϑ]× R

n : ∃x∗ ∈ F ∃μ ∈ R(Ω) : x = ϕg(t, ϑ, x∗, μ)
}
;

here Ω is a compact set in a finite-dimensional arithmetic space.
To construct an equivalent game “at moment,” we broaden opportunities of the first player who

creates the control u by introducing two additional controls: ν that takes values 0 or 1, and ω that
takes values in the set Ω. Consider the conflict-controlled system

ẋ = f∗(x, ν, u, ω, v), x ∈ R
n, ν ∈ {0, 1}, u ∈ P, ω ∈ Ω, v ∈ Q, (3)

on the interval [0, ϑ], where

f∗(x, ν, u, ω, v) = ν · f(x, u, v) + (1− ν) · g(t, ω) =
{
f(x, u, v), ν = 0,

g(x, ω), ν = 1.

In the new system (3), the first player disposes of the controls ν, u, and ω whereas the second player,
as in system (1), disposes of the control v.

For system (3), we consider the problem of guidance to the set M∗ � {ϑ} × F .
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Similar methods of transformation of systems were considered earlier in the class of program controls

for transforming problems of guidance to a cylindrical set (see [1, 13]).
Introduce the following notation:

P ∗ = {0, 1} × P × Ω;

if h = fv and u ∈ P , then we denote Sτ
h,u by Fτ

u,v; if h = f∗
v and u∗ = (ν, u, ω) ∈ P ∗, then we denote

Sτ
h,u∗ by F∗ τ

u∗,v. Introduce the notation

Gτ
ω � Sτ

g,ω.

Let (t∗, x∗) ∈ [0, ϑ] × R
n, t ∈ [0, ϑ]; if h = fv and μ ∈ RP , then we denote ϕh(t, t∗, x∗, μ) by

φ(t, t∗, x∗, μ, v). Similarly, in the case where h = f∗
v and μ ∈ RP ∗, we denote ϕ(t, t∗, x∗, μ) by

φ∗(t, t∗, x∗, μ, v). The operator of program absorption for the initial problem is denoted by A, and for
the transformed problem, by A∗. Elements of the sequence constructed by the method of program
iterations for the initial system are denoted by Wk, k ∈ N0; elements of the sequence constructed

by the method of program iterations for the transformed problem are denoted by W ∗
k , k ∈ N0. The

solvability sets for the initial and transformed problems are denoted by W and W∗, respectively.

Theorem. Let M be the controllability set with the objective set M∗ = {ϑ} × F for a control system

g(x, ω). If for all u ∈ P , V ∈ Q, ω ∈ Ω, and τ ′, τ ′′ ≥ 0, the flows Fτ ′
u,v and Gτ ′′

ω commute, i.e.,

Fτ ′
u,v ◦ Gτ ′′

ω = Gτ ′′
ω ◦ Fτ ′

u,v, (4)

then the following assertions hold :

(1) Wk = W ∗
k for all k ∈ N;

(2) the problem of guidance of system (1) to the cylindrical set [0, ϑ]×F is equivalent to the problem
of guidance of system (3) to the set {ϑ} × F ;

(3) if system (1) satisfies the Isaacs condition, then system (3) also satisfies the Isaacs condition.

Note that in the case where f(·, u, v) and g(·, ω) are smooth vector fields, condition (4) can be
expressed through the commutator of vector fields [·, ·]:

[f(·, u, v), g(·, ω)] = 0 ∀u ∈ P, ∀v ∈ Q, ∀ω ∈ Ω.

In particular, if the objective set has the form of a cylinder M = [0, ϑ]×F (such a problem is called a
problem of guidance to the set F “up to a moment”), the choice of g(x, ω) ≡ 0 as an auxiliary control

system reduces the guidance problem to the problem with the objective set {ϑ} × F (the problem of
guidance to the set F “at moment”). This problem was considered in [2, 13].

4. Properties of the Operator of Program Absorption

Let E ⊂ [0, ϑ]× R
n. We say that E does not increase by sections with respect to a control system

g(x, ω), ω ∈ Ω, if for all (t∗, x∗), t ∈ [0, t∗], and σ ∈ RΩ the inclusion

ϕg(t, t∗, x∗, σ) ∈ E[t]

holds.

Lemma 1. If a closed set E ⊂ [0, ϑ] × R
n is such that M ⊂ E and E does not increase by sections

with respect to a control system g(x, ω), ω ∈ Ω, then the set A∗(E) also possesses these properties.

Proof. First, we prove that E does not increase by sections with respect to the control system g(x, ω),

ω ∈ Ω. Let (t∗, x∗) ∈ A∗(E), t ∈ [0, t∗], and σ ∈ RΩ. We prove that

ϕg(t, t∗, x∗, σ) ∈ (A∗(E))[t].
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Since (t∗, x∗) ∈ A∗(E) ⊂ E, we have(
τ, ϕg

(
τ, t∗, x∗, σ

)) ∈ E ∀τ ∈ [t, t∗]. (5)

For any v ∈ Q, there exists a measure μ ∈ RP ∗ such that

φ∗(ξ, t∗, x∗, μ, v) ∈ M [ξ]

for some ξ ∈ [t∗, ϑ], and for all τ ∈ [t∗, ξ], the inclusion

φ∗(τ, t∗, x∗, μ, v) ∈ E[τ ]

holds.
There exists a measure σ̃ ∈ RP ∗ such that∫

[0,ϑ]×P ∗

ψ(t, ω)σ̃(d(t, ν, ω, u)) =

∫

[0,ϑ]×Ω

ψ(t, ω)σ(d(t, ω))

for all ψ ∈ C([0, ϑ]× Ω).

We denote by μ̃ a measure such that∫

[t,ϑ]×P ∗

ψ(t, u∗)μ̃(d(t, u∗)) =
∫

[t,t∗]×P ∗

ψ(t, u∗)σ̃(d(t, u∗)) +
∫

[t∗,ϑ]×P ∗

ψ(t, u∗)μ(d(t, u∗)).

Introduce the notation x̄ = ϕg(t, t∗, x∗, σ). Note that

ϕg(τ, t∗, x∗, σ) = ϕg(τ, t, x̄, σ) = φ∗(τ, t, x̄, σ̃, v) = φ∗(τ, t, x̄, μ̃, v).

Equation (5) and this chain of equalities imply that

φ∗(τ, t, x̄, μ̃, v) ∈ E[τ ] (6)

and

x∗ = ϕg

(
t∗, t, x̄, σ

)
= φ∗(τ, t, x̄, μ̃, v).

This implies that

φ∗(τ, t∗, x∗, μ, v) = φ∗(τ, t∗, x∗, μ̃, v) = φ∗(τ, t, x̄, μ̃, v).
Since (t∗, x∗) ∈ A∗(E), we conclude that

φ∗(ξ, t, x̄, μ̃, v) ∈ M [ξ]

and

φ∗(τ, t, x̄, μ̃, v) ∈ E[τ ]

for all τ ∈ [t∗, ξ]. These inclusions and inclusion (6) imply that (t, x̄) ∈ A∗(E).
Now we prove that M ⊂ A∗(E). Indeed, if M ⊂ E, then the definition of the operator of program

absorption implies that M ⊂ A∗(E).

Now let u∗(·) : [0, ϑ] → P ∗ be a piecewise constant control constructed for the second system. Let
t∗, ξ ∈ [0, ϑ], t∗ ≤ ξ. The semi-interval [t∗, ξ) is the union of semi-intervals [ξi−1, ξi), i = 1, k, such
that on any semi-interval the control u∗(·) is constant and is equal to u∗i . Introduce the notation

τi � ξi − ξi−1. We have

u∗i = (νi, ui, ωi), νi ∈ {0, 1}, ui ∈ P, ωi ∈ Ω.

Introduce the sets

J ′ = {i : νi = 1} = {r1, . . . , rl}, J ′′ = {i : νi = 0}.
Let ξ̂0 = t∗, ξ̂i = ξ̂j + τrj , and

ξ̄ = ξrl . (7)
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We define a piecewise constant control

u(·) : [t∗, ξ̄) → P

as follows:
u(t) = urj , t ∈

[
ξ̂rj−1 , ξ̂rj

)
. (8)

Now let t ∈ [t∗, ξ̄]. Either there exists j such that t ∈ [
ξ̂rj−1, ξ̂rj

)
or t = ξ̄. In the first case, we set

γ(t) � ξrj−1 + t− ξ̂rj−1 ;

in the second case we set γ(t) � ξ̄.
Introduce the notation

J ′′
t =

{
i ∈ J ′′ : ξi < γ(t)

}
= {s1, . . . , sm}.

Lemma 2. There exists a piecewise constant control

ω(·) : [0, ϑ] → Ω,

such that for all t ∈ [t, ξ̄] we have

x∗
(
γ(t), t∗, x∗, u∗(·), v

)
= xg

(
γ(t), t, x

(
t, t∗, x∗, u(·), v

)
, ω(·)

)
.

Proof. We have

x∗
(
γ(t), t∗, x∗, u∗(·), v

)
= F∗ γ(t)−ξrj−1

u∗
sj
,v ◦ . . . ◦ F∗ τi

u∗
i ,v

◦ . . . ◦ F∗ τ1
u∗
1,v

(x∗).

Therefore,

F∗ γ(t)−ξrj−1

u∗
rj
,v = F t−ξ̂rj−1

u∗
rj
,v .

We have
F∗ τi
u∗
i ,v

= Fτi
ui,v

for i ∈ J ′ and
F∗ τi
u∗
i ,v

= Gτi
ωi

for i ∈ J ′′.
Since the flows Fτ ′

u,v and Gτ ′′
ω commute, we obtain

x∗
(
γ(t), t∗, x∗, u∗(·), v

)
= Gτsm

ωm
◦ . . . ◦ Gτs1

ω1 ◦ F t−ξ̂rj−1

u∗
rj
,v ◦ . . . ◦ Fτr1

ur1 ,v
(x∗),

which proves the lemma.

Lemma 3. Let E not increase by sections with respect to the control system g(x, ω), ω ∈ Ω and let
M ⊂ E. Then A(E) = A∗(E).

Proof. First, we prove the inclusion A(E) ⊂ A∗(E). Let (t∗, x∗) ∈ A(E); this means that for all v ∈ Q
there exist μ ∈ RP and ξ ∈ [t∗, ϑ] such that

φ(ξ, t∗, x∗, μ, v) ∈ M [ξ], φ(t, t∗, x∗, μ, v) ∈ E[t]

for all t ∈ [t∗, ξ]. Since M is the controllability set with the objective set {ϑ} × F for the control

system g(x, ω), there exists a measure σ ∈ RΩ such that

ϕg(t, ξ, φ(ξ, t∗, x∗, μ, v), σ, v) ∈ M [t], t ∈ [ξ, ϑ].

By the Riesz theorem, there exist measures μ̂ ∈ RP ∗ and σ̃ ∈ RP ∗ such that∫

[0,ϑ]×P

ψ(t, u)μ(d(t, u)) =

∫

[0,ϑ]×P ∗

ψ(t, u)μ̂(d(t, ν, u, ω))

7



for all ψ ∈ C([0, ϑ]× P ) and∫

[0,ϑ]×Ω

ψ(t, ω)σ(d(t, ω)) =

∫

[0,ϑ]×P ∗

ψ(t, ω)σ̃(d(t, ν, u, ω))

for ψ ∈ C([0, ϑ]× Ω).
We denote by β ∈ RP ∗ a measure such that for any function ψ ∈ C([0, ϑ] × P ∗), the following

relations hold: ∫

[0,ξ]×P ∗

ψ(t, ν, u, ω)β(d(t, ν, u, ω)) =

∫

[0,ξ]×P ∗

ψ(t, ν, u, ω)μ̂(d(t, ν, u, ω)),

∫

[ξ,ϑ]×P ∗

ψ(t, ν, u, ω)β(d(t, ν, u, ω)) =

∫

[ξ,ϑ]×P ∗

ψ(t, ν, u, ω)σ̃(d(t, ν, u, ω)).

We have

φ∗(t, t∗, x∗, β, v) =

{
φ(t, t∗, x∗, μ, v), σ, v), t ∈ [t∗, ξ],
ϕg(t, ξ, φ(ξ, t∗, x∗, μ, v), σ, v), t ∈ [ξ, ϑ].

Since M [t] ⊂ E[t] M [ϑ] = F , we conclude that

(ϑ, φ∗(ϑ, t∗, x∗, β, v) ∈ {ϑ} × F

and for all t ∈ [t∗, ϑ] the inclusion

φ∗(t, t∗, x∗, β, v) ∈ E[t]

holds.
Now we prove the opposite inclusion.

Let (t∗, x∗) ∈ A∗(E) and C > 0 be a number such that for all t1, t2 ∈ [0, ϑ], t2 ≤ t1, x
′, x′′ ∈ G,

and σ ∈ RΩ, the inequality∥∥∥ϕg

(
t2, t1, x

′, σ
) − ϕg

(
t2, t1, x

′′, σ
)∥∥∥ ≤ C‖x′ − x′′‖

holds, where G is the set of positions reachable from the segment [0, ϑ] × {x∗} by the control system
ẋ = f∗(x, ν, u, ω, v), ν ∈ {0, 1}, u ∈ P , ω ∈ Ω, v ∈ Q.

The inclusion (t∗, x∗) ∈ A∗(E) means that for any v ∈ Q, there exists a measure β ∈ RP ∗ such that

φ∗(ϑ, t∗, x∗, β, v) ∈ F

and

φ(t, t∗, x∗, β, v) ∈ E[t]

for all t ∈ [t∗, ϑ]. There exists a sequence of piecewise constant controls for the transformed system

{ζα(·)}∞α=1, ζ
α(·) : [t∗, ϑ] → P ∗, such that

εα � sup
t∈[t∗,ϑ]

∥∥∥x∗(t, t∗, x∗, ζα(·), v) − φ∗(t, t∗, x∗, β, v)
∥∥∥ → 0, α → ∞.

Consider the sequence of controls uα constructed by rule (8), and moments ξα defined by (7). For any

α, the functions γα(·) are defined.
There exists a subsequence {αk} such that ξαk → ξ, μζαk ⇁ μ. We assume that {αk} coincides

with the sequence {α}.
We have γα(ξα) = ϑ for all α ∈ N. Lemma 2 implies that for some control ωα(·) we have

x∗(ϑ, t∗, x∗, ζα(·), v) = xg

(
ϑ, ξ,x

(
ξ, t∗, x∗, uα(·), v

)
, ωα(·)

)
,
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which is equivalent to the equality

x
(
ξ, t∗, x∗, uα(·), v

)
= xg

(
ξ, ϑ, x∗(ϑ, t∗, x∗, ζα(·), v), ωα(·)

)
.

Thus,∥∥∥x(ξα, t∗, x∗, uα(·), v) − xg

(
ξ, ϑ, φ∗(ϑ, t∗, x∗, β, v), ωα(·)

)∥∥∥
≤

∥∥∥xg
(
ξα, ϑ, x∗(ϑ, t∗, x∗, ζα(·), v), ωα(·)

)
− xg

(
ξ, ϑ, φ∗(ϑ, t∗, x∗, β, v), ωα(·)

)∥∥∥ ≤ Cεα.

Since M is the controllability set in {ϑ} × F for the control system g(x, ω), ω ∈ Ω, we have(
ξα, xg

(
ξα, ϑ, φ∗(ϑ, t∗, x∗, β, v), ωα(·))) ∈ M.

Therefore, (
ξ,x(ξ, t∗, x∗, μ, v)

) ∈ M.

Now let t ∈ [t∗, ξ]. For sufficiently large α we have t ≤ ξα and

φ∗(γα(t), t∗, x∗, β, v) ∈ E[γ(t)].

Lemma 2 also implies that for some control ω(·)
x
(
t, t∗, x∗, uα(·), v

)
= xg

(
t, γα(t), x∗(γα(t), t∗, x∗, ζα(·), v), ω(·)

)
.

From this we conclude that∥∥∥x(t, t∗, x∗, uα(·), v) − xg

(
t, γα(t), φ∗(γα(t), t∗, x∗, β, v), ω(·)

)∥∥∥
≤

∥∥∥∥∥xg
(
t, γα(t), x∗(γα(t), t∗, x∗, ζα(·), v), ω(·)

)

− xg

(
t, γα(t), φ∗(γα(t), t∗, x∗, β, v), ω(·)

)∥∥∥∥∥ ≤ Cεα.

Since E does not increase by sections with respect to the control system g(x, ω), ω ∈ Ω,

φ∗(γα(t), t∗, x∗, β, v) ∈ E[γα(t)], xg

(
t, γα(t), φ∗(γα(t), t∗, x∗, β, v), ω(·)

)
∈ E[t].

This implies that

φ(t, t∗, x∗, μ, v) ∈ E[t].

Since v ∈ Q is arbitrary, (t∗, x∗) ∈ A(E). Thus, we have proved that A∗(E) ⊂ A(E).

Proof of the theorem. Proof of item 1 immediately follows from Lemmas 1 and 3 since M ⊂ [0, ϑ]×R
n

and [0, ϑ]× R
n does not increase by sections with respect to g(x, ω), ω ∈ Ω.

Item 2 follows from item 1 and the representation of the solvability set.

Item 3 is proved directly. Obviously,

max
v∈Q

min
(ν,u,ω)∈P ∗

〈
s, f∗(x, ν, u, ω, v)

〉 ≤ min
(ν,u,ω)∈P ∗

max
v∈Q

〈
s, f∗(x, ν, u, ω, v)

〉
.

Prove the inverse inequality. Denote by (u∗, v∗) the saddle point in the small game for the initial
system. Let

min
(ν,u,ω)∈P ∗

max
v∈Q

〈
s, f∗(x, ν, u, ω, v)

〉
= min

u∈P,ω∈Ω
max
v∈Q

〈
s, f∗(x, 1, u, ω, v)

〉
.

In particular, this implies that

max
v∈Q

min
u∈P

〈
s, f(x, u, v)

〉
= min

u∈P
max
v∈Q

〈
s, f(x, u, v)

〉 ≤ min
ω∈Ω

〈
s, g(x, ω)

〉
.
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In this case

min
(ν,u,ω)∈P ∗

max
v∈Q

〈
s, f∗(x, ν, u, ω, v)

〉
= min

u∈P
max
v∈Q

〈
s, f(x, u, v)

〉

= max
v∈Q

min
u∈P

〈
s, f(x, u, v)

〉
= min

u∈P
〈
s, f(x, u, v∗)

〉

= min
{
min
u∈P

〈
s, f(x, u, v∗)

〉
, min

ω∈Ω
〈
s, g(x, ω)

〉}
=

= min
(ν,u,ω)∈P ∗

〈
s, f∗(x, ν, u, ω, v∗)

〉 ≤ max
v∈Q

min
(ν,u,ω)∈P ∗

〈
s, f∗(x, ν, u, ω, v)

〉
.

Now let

min
(ν,u,ω)∈P ∗

max
v∈Q

〈
s, f∗(x, ν, u, ω, v)

〉
= min

u∈P,ω∈Ω
max
v∈Q

〈
s, f∗(x, 0, u, ω, v)

〉
= min

ω∈Ω
〈
s, g(x, ω)

〉
.

Then

min
ω∈Ω

〈
s, g(x, ω)

〉
= min

{
min
ω∈Ω

〈
s, g(x, ω)

〉
, min

u∈P
max
v∈Q

〈
s, f(x, u, v)

〉}

= min
{
min
ω∈Ω

〈
s, g(x, ω)

〉
, min

u∈P
〈
s, f(x, u, v∗)

〉}
= min

(ν,u,ω)∈P ∗

〈
s, f(x, ν, u, ω, v∗)

〉 ≤

≤ max
v∈Q

min
(ν,u,ω)∈P ∗

〈
s, f(x, ν, u, ω, v)

〉
.

The theorem is proved.
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