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Preface

This book deals with mathematical constructions that are foundational in such an
important area ofdatamining aspattern recognition. A closer look is taken at infeasible
systems of linear inequalities, whose generalized solutions act as building blocks of
geometric decision rules for recognition.

Infeasible systems of linear inequalities proved to be a key object in pattern recog-
nition problems described in geometrical terms thanks to the committee method.

Infeasible systemsof inequalities represent an important special subclass of infea-
sible systems of constraints with monotonicity property – systems whose multi-indices
of feasible subsystems form abstract simplicial complexes (independence systems),
fundamental objects of combinatorial topology. In discrete mathematics, the faces of
such complexes are interpreted as zeros of monotone Boolean functions. Chapter 1 of
the book deals with simplicial complexes and monotone Boolean functions related
to common infeasible systems of constraints. The graph-theoretic methods represent
a very productive way to study combinatorial and structural properties of infeasible
systems of constraints. From the applied point of view, the most important property
is the connectedness of a specific graph assigned to a family of maximal feasible sub-
systems. For instance, the set of solutions taken one by one for each of the maximal
feasible subsystems of an infeasible system, which constitute an odd cycle in such a
graph, represents a committee for an infeasible system of linear inequalities over ℝn
formally describing a pattern recognition problem. Thus, graph-theoretic methods
that help us to solve one of the main tasks of committee theory – searching for a
committee with the minimal number of elements can be taken as a basis for efficient
algorithms of constructing decision rules for pattern recognition. The connectedness
of graphs discussed is actually determined by the connectedness of the space ℝn;
moreover, the connectedness of similar graphs in the context of common topological
spaces is also determined by the connectedness of these spaces. The subject matter of
Chapter 2 is (hyper)graphs corresponding to facets of common simplicial complexes
and to maximal feasible subsystems of infeasible systems of linear inequalities.

Equally interesting results are obtained from an analysis of infeasible systems of
linear inequalities by methods of combinatorial geometry. In Chapter 3, the notion of
diagonal of a polytope, which is traditional for plane geometry, is generalized tomulti-
dimensional convex polytopes. A dual correspondence between diagonals and facets
of polytopes, on the one hand, and multi-indices of maximal feasible and minimal
infeasible subsystems of inequalities, on the other hand, is described. This duality is
used, in particular, to obtain different estimates of the number of subsystems.

In Chapter 4, the correspondence between infeasible systems of inequalities and
monotone Boolean functions motivates us to construct algorithms for optimal infer-
ence of functions. Several criteria for optimality of algorithms of inference are consid-
ered, and algorithms satisfying these criteria are constructed.
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In Chapter 5, the algorithmic approach to constructing an optimal committee of
an infeasible system of linear inequalities is considered; it is based on such principal
features of graphs as the connectedness and the existence of odd cycles. A brief review
of alternative covers in the second half of this chapter provides a new look at collective
solutions to infeasible systems of constraints.

The aim of this book is to present a mathematical toolset finding an application to
the construction of pattern recognition complexes that solve the recognition problem
in its geometric setting.

Such complexes of pattern recognition start their work with preprocessing of a
training sample, that is, a massive collection of vectors from a high-dimensional fea-
ture space. Because the vectors of the training sample are preliminarily divided into
groups that partially represent logically uniform classes or categories, they reflect a
certain knowledge domain in the boundaries of which every new unclassified vector
entering into the complexmust be referred to one of the classes. At consecutive stages
of preprocessing, the groups from the training sample are aggregated, with the use
of hierarchical tree-like structures, into two extended groups that partially represent
the corresponding generalized classes. The task of the recognition complex consists
in the search for a geometric object that has a relatively simple formal description
and, at the same time, strictly separates the vectors from distinct extended groups
of the training sample. In the context of the book, the above-mentioned task can be
interpreted, for example, as the search for a separating hyperplane in an Euclidean
feature space. In practice, information contained in almost any training sample leads
to a situation where a unique separating hyperplane cannot be found, because the
linear inequality system underlying the problem of the discrimination of the two ex-
tended groups turns out to be infeasible. By means of some dimensional increase of
the input data, the inequalities become homogeneous; their strictness is motivated
by the stability demands that must be satisfied by the decision rules generated by the
pattern recognition complex. This is how the infeasible system of homogeneous strict
linear inequalities comes to the stage in the contradictory two-class pattern recogni-
tion problem, which has to be solved by the complex. The system as a whole has no
solution, but any of its feasible subsystems can be solved by the software of the recog-
nition complex that implements modern powerful techniques of linear optimization.
The smart committee strategy of the recognition complex consists in the finding of
solutions to a fewmaximal feasible subsystems and in their combining into a commit-
tee decision rule which operates with arrangements of separating hyperplanes. On
the one hand, such a rule always allows the complex to correctly discriminate the vec-
tors from the two extended groups of the training sample and, on the other hand, it
makes it possible to apply the procedure of committee voting to a new vector enter-
ing into the complex; the majority decision rule, governed by the committee, refers
the new vector to a generalized class. The recognition complex implements various
effective techniques for constructing the separating committees, by exploiting spe-
cific properties of the (hyper)graphs of the maximal feasible subsystems of infeasible
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systems of linear inequalities. With the help of these techniques, the complex repeat-
edly solves the two-class pattern recognition problem for each higher level extended
group of vectors from the training sample, adding at every step some committee de-
cision rule to a resulting hierarchical tree-like structure. This structure represents the
machine for recognition of new vectors, and it correctly recognizes any vector of the
training sample.

This edition is the extended translation of the book Combinatorial Geometry and
Graphs in an Analysis of Infeasible Systems and Pattern Recognition published by
Nauka, Moscow, in 2014.

Moscow and Ekaterinburg Damir N. Gainanov
October 2016
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Pattern recognition, infeasible systems of linear
inequalities, and graphs

Full-function complexes of pattern recognition allow a human or technological user
to mine relevant feature data in two main directions that can be considered intercon-
nected, depending on the goals that must be achieved by the complexes.

One direction of data mining in pattern recognition is most often referred to as
unsupervised learning. The complex deals with a massive collection of vectors whose
components represent qualitative or quantitative descriptions of various parameters
that are specific for the problem domain of the user. Although some categorical labels
couldhavepreliminarily beenassigned to those vectors, in order to reflect a knowledge
of the domain, the complex treats the data without using any earlier classifying infor-
mation. Instead, the task consists in an exploratory analysis of the massive amount
of high-dimensional vectors from the feature space, which aims at the elucidation of
the inner structure of the data cloud. Typically, one is interested in how many rela-
tively dense and isolated subclouds, called clusters, can be discovered in the whole
data cloud, and how each of them can be given a concise characterization in working
terms of the problem domain.

Various strong mathematical mechanisms, as well as heuristics, are involved for
preprocessing the input sample of vectors and obtaining a resulting hierarchical pic-
ture of the data cloud. Let usmention just two questions thatmust be answered by the
designers of a complex of pattern recognition. How incomplete ormissing information
on the components of vectors from the feature space should be dealt with? Is there any
possibility to artificially decrease the complexity of the data sample by means of an
information-preserving map of the sample into a derived feature space of much lower
dimension? It is clear that for obtaining concise descriptions of relatively isolated data
subclouds, outermost vectors, say the vectors lying on the boundaries of the convex
hulls of the subclouds, are most relevant; for this reason certain methods of thinning
irrelevant vectors may be provided.

The essential topics in unsupervised learning are the choice ofmetrics that allow
the recognition complex to measure the similarity or distance between vectors and be-
tween clusters of vectors, and the choice of the presentation format for the cluster hi-
erarchy revealed to the user. It is convenient to visualize the hierarchywith the help of
interactively scaled tree-like graphical structures that make it possible to easily reveal
information on the cluster membership and on metric intercluster dissimilarities.

Although the exploratory cluster analysis surely plays an important role in data
mining, the result of unsupervised learning of the recognition complex should con-
sist in the generation of decision rules, which would allow the complex to refer any
new vector of the feature space to a large isolated cluster, thus recognizing the new
vector as a representative of a certain category. Such a recognition rule is based on the
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procedure of comparison of the similarities or distances between the new unclassified
vector and the large isolated clusters.

The aim of this book is to present a mathematical toolset finding an application to
the construction of pattern recognition complexes that solve the recognition problem,
in its geometric setting, in the supervised learning mode.

Such complexes of pattern recognition begin their work with preprocessing of a
training sample, that is, a massive collection of vectors from a high-dimensional fea-
ture space that are preliminarily divided into groups that partially represent logically
uniform classes or categories. These groups reflect a certain knowledge domain in the
boundaries of which every new unclassified vector entering into the complex must be
referred to one of the classes.

The variety of approaches to supervised recognition learning includes such uni-
versally accepted methodologies as nearest-neighbor classifiers, neural networks, and
support vector machines.

At consecutive stages of preprocessing, the groups from the training sample are
aggregated, with the use of hierarchical tree-like structures, into two extended groups
that partially represent the corresponding generalized classes.

Given an odd integer k, a k-nearest-neighbor classifier finds, for a new unclassi-
fied vector from the feature space, its k distinct nearest neighbors from the training
sample; a majority of these neighbors belongs to one of the extended groups and, as
a consequence, that group votes for the referring of the vector to the generalized class
represented by the group. A hierarchically organized procedure of making similar k-
nearest-neighbor decisions, that is applied to each of the extended subgroups of the
training sample, allows the complex to recognize the new vector as a representative
of the class partially described by a group from the training sample.

Dealing with an extended subgroup of vectors from the training sample, which is,
in turn, divided into two subgroups at some stage of a hierarchical learning process,
a neural network represents a collection of interconnected layers of neurons. Neurons
are elementary computational operators that reflect vectors of the feature space to
weighted values of a sigmoid function taken at certain weighted sums of the compo-
nents of those vectors. As the result of supervised training, the neural network com-
bines the responses of individual neurons into a decision, based on a mechanism of
thresholds, which refers a new unclassified vector to some generalized subclass.

A support vectormachine tries to find, at a step of a hierarchically organized proce-
dure, three parallel hyperplanes of the feature space, namely themaximal-margin hy-
perplanewhich separates the vectors of two subgroups from the training sample and,
at the same time, maximizes the distance between two margin hyperplanes contain-
ing the nearest vectors of the training sample that belong to different subgroups. The
quadratic optimization techniqueallows the recognition complex tofind themaximal-
margin hyperplanes (when training subgroups are affinely separable) or to motivate
the search for nonlinear separating surfaces (when the subgroups cannot be sepa-
rated by hyperplanes). The hierarchical collection of the separating hyperplanes and
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surfaces makes it possible to refer new unclassified vectors from the feature space to
some classes partially represented by the vectors of the training sample.

Thus, the task of the recognition complex that implements a supervised learning
methodology often consists in the search for a geometric object that has a relatively
simple formal description and, at the same time, strictly separates the vectors from
distinct extended groups of the training sample.

In the context of the book, the above-mentioned task can be seen as the search
for a separating hyperplane in an Euclidean feature space. In practice, information
contained in almost any training sample leads to a situation where a unique separat-
ing hyperplane cannot be found, because the linear inequality system underlying the
problem of the discrimination of the two extended groups turns out to be infeasible.
Indeed, let B̃ and C̃ be the two extended groups of vectors from the training sample,
processed at some step of the hierarchical supervised learning procedure. These are
just two finite sets of vectors of the feature space ℝn−1. Let us augment every vector
from the sets B̃ and C̃ by a new nth component which is equal to 1.We thus obtain two
sets B, C ⊂ ℝn, for which the recognition complex tries to find a vector x ∈ ℝn such
that {{{

⟨b, x⟩ > 0, b ∈ B ,⟨c, x⟩ < 0, c ∈ C ,
(1)

where ⟨b, x⟩denotes the standard scalar product∑k∈[n] bikxk, and [n] := {1, 2, . . . , n}.
The strictness of these homogeneous inequalities ismotivated by the stability demands
that must be satisfied by the decision rules generated by the pattern recognition com-
plex.

If x is a solution to system (1), then classification of a new vector g ∈ ℝn (i.e., the
referring of g to one of the extended classes partially represented by the sets B and C)
is performed on the basis of the sign of the scalar product ⟨x, g⟩. However, the system
under consideration can turn out to be infeasible, and thismost frequent case requires
the development of special methods of problem-solving.

Even if system (1) as a whole has no solution, any of its feasible subsystems can
be solved by the software of the recognition complex that implements techniques of
linear optimization.

By means of the passage from system (1) to the infeasible system

{{{
⟨b, x⟩ > 0, b ∈ B ,⟨−c, x⟩ > 0, c ∈ C ,

which we will briefly describe here as the system

{⟨a, x⟩ > 0: a ∈ A} , (2)

the recognition complex deals with the mathematical construction that has the prin-
cipal feature: if any subsystem, with two inequalities, of system (2) is feasible, then
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this simple condition guarantees that the recognition complex can involve in its com-
putational arsenal a powerful technique for constructing certain collective solutions to
infeasible system (2), and further use them as the components of hierarchicaldecision
rules for recognition.

Recall that a committee of infeasible system (2) is defined as a finite subset of vec-
torsK ⊂ ℝn satisfying the relation

|{x ∈ K : ⟨a, x⟩ > 0}| > 1
2 |K| ,

for each vector a ∈ A.
Suppose that a committee K of system (2) is found by the recognition complex.

Then an unclassified vector of the feature space ℝn−1, lifted to the working (n − 1)-
dimensional affine subspace of the spaceℝn with the help of the additional nth com-
ponent 1, can be recognized as an element of the classes, partially represented by the
sets B̃ and C̃, according to the result of the majority voting procedure performed by
the members of the committeeK.

The smart committee strategy of the recognition complex consists in the finding of
solutions to a fewmaximal feasible subsystems (MFSs) of system (2), and in their com-
bining into the committee decision rule, which operates with arrangements of sepa-
rating hyperplanes.

A feasible subsystem of infeasible system (2) is called maximal if any additional
inequality from the system turns the resulting collection of inequalities into an infea-
sible subsystem.

If [m] is the set of indices with which the inequalities from infeasible system (2)
are marked, then a multi-index T ⊆ [m] corresponds to the subsystem composed of
the inequalities with the indices from the set T.

If we let Jdenote the family of themulti-indices of allmaximal feasible subsystems
of system (2), then the graph of MFSs of system (2) is defined as the graph with the
vertex set J; an unordered pair {J, J󸀠} ⊂ J is an edge of this graph if and only if the
multi-indices J and J󸀠 cover the index set of system (2), that is, J ∪ J󸀠 = [m].

The high efficiency of supervised learning algorithms implemented by the recog-
nition complex, which uses the graph of MFSs, is explained by the following three
basic facts:
– The graph of MFSs is connected.
– The graph of MFSs is not bipartite.
– The complement [m] − J of the multi-index J ∈ J of any MFS of system (2) is the

multi-index of a feasible subsystem.

Since the graph of MFSs is not bipartite, it contains at least one cycle of odd length.
A fundamental result in the committee theory is formulated as follows: if the

multi-indices of some MFSs represent the vertex set of a cycle of odd length in the
graph of MFSs, then in order to construct a committee, it suffices to take one vector
from the open cone of solutions to each MFS from the vertex set of the cycle.
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Thus, the problem of constructing a committee with a small number of members
can be reduced to the problem of finding a cycle of short odd length in the graph
of MFSs. This derived problem is solved by the software of the recognition complex
with the help of various strong and heuristic methods.

On the one hand, the obtained committee decision rule always allows the recog-
nition complex to correctly discriminate the vectors from the two extended groups of
the training sample and, on the other hand, itmakes it possible to apply the procedure
of committee voting to a new vector entering into the complex; the majority decision
rule, governed by the committee, refers the new vector to a generalized class.

The complex repeatedly solves the two-class pattern recognition problem for each
higher level extended group of vectors from the training sample, adding at every step
some committee decision rule to a resulting hierarchical tree-like structure.

This structure represents the machine for recognition of new vectors, and it cor-
rectly recognizes any vector of the training sample.





1 Infeasible monotone systems of constraints

In discrete mathematics, the following research subjects are of prime importance:
Let S := {s1, s2, . . . , sm} be a finite nonempty system of constraints and [m] :={1, 2, . . . ,m} the set of the indices of constraints with which the elements of the setS
aremarked.Assigning to the set [m] the Boolean lattice𝔹(m) of all its subsets partially
ordered by set-theoretical inclusion, we call an arbitrary element B ∈ 𝔹(m) themulti-
index of the subsystem {si : i ∈ B} of the system S; in many studies the shorter term
index of a subsystem is used. To the relation A ⊆ B of inclusion for the multi-indices
A, B ⊆ [m] corresponds the comparison relation A ⪯ B for the elements A and B in
the lattice 𝔹(m). The set of atoms 𝔹(m)(1) := {{1}, {2}, . . . , {m}} of the lattice 𝔹(m)
is in one-to-one correspondence with the set of constraintsS. The least element 0̂ of
the lattice 𝔹(m) is the multi-index of the empty subsystem 0 of the system S, and the
greatest element 1̂ of the lattice 𝔹(m) is the multi-index [m] of the entire systemS.

Let a map π : 𝔹(m) → 2Γ into the family of subsets of some nonempty set Γ be
given, with the following properties:
– The empty subsystem of the systemS is feasible, that is,

π(0̂) ̸= 0 ; (1.1)

one usually supposes π(0̂) := Γ.
– Each constraint taken independently is realizable or, in other words, each subsys-

tem consisting of one constraint is feasible:

B ∈ 𝔹(m)(1) 󳨐⇒ π(B) ̸= 0 . (1.2)

– Further,
A, B ∈ 𝔹(m), A ⪯ B 󳨐⇒ π(A) ⊇ π(B) , (1.3)

and thus
A, B ∈ 𝔹(m) 󳨐⇒ π(A) ∩ π(B) ⊇ π(A ∨ B) ,

whereA∨B denotes the least upper bound (i.e., the set-unionA∪B) of the elements
A and B in the lattice 𝔹(m).

– One often considers infeasible systemsS such that

π(1̂) = 0 . (1.4)

We will call any system of constraintsS, for which the map π and the range family of
this map associated with S satisfy conditions (1.1)–(1.4), a finite infeasible monotone
system of constraints.
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1.1 Structural and combinatorial properties of infeasible
monotone systems of constraints

In this chapter, we particularly describe some properties of constraint systems, which
are essentially associated with the representativity of sets.

Speaking briefly, the mutual representativity of sets A and B of any kind is related
to the answer to the question on the nonemptiness of their intersection A ∩ B.

The subject of this chapter goes back to the standard problem of combinatorial
optimization: for a nonempty familyA := {A1, . . . , Aα} of nonempty and pairwise dis-
tinct subsets of a finite ground set V(A) := ⋃α

i=1 Ai, to describe, from the structural
and combinatorial points of views, the properties of the pair (A, B(A)), whereB(A)
is the family of all minimal (by inclusion) systems of representatives for A – several
equivalent terms which will be mentioned later are used for naming these construc-
tions; by definition, any set fromB(A) has a nonempty intersection with each set from
the familyA and, under the removal of its arbitrary element, lacks this property.

A subset B ⊆ V(A) satisfying the condition
B ∩ Ai ̸= 0 , ∀ i ∈ [α] , (1.5)

is called a system of representatives, blocking set, transversal, or transversal set of the
family A. From the graph-theoretic point of view, the family A is the family of hyper-
edges of a hypergraph on the set of vertices V(A) and, in this context, the set B with
property (1.5) is called a vertex cover of the hypergraph.

Note that the system of representatives B of A contains as a subset at least one
minimal system of representatives.

If a familyA has the property

Ai ̸⊆ Aj ∀ i, j ∈ [α], i ̸= j ,
(in other words, if the sets from A are pairwise incomparable by inclusion) then the
following terms are used for such a family: a Sperner family, clutter, or antichain. Note
that for anarbitrary familyA, the corresponding familyB(A) is bydefinitiona Sperner
family.

In the theory of combinatorial optimization, the familyB(A) is called the blocker
of the familyA; its sets B ∈ B(A) are called the minimal (by inclusion) blocking sets,
minimal transversals, minimal transversal sets, or minimal systems of representatives
(the last three terms should not be confused with related terms used in an analysis of
systems of distinct representatives, which are irrelevant to the subject of our research).

The question on the systems of representatives of the family A := {A1, . . . , Aα},
with the ground set V(A) = [m], of nonempty pairwise distinct sets can be posed from
several points of views. Recall some of them:
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(a) Functions of logical algebra
The problem on systems of representatives is instructive for elucidation of the basic
principles of the application of Boolean algebra and of the very effective trick of “the
turning elements and sets into propositions.”

The proposition stating that some set B is a system of representatives of a familyA
looks like

( ⋁
x∈A1

“x ∈ B”) ∧ ( ⋁
x∈A2

“x ∈ B”) ∧ ⋅ ⋅ ⋅ ∧ ( ⋁
x∈Aα

“x ∈ B”) = 1 . (1.6)

It is customary to write, for brevity, the character x instead of the proposition
“x ∈ B”; it is thought of as a Boolean variable (whose value is 1 when x belongs to
the set B, and 0 otherwise.) It is yet convenient to write disjunction as sum, and con-
junction as product. Then the proposition “B is a system of representatives of A” of
the form (1.6) can be reformulated as follows:

( ∑
x∈A1

x) ⋅ ( ∑
x∈A2

x) ⋅ ⋅ ⋅ ( ∑
x∈Aα

x) = 1 , (1.7)

and this equation is satisfied by those tuples of the values of Boolean variables
x1, x2, . . . , xm only for which the proposition is true.

In order to find the minimal systems of representatives of A, one transforms the
left-hand side of equation (1.7) into the minimal disjunctive normal form

∏
x∈B1

x + ∏
x∈B2

x + ⋅ ⋅ ⋅ + ∏
x∈Bβ

x = 1 ,
by removingparentheses andusing theabsorption law. Sucha form isunique. The sets
B1, B2, . . . , Bβ ⊆ V(A) are theminimal systems of representatives of the familyA, and
they compose its blockerB(A).
(b) (0, 1)-matrices
One can put in correspondence with a cover A of the set [m] the binary incidence ma-
trix of size α × m whose (i, j)th entry by definition equals to 1 when j ∈ Ai, and to 0
otherwise.

Incidence matrices serve as the main connecting link between combinatorial
problems on the existence and choice, on the one hand, and matrix theory, on the
other.

The width of an incidence matrix is the minimal number of its columns such that
the sum of elements in each row of the submatrix formed by the selected columns is
positive. The width of this matrix coincides with the least quantity among the cardi-
nalities of the representative systems of the familyA.

(c) Transversal sets (vertex covers) of hypergraphs
In graph theory, aswas noticed earlier, the set V(A) and the familyA are interpreted as
ahypergraphon thevertex setV(A), with thehyperedge familyA. If anyhyperedgeof a
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hypergraph is of cardinality r then such a hypergraph is called r-regular. The 2-regular
hypergraphs are called simple graphs without isolated vertices.

The transversal sets of the hypergraph are precisely the systems of representatives
of the hyperedge family A. The minimal cardinality of transversal sets is called the
transversality number of the hypergraph.

The importance of the problems on the transversality number of hypergraphs
comes from the fact that many combinatorial questions can be reformulated in terms
of finding the transversality number of some hypergraph.

(d) Bipartite graphs and binary relations
A simple graph G(V1, V2;E) is called bipartite if its vertex set V1 ∪̇ V2 is a union of
two nonempty disjoint sets (parts or classes) V1 and V2 such that each edge from
the family E is incident to vertices from different classes. If one orients all the edges
ofG(V1, V2;E) in the direction from V1 to V2 then the graphG(V1, V2;E) can be iden-
tified with a binary relation (some subset of the Cartesian product V1 × V2) on the
classes V1 and V2.

Let us put in correspondence with the set family A under consideration the bi-
partite graph G(V(A),A;E) in which, by definition, for all vertices v ∈ V(A) and sets
A ∈ A, the inclusions (v, A) ∈ E are fulfilled if and only if v ∈ A. The systems of rep-
resentatives of the familyA are in one-to-one correspondence with subfamilies of the
edge family E such that the sets of elements from the class A, that are incident with
them, cover this class.

(e) Systems of distinct representatives
This research topic in combinatorial optimization is the last among those wemention,
and it is completely beyond the scope of our consideration. Mathematical construc-
tions related to systems of distinct representatives are bipartite matchings, transversal
matroids, and the permanents of incidence matrices.

A subset B ⊆ V(A) is called a system of distinct representatives of the family A if
there is a bijection ϕ : B → [α] such that for each element b ∈ B the inclusion b ∈
Aϕ(b) ∈ A holds.

It is evident that the family (possibly, empty) of all systems of distinct representa-
tives of A is a subfamily of the family of all systems of representatives of A. Note also
that any system of distinct representatives (if such systems exist) contains as a subset
at least one set from the blockerB(A).

Recall the relationship between the combinatorial properties of two partially or-
dered sets (posets) that arise naturally together with specific partitions of Boolean
lattices. Let 𝔹(m) be the Boolean lattice of rank m ≥ 1, which is again thought of as
the lattice of all subsets of the set [m]. Recall that this lattice represents the power
set 2[m] of the set [m]whose elements (faces) are partially ordered by set-theoretic in-
clusion. As earlier, we denote the least element of the lattice𝔹(m), which is the empty
subset 0 of the set [m], by 0̂. LetV := {V1, V2, . . . , Vγ} ⊆ 𝔹(m)−{0̂} be some nonempty
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family of sets equipped with the ordering induced by the partial order ⪯ on 𝔹(m). We
denote the sets of minimal andmaximal elements of the posetV byminV andmaxV,
respectively. Recall that the order ideal I(V) = I(maxV) of the lattice 𝔹(m) generated
by a set V is defined as the subposet I(V) := {E ∈ 𝔹(m) : ∃V ∈ V, E ⪯ V}.

Let ρ : 𝔹(m) 󳨀→ {0} ∪̇[m] be the rank function on 𝔹(m) that reflects the sub-
sets of [m] to their cardinalities. As earlier, we use the notation 𝔹(m)(1) := {D ∈𝔹(m) : ρ(D) = 1} = {{1}, {2}, . . . , {m}} to denote the layer of atoms of the lattice𝔹(m), that is, the family of one-element subsets of the set [m]. If V is an antichain
or, in other words, if any two elements of the set V are incomparable in 𝔹(m), that
is, V = minV =maxV, then the unordered family of sets

∆ := {F ⊆ [m] : F ∈ I(V)} (1.8)

is called the abstract simplicial complex on the set of vertices⋃V∈V V, with the family
of facetsV. The sets from the complex ∆ are called its faces, and the ideal I(V) is called
the face poset of the complex ∆.

The abstract simplicial complex is a fundamental construction in algebraic and
combinatorial topology, discrete mathematics, and mathematical cybernetics; in
some cases it is called the independence system, and in this context one says on
the independent sets and bases of independence systems instead of the faces and
facets of complexes.

Webuilt complex (1.8) on the basis of an antichain of theBoolean lattice of subsets
of a finite set, and we interpreted the antichain as the facet family. The notion of ab-
stract simplicial complex is often introducedwithout initial addressing to the Boolean
lattices and without using any orderings: LetA be a Sperner family; the abstract sim-
plicial complex on the vertex set V(A), with the facet family A, is defined as the set
family

∆ := {F ⊆ V(A) : ∃A ∈ A, F ⊆ A} . (1.9)

Let us note once again that an arbitrary abstract simplicial complex ∆ is characterized
by the property

G ∈ ∆ , F ⊆ G 󳨐⇒ F ∈ ∆ ;

in particular, 0 ∈ ∆.
Wewill often deal with complexes that are reconstructed from the families of their

facets, and we will use the notation ∆(A) to denote the complex with the given facet
familyA.

Let ∆(A) ⫋ 2[m], that is, A ̸= {1̂}. Consider the complement 2[m] − ∆(A) of the
family ∆(A) up to the power set 2[m]. If B ∈ 2[m] − ∆(A) then B ⊈ A or, equivalently,
B ∩ ([m] − A) ̸= 0 for all facets A ∈ A. In other words, such a set B is a system of
representatives of the family A⊥ := {[m] − A : A ∈ A}. From this point of view, the
blockerB(A⊥) is the setmin(𝔹(m)−I(A)) ofminimal elements of the subposet𝔹(m)−
I(A). In addition, the subposet 𝔹(m) − I(A) corresponding to the family 2[m] − ∆(A)
carries the structure of an order filter of the lattice 𝔹(m).
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Let W ⊆ 𝔹(m). The order filter F(W) = F(min W) generated by W is defined as
the subposet F(W) := {E ∈ 𝔹(m) : ∃W ∈W, E ⪰ W}.

Thus, the family 2[m] − ∆(A) is represented in the lattice 𝔹(m) by the order filter𝔹(m) − I(A) = F(B(A⊥)).
Any antichainA ⊂ 𝔹(m) − {1̂} then induces the partition of the lattice𝔹(m) of the

form 𝔹(m) = I(A) ∪̇ F(B(A⊥)) . (1.10)

Wewill below recall somebasic combinatorial properties of thepair (I(A), F(B(A⊥))).
Let us return to a specific interpretation of the lattice 𝔹(m) mentioned at the be-

ginning of the chapter. Let [m] be the set of indices marking the constraints that form
some infeasible monotone system of constraintsS described by means of (1.1)–(1.4).
The monotonicity property prescribed to the system Smeans that each subsystem of
a feasible subsystem from S is feasible, and each subsystem containing an infeasible
subsystem is also infeasible.

Let I be the family of multi-indices of minimal (by inclusion) infeasible or irre-
ducible infeasible subsystems – IISs, and let J be the family ofmulti-indices ofmaximal
(by inclusion) feasible subsystems – MFSs of the systemS. A key construction associ-
ated with this system is the partition

𝔹(m) = I(J) ∪̇F(I) . (1.11)

Since
I = B(J⊥) , (1.12)

that is, the family of the multi-indices of minimal infeasible subsystems is the blocker
of the family of complements of the multi-indices of maximal feasible subsystems, we
have F(I) = F(B(J⊥)).

We will call a systemS irreducible when⋂J∈J J = 0, and reducible otherwise.
1.2 Abstract simplicial complexes and monotone Boolean

functions

Let A := {A1, A2, . . . , Aα} again be a finite family of finite and pairwise distinct sets.
Recall once again that a set B is called a system of representatives of the family A if
for all i ∈ [α] it holds B ∩ Ai ̸= 0; in the family of the systems of representatives of A
one distinguishes the blockerB(A) of this family, that is, the family of all the minimal
(by inclusion) systems of representatives of A. A set B by definition belongs to the
blockerB(A) if and only if the following conditions are satisfied: (1) B is a system of
representatives of A; (2) for any element b ∈ B there exists an index j ∈ [α] such that(B − {b}) ∩ Aj = 0.

Recall also that a family A is called a Sperner family if for all indices i, j ∈ [α],
i ̸= j, the condition Ai ⊈ Aj is satisfied.
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The following result is a key research tool in discrete mathematics:

Proposition 1.1. IfA is a Sperner family then

B(B(A)) = A .

Note that the main property of blockers recalled in Proposition 1.1 complements ob-
servation (1.12) made with respect to the multi-index families of minimal infeasible
and maximal feasible subsystems of infeasible monotone systems of constraints, by
the dual result

J = B(I)⊥ . (1.13)

If ∆ is an abstract simplicial complex and F ∈ ∆, then the dimension dim(F) of a
face F by definition is less than its cardinality by 1: dim(F) = |F| − 1. The dimension
dim ∆ of the complex ∆ is the quantity max{dim F : F ∈ ∆}. fj(∆) denotes the number
of j-dimensional faces of ∆. One calls the ordered collection of the integers fj(∆) the
f -vector of the complex ∆. By definition, f−1(∆) = 1, and f0(∆) is the number of vertices
of the complex ∆. #∆ denotes the total number of faces of the complex ∆.

If A is some subset of the set [m] then we will denote its complement [m] − A
by A⊥ and, as earlier, for a cover A := {A1, A2, . . . , Aα} of the set [m] = ⋃α

i=1 Ai we
will denote the corresponding family of complements {A1⊥, A2⊥, . . . , Aα⊥} byA⊥.

Considering an abstract simplicial complex ∆(A)with facet familyA, and the cor-
responding order ideal I(A) of the Boolean lattice 𝔹(m), it often turns out to be con-
venient to study the structure of the construction F(B(A⊥))⊥, closely related to the
complement 𝔹(m) − I(A) = F(B(A⊥)), instead of the complement itself; the above-
mentioned construction represents the face poset of the simplicial complex with the
facets that are the complements of the minimal systems of representatives of the fam-
ilyA⊥ up to the set [m]. Thus, a study of the pair (∆(A)2[m] − ∆(A)) is most commonly
substituted by a study of the pair of simplicial complexes

( ∆(A) , ∆(B(A⊥)⊥) ) ; (1.14)

here ∆(B(A⊥)⊥) = (2[m] − ∆(A))⊥.
From the combinatorial topological point of view, the set family ∆(B(A⊥)⊥) is the

complex called the Alexander dual of ∆(A).
When one digresses from the key aspect of the representativity of sets characteriz-

ing the relationship between families (1.14), Alexander duals are traditionally defined
as follows:

If ∆ ⫋ 2[m] is an abstract simplicial complex on the vertex set [m] then the com-
plex ∆∨, the Alexander dual of ∆, is the family

∆∨ := {G⊥ : G ⊆ [m], G ∉ ∆} .
Thus, for a Sperner cover A of the set [m] such that A ̸= {[m]}, we have ∆(A)∨ =

∆(B(A⊥)⊥).
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The following simple observation is related to the basic fact that the number
of rank j elements (or, in the language of combinatorial poset theory, the jth Whit-
ney number of the second kind), which correspond in the Boolean lattice 𝔹(m) to
the j-subsets of the set [m], is the binomial coefficient (mj ) := m!

j!(m−j)! :
Proposition 1.2. Let ∆ ⫋ 2[m] be an abstract simplicial complex on the vertex set [m].
Then for all j, −1 ≤ j ≤ m − 1, it holds fj(∆) + fm−j−2(∆∨) = ( mj+1).
This observation makes it possible to come to several conclusions. In the first state-
ment we use the Kronecker delta δ(s, t) which is equal, by definition, to 1 when s = t,
and to 0 when s ̸= t. The point is that the number of the faces of all dimensions in the
complex ∆∨ determine the dimension of the complex ∆.

Corollary 1.3. Let ∆ ⫋ 2[m] bean abstract simplicial complex on the vertex set [m]. Then
dim(∆) = m − m−1∑

j=−1 δ (fj (∆∨) , ( mj+1)) − 1
= m −max {i ∈ {0} ∪̇[m] : fi−1 (∆∨) = (mi )} − 2 .

The total number of faces in the partition under consideration is equal to the number
of sets in the power set 2[m], namely #∆ + #∆∨ = 2m.

Let us denote the number of all feasible and infeasible subsystems, of cardinal-
ity k, of an infeasiblemonotone systemS by νk and τk, respectively. We have νk +τk =
fk−1(∆(J)) + fm−k−1(∆(I⊥)) = (mk ), for all k ∈ [m], and #∆(J) + #∆(I⊥) = 2m.

Speaking of combinatorial tools of the exact enumeration of the faces of com-
plexes with the known structure of their facet families, it is worth recalling that the
combinatorial inclusion–exclusion principle is formulated, in one of its various forms,
as follows:
– The number Nk(A) of k-subsets of the set [m] containing as a subset at least one

set Ai ∈ A is

Nk(A) = − ∑
j∈[α](−1)j ⋅ ∑T⊆[α] :|T|=j

(m − 󵄨󵄨󵄨󵄨⋃t∈T At
󵄨󵄨󵄨󵄨

m − k ) ; (1.15)

– the number Nk(A⊥) of k-subsets of the set [m] containing as a subset at least one
set Ai

⊥ ∈ A⊥ is

Nk(A⊥) = − ∑
j∈[α](−1)j ⋅ ∑T⊆[α] :|T|=j

(󵄨󵄨󵄨󵄨⋂t∈T At
󵄨󵄨󵄨󵄨

m − k ) ; (1.16)

– the number Rk(A) of k-subsets of the set [m] contained in at least one set A :={A1, A2, . . . , Aα} is
Rk(A) = − ∑

j∈[α](−1)j ⋅ ∑T⊆[α] :|T|=j
(󵄨󵄨󵄨󵄨⋂t∈T At

󵄨󵄨󵄨󵄨
k
) ; (1.17)
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– the number Rk(A⊥) of k-subsets of the set [m] contained in at least one set
Ai

⊥ ∈ A⊥ is

Rk(A⊥) = − ∑
j∈[α](−1)j ⋅ ∑T⊆[α] :|T|=j

(m − 󵄨󵄨󵄨󵄨⋃t∈T At
󵄨󵄨󵄨󵄨

k
) . (1.18)

If the structure of the family J of the multi-indices of maximal feasible subsystems (or
the structure of the family I of the multi-indices of minimal infeasible subsystems)
of the system S is known then the inclusion–exclusion principle allows us to find
the number νk of all feasible subsystems of cardinality k and the number τk of all
infeasible subsystems of cardinality k. Let us make use of relations (1.15) and (1.17),
taking into account that any feasible subsystem is contained in at least one MFS, and
any infeasible subsystem contains at least one IIS. We come to the conclusion:

Proposition 1.4. Let S be a finite infeasible monotone system of constraints, and let I
and J be the families of the multi-indices of its IISs and MFSs, respectively. Let τk and νk
be the numbers of infeasible subsystems and of feasible subsystems, of cardinality k,
respectively. Then

τk = (mk) − νk = − ∑s∈[#I](−1)s ⋅ ∑T⊆[#I] :|T|=s
(m − 󵄨󵄨󵄨󵄨⋃t∈T It󵄨󵄨󵄨󵄨

m − k ) ,
νk = (mk) − τk = − ∑s∈[#J](−1)s ⋅ ∑T⊆[#J] :|T|=s

(󵄨󵄨󵄨󵄨⋂t∈T Jt󵄨󵄨󵄨󵄨
k
) . (1.19)

If the quantities τk and νk are known then Corollary 1.3 allows us to determine for the
systemS the extremal sizes of its IISs and MFSs.

Proposition 1.5. LetS be a finite infeasible monotone system of constraints.
– The cardinality of the smallest IIS is

min
I∈I |I| =

m∑
t=0 δ (νt , (mt ))= max {k ∈ {0} ∪̇[m] : νk = (mk )} + 1 .

– The cardinality of the largest MFS is

max
J∈J |J| = m −

m∑
t=0 δ (τm−t, (mt ))

= m −max {k ∈ {0} ∪̇[m] : τm−k = (mk )} − 1 .
Nowwewill briefly discuss some combinatorial characteristics of hypergraphs, which
are put in correspondence with simple graphs by means of representative systems.

Let H([m],A) be a hypergraph with the vertex set [m] and with the hyperedge
familyA := {A1, A2, . . . , Aα}. As usual,B(A) denotes the blocker of the familyA. For
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what hypergraphs H([m],A) are the corresponding hypergraphs H([m],B(A)) finite
simple graphs? In order to answer this question, we will use the following auxiliary
statement:

Proposition 1.6. If a family A is Sperner then⋂E∈B(A) E = 0 if and only if the family A
contains no one-element sets.

Proof. Let us denote the familyB(A) by E. In view of Proposition 1.1, A = B(E).
The sufficiency: since⋂E∈E E = 0, none of the elements x of⋃A∈A A = ⋃E∈E E is a

system of representatives of E, that is,A contains no one-element sets.
To prove the necessity, suppose to the contrary that ⋂E∈E E =: X ̸= 0. Then any

one-element subset {x} ⊆ X is aminimal systemof representatives ofE, that is, {x} ∈ A,
a contradiction.

Let us determine conditions that must be satisfied by a set family A such that the di-
mension of the complex ∆(B(A)⊥) is less than or equal to a given value or, on the
contrary, the dimension is greater than the value.

According to Corollary 1.3,

dim ∆(B(A)⊥) = m − m−1∑
j=−1 δ (fj (∆(A⊥)) , ( mj+1)) − 1 .

If this dimension should not be greater than k, then the relation

m−1∑
j=−1 δ (fj (∆(A⊥)) , ( mj+1)) ≥ m − k − 1

should hold.
On the other hand, if dim ∆(B(A)⊥) > k, then the relation

m−1∑
j=−1 δ (fj (∆(A⊥)) , ( mj+1)) < m − k − 1

should hold.
Let us sum up this information as a proposition:

Proposition 1.7. If A is a family of nonempty finite and pairwise distinct sets covering
the set [m] then, for a fixed k, the following relations hold:
(1) If for all j, −1 ≤ j ≤ m − k − 3, it holds fj (∆(A⊥)) = ( mj+1) then dim ∆(B(A)⊥) ≤ k. In

particular, if equality holds for all j, −1 ≤ j ≤ m − 4, then the complex ∆(B(A)⊥) is
a simple graph (possibly, with isolated vertices).

(2) If fm−k−3 (∆(A⊥)) < ( mk+2) then dim ∆(B(A)⊥) > k.
Let us return to consider finite infeasiblemonotone systems of constraintsS forwhich
the maps π and the range families 2Γ of these maps, which are put in correspondence
with the systems, satisfy conditions (1.1)–(1.4).
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For combinatorial analysis of systems S, a unique relevant property is perhaps
the emptiness or nonemptiness of the images π(B) of various multi-indices B ∈ 𝔹(m)
of subsystems under the map π. For this reason, the setting of the problem of ana-
lyzing the above-mentioned systems in the language of monotone Boolean functions
is universally accepted; we will return to the question of optimal inference of these
functions in Section 4.1.

Let B denote the two-element set {0, 1}. The unit discrete m-dimensional cube Bm

is equipped with the following relation ≤ of partial ordering: for two binary tuples
α = (α1, α2, . . . , αm) and β = (β1, β2, . . . , βm) one supposes α ≤ β if and only
if αi ≤ βi, for all i ∈ [m]. The Boolean function f : Bm → B is called monotone if
α ≤ β implies f(α) ≤ f(β). Any monotone Boolean function induces the partition Bm =
f−1(0) ∪̇ f−1(1). The set f−1(0) is composed of the so-called zeros of the function f, and
the set f−1(1) is composed of the units of this function. The subset max f−1(0) of the
maximal elements of the subposet f−1(0) is called the set of upper zeros of the func-
tion f; the subsetmin f−1(1) of the minimal elements of the subposet f−1(1) is called
the set of lower units of the function f.

With the system S can be naturally put in correspondence a monotone Boolean
function f, which is defined as follows:

f(α) = 0⇐⇒ π( ⋃{ai}∈𝔹(m)(1) : αi=1{ai}) ̸= 0 ,
f(α) = 1⇐⇒ π( ⋃{ai}∈𝔹(m)(1) : αi=1{ai}) = 0 .

The elements of the set f−1(1) are in one-to-one correspondence with the multi-
indices of infeasible subsystems of the system S: α is a unit of f if and only if the
set ⋃ai∈𝔹(m)(1) :

αi=1 {ai} is the multi-index of an infeasible subsystem of S. In a similar

matter, the elements of the set f−1(0) are in one-to-one correspondence with themulti-
indices of feasible subsystems of the system S: α is a zero of f if and only if the set⋃ai∈𝔹(m)(1) :

αi=1 {ai} is the multi-index of a feasible subsystem of S. Finally, α is a lower

unit of f if and only if⋃ai∈𝔹(m)(1) :
αi=1 {ai} is the multi-index of a minimal infeasible sub-

system of the systemS, and α is an upper zero of f if and only if⋃ai∈𝔹(m)(1) :
αi=1 {ai} is the

multi-index of a maximal feasible subsystem of the systemS.
Various examples of collections (S, Γ, π) satisfying conditions (1.1)–(1.4) are pro-

vided by finite infeasible systems of equations or inequalities, or by mixed systems of
equations and inequalities, over vector spaces.

We will especially be interested in collections (S,ℝn , π), where
S := {⟨ai , x⟩ > 0: ai , x ∈ ℝn , ‖a i‖ = 1, i ∈ [m]} (1.20)

is a finite infeasible system, of rank n, of homogeneous strict linear inequalities over
the finite dimensional space ℝn. ⟨ai , x⟩ := ∑k∈[n] aikxk denotes here the standard
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scalar product; ‖ai‖ := √⟨ai , ai⟩ is the Euclidean norm of the vector ai. The map π
by definition assigns to the multi-index T ∈ 𝔹(m) the open cone of solutions to the
subsystem {⟨at , x⟩ > 0: t ∈ T} as follows:

π(T) : = ⋂
t∈T{x ∈ ℝn : ⟨at , x⟩ > 0} ,

π(0̂) : = ℝn . (1.21)

The map π defined by (1.21) induces the partition

𝔹(m) = {T ∈ 𝔹(m) : π(T) = 0} ∪̇{T ∈ 𝔹(m) : π(T) ̸= 0}
or, in other words, a partition of the form (1.11) of the lattice 𝔹(m) into the ideal I(J)
and filter F(I) generated by the families of the multi-indices of maximal feasible sub-
systems and of minimal infeasible subsystems, respectively.

Notes

Infeasible systems of constraints are an integral part of the studies in discrete mathe-
matics andmathematical cybernetics [96]; among awide variety of constructionswith
the monotonicity property, the most close to the material of the present research are
infeasible systems of linear inequalities [39–43, 96].

One can become familiar with basic problems of combinatorial optimization in
works [13, 33, 63, 80, 81, 115]. Partially ordered sets and, in particular, Boolean lattices
are thoroughly studied in [3, 12, 62, 85, 105, 134].

Mentioning the problem on representative systems in the context of logical func-
tions, we follow [166].

One can become familiarwith the studies of (0, 1)-matrices in works [111, 112, 123,
138, 139]. We give a short description of the link of the problem on covers with (0, 1)-
matrices, following [137].

We speak of transversal sets of hypergraphs, following [104]. See, for example, [3]
on bipartite graphs and binary relations.

A thorough review of works devoted to the transversality number of hypergraphs
is given in [46]. One can become familiar with the studies of systems of distinct rep-
resentatives in works [102, 103]. Matching theory is presented in [87]. Information on
transversal matroids can be found in [3, 13]. See also [5, 7, 13, 122, 135] on the men-
tioned and related questions. A survey of the studies of permanents is given in [106];
the connection between permanents and systems of distinct representatives is dis-
cussed in [122].

The fundamental statement from Proposition 1.1 was proved in [36, 82, 83].
Abstract simplicial complexes are described in detail in [25, 116, 121, 132, 133].
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Books [86, 90, 110, 155] aredevoted toBoolean functions.MinimizationofBoolean
functions in the class of disjunctive normal forms is discussed inmanyworks, see [10,
125, 151, 154, 160–162]; a review of this research can be found in [113, 127].

See [3, 9, 72, 122, 134] on the combinatorial inclusion–exclusion principle.
The literature of (hyper)graph theory is enormous, we mention here just a few

books: [13, 28, 32, 67, 104, 136, 147, 156, 166].
The setting of the problem of analyzing infeasible systems in the language of

monotone Boolean functions is universally accepted after the appearance of seminal
work [159].



2 Complexes, (hyper)graphs, and inequality systems

In many problems of combinatorial optimization, it is necessary to distinguish in an
abstract simplicial complex its facet or a collection of facets with some properties,
say of maximal dimension. Recall that in our study complexes often serve as combi-
natorial models of (in)feasible monotone systems of constraints – the multi-indices
(or the constructions marked with them) of feasible subsystems represent the faces
of complexes. Thus, a complex with a unique facet corresponds to a feasible system,
and a complex with several facets emulates an infeasible system. In this context, it
is interesting to investigate the structural properties of the facet family of a complex
and, in particular, to investigate a specific graph associated with the facet family; this
graph describes the covers of the vertex set by facet pairs. For this construction, one
traditionally uses the term graph of an independence system.

The hypergraph of an independence system arises when considering the covers of
the vertex set of a complex by arbitrary subfamilies of facets.

In the algorithmic context, those situations are of interest where the graphs of
independence systems are connected because the connectedness of such graphs can
be efficiently used for constructing algorithms of determining facet families.

In this chapter, sufficient conditions of the connectedness of graphs provided by
specific classes of complexes are discussed. Special attention will be paid to the study
of the graph of maximal feasible subsystems (graph of MFSs) of a finite infeasible sys-
tem of linear inequalities. In Section 5.1, the connectedness of this graph will serve
as the basis of algorithms of designing decision rules in applied problems of pattern
recognition.

2.1 The graph of an independence system

In this section, we will use the notation (V, ∆) to denote the abstract simplicial com-
plex ∆, with the facet familymax ∆, on the vertex set V := ⋃H∈max ∆ H.

The term graph of an independence system ISG(V, ∆) is used to refer to a simple
graph defined as follows:
– the vertex set of the graph ISG(V, ∆) is the facet familymax ∆;
– the edge family of the graph ISG(V, ∆) is the family of all the unordered pairs of

facets {H, H󸀠} ⊆max ∆ that cover the vertex set:

H ∪ H󸀠 = V .

Let us denote by 󳨀󳨀→ISG(V, ∆) the oriented graph of the independence system, with
the vertex set max ∆, and with the arc family E⃗, which is obtained from the graph(max ∆, E) := ISG(V, ∆) by an assignment of a direction to each edge of the family E.
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Given two complexes (V, ∆) and (V󸀠, ∆󸀠), a map φ : V → V󸀠 between their vertex
sets is called a homomorphism (or a simplicial map) if the image φ(F) of each face
F ∈ ∆ is a face of ∆󸀠, that is, φ(F) ∈ ∆󸀠. If there exists a bijective homomorphism
i : V → V󸀠 such that the inverse map i−1 : V󸀠 → V is also a homomorphism then the
complexes (V, ∆) and (V󸀠, ∆󸀠) are said to be isomorphic, and in this case the map i is
called an isomorphism. If the complexes (V, ∆) and (V󸀠 , ∆󸀠) are isomorphic then we
will write (V, ∆) ≃ (V󸀠 , ∆󸀠) for mentioning this property.

Since the simple graphs are abstract simplicial complexes, the same definitions
are relevant to them: amapφ from the vertex set of a simple graphG into the vertex set
of another simple graphG󸀠 is called a homomorphism if the images of the end vertices
of any edge of the graph G under the map φ are either the end vertices of an edge
of the graph G󸀠 or these images coincide. A homomorphism i of G to G󸀠 is called an
isomorphism if it is one-to-one and if the inverse map i−1 is also a homomorphism; if
these conditions are satisfied then the graphs G and G󸀠 are called isomorphic.

Isomorphic complexes (V, ∆) and (V󸀠 , ∆󸀠) are evidently assigned isomorphic
graphs ISG(V, ∆) and ISG(V󸀠, ∆󸀠).
Proposition 2.1. If there exists a surjective homomorphism φ : V → V󸀠 of a complex(V, ∆) to a complex (V󸀠, ∆󸀠), then there exists a homomorphism of the graph ISG(V, ∆)
to the graph ISG(V󸀠 , ∆󸀠).
Proof. If the complex (V, ∆) is the power set 2V of the set V, then the corresponding
graph of the independence system ISG(V, ∆) is the isolated vertex {V}, and the com-
plex (V󸀠 , ∆󸀠) represents the power set 2V 󸀠 because φ(V) = V󸀠 ∈ ∆󸀠, and thus the graph
ISG(V󸀠 , ∆󸀠) is the isolated vertex {V󸀠}; in this case the map {V} 󳨃→ {V󸀠} is the unique
homomorphism ISG(V, ∆) → ISG(V󸀠 , ∆󸀠).

Assume that (V, ∆) is not the power set 2V , that is, the vertex set of the graph
ISG(V, ∆) is not a singleton. For each facet H ∈ max ∆, pick an arbitrary facet γ(H) ∈
max ∆󸀠 of the complex ∆󸀠 such that γ(H) ⊇ φ(H), having thus defined some map
γ : max ∆ → max ∆󸀠 between the facet families of the complexes under considera-
tion.
– If the graph ISG(V, ∆) is edgeless then the map γ is its homomorphism to the

graph ISG(V󸀠 , ∆󸀠).
– If the graph ISG(V, ∆) is not edgeless then for each of its edge {H1, H2} we

have γ(H1) ∪ γ(H2) ⊇ φ(H1) ∪ φ(H2) = φ(H1 ∪ H2) = φ(V) = V󸀠; this means

γ(H1) ∪ γ(H2) = V󸀠 ,
that is,
– either γ(H1) = γ(H2), the complex ∆󸀠 is the power set 2V 󸀠 of the set V󸀠, and

the graph ISG(V󸀠, ∆󸀠) represents the isolated vertex {V󸀠},
– or {γ(H1), γ(H2)} is an edgeof thegraphISG(V󸀠 , ∆󸀠) corresponding to the com-

plex (V󸀠 , ∆󸀠) which is not the power set 2V 󸀠 ;
therefore, the map γ is a homomorphism from ISG(V, ∆) to ISG(V󸀠 , ∆󸀠).
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Let us now address the question on the representation of an arbitrary graph as the
graph of an independence system.

Proposition 2.2. Any finite simple graph G is isomorphic to the graph of some indepen-
dence system.

Proof. If the graph G represents an isolated vertex then it is isomorphic to the graph
of the independence system (V, 2V ), for any nonempty set V.

Let G := (V, E) be the graph with vertex set V, |V| > 1, and edge family E, which is
the complement of the graph G. Let us consider the common collection A := V ∪ E of
vertices and edges, which is the family of nonempty faces of the complex G, and de-
note by Av the set A after the removal of the vertex v and all the edges that are incident
with v (the end vertices of thementioned edges, different from v, are not removed). For
any two distinct vertices v and u of the graph G, the sets Av and Au are incomparable
by inclusion because v ∈ Au − Av and u ∈ Av − Au; in other words, {Av : v ∈ V} is a
Sperner family.

Let us define an independence system (A, ∆) on the vertex set A as follows: some
collection F ⊆ A of vertices and edges of the graph G is a face of the complex (A, ∆),
F ∈ ∆, if and only if there is a vertex w ∈ V for which F ⊆ Aw; that is, (A, ∆) is the
complex with the facet familymax ∆ = {Av : v ∈ V}, and #max ∆ = |V|. Two distinct
facets Au and Av of the complex (A, ∆) cover the set A if and only if the pair {u, v}
is not an edge of the graph G, {u, v} ̸∈ E. Thus, the map V → max ∆, v 󳨃→ Av, is an
isomorphismof thegraphGonto thegraphof the independence systemISG(A, ∆).
Corollary 2.3. Any finite simple graph G = (V, E) with vertex set V and edge family E is
the graph of an independence system ISG(A, ∆) associated with a complex (A, ∆) and,
besides, 2|A| ≤ |V|2 + |V| − 2#E.
Let us determine the following partial order relation on the family of ordered pairs of
subsets of a finite nonempty set V: (V1, V2) ⪯ (V󸀠

1, V
󸀠
2)when V1 ⊆ V󸀠

1 and V2 ⊆ V󸀠
2, or

V1 ⊆ V󸀠
2 and V2 ⊆ V󸀠

1.
We will use the following auxiliary statement whose proof is given on page 25, it

follows the proof of Proposition 2.5:

Proposition 2.4. Let (V, ∆) be a complex such that for the corresponding graph of the
independence system (max ∆, E) := ISG(V, ∆) one has #E > 1. If there exists a partition
of the edge family E = C ∪̇D into nonempty subfamilies C and D such that none of the
edges fromC is adjacent to an edge fromD, then there do not exist edges c⃗ ∈ C⃗and d⃗ ∈ D⃗
of the oriented graph (max ∆, E⃗) := 󳨀󳨀→ISG(V, ∆) and nonempty vertex subsets V1, V2 ⊆ V
for which V1 ∪ V2 = V and c⃗ ⪰ (V1, V2) ⪯ d⃗.
Let some finite nonempty multifamily V := {vi := (Xi , X󸀠

i ) : i ∈ [m]} of the ordered
pairs of subsets of a nonempty set X be given. Define for thismultifamily the operation
of intersection of subset pairs: (Xi1 , X󸀠

i1) ∩ (Xi2 , X󸀠
i2) := (Xi1 ∩ Xi2 , X󸀠

i1 ∩ X󸀠
i2).
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Let us consider a complex (V, ∆∩) for which, by definition
F ∈ ∆∩ ⇐⇒ ⋂

v∈F v ̸= (0, 0) . (2.1)

We now turn to the graphs of independence systems whose connectedness is in-
duced by the connectedness of topological spaces.

Proposition 2.5. Let V be some finitemultifamily of ordered pairs vi := (Z i , Z󸀠
i ), i ∈ [m],

of closed subsets Z i ⊂ Z and Z󸀠
i ⊂ Z of a connected topological space Z, that cover the

space: Z i ∪ Z󸀠
i = Z.

If #max ∆∩ > 1 then the graph of the independence system ISG(V, ∆∩) is connected.
Proof. Let us first show that the graph (max ∆∩ , E) := ISG(V, ∆∩) has no isolated
vertices. Let H ∈ max ∆∩ be an arbitrary facet of the complex under consideration.
Since H ∈ ∆∩, we have (A, A󸀠) := ⋂v∈H v ̸= (0, 0), by convention (2.1). Specifically,
let us suppose A ̸= 0. Fix some element a ∈ A. It follows from the maximality of H
that for any pair (Z i , Z󸀠

i ) ∈ V − H, we have a ̸∈ Z i and, because of Z i ∪ Z󸀠
i = Z, the

inclusion a ∈ Z󸀠
i holds, that is, V − H ∈ ∆∩. Thus, there exists a facet H󸀠 ∈ max ∆∩,

H󸀠 ⊇ V − H, such that H ∪ H󸀠 = V, that is, the vertex H is not an isolated vertex of the
graph ISG(V, ∆∩). If #max ∆∩ = 2, then the proposition is proved.

Suppose that #max ∆∩ > 2 and, as a consequence, #E > 1.
We will use the oriented graph (max ∆∩ , E⃗) := 󳨀󳨀→ISG(V, ∆∩) of the independence

system (V, ∆∩), with the vertex setmax ∆∩ and the edge family E⃗ that represents the
pairs, ordered in an arbitraryway, of end vertices of the edges of the graph ISG(V, ∆∩).

Let us assign to an arbitrary element z ∈ Z faces Fz ⊂ V and F󸀠z ⊂ V of the com-
plex ∆∩, defined as follows: Fz := {(Z i , Z󸀠

i) ∈ V : z ∈ Z i} and F󸀠z := {(Z i , Z󸀠
i ) ∈ V:

z ∈ Z󸀠
i}; note that they form a cover Fz ∪ F󸀠z of the vertex set V of the complex ∆∩.

Thus, for an element z ∈ Z there is an arc e⃗ := (H, H󸀠) ∈ E⃗ for which

Fz ⊆ H ∈ max ∆∩ and F󸀠z ⊆ H󸀠 ∈max ∆∩
or

Fz ⊆ H󸀠 ∈ max ∆∩ and F󸀠z ⊆ H ∈ max ∆∩ ,
that is, (Fz , F󸀠z) ⪯ e⃗ . (2.2)

Assume that the graph ISG(V, ∆∩), with no isolated vertices, is disconnected, that is,
there exists a partition E = C ∪̇D of its edge family into nonempty subfamilies C and
D such that none of the edges from C is adjacent to an edge fromD.

In the space Z, distinguish its subsets

Y := {z ∈ Z : ∃c⃗ ∈ C⃗, (Fz , F󸀠z) ⪯ c⃗} ,
Y󸀠 := {z ∈ Z : ∃d⃗ ∈ D⃗, (Fz , F󸀠z) ⪯ d⃗} .
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Since E = C ∪̇D, it follows from (2.2) that

Y ∪ Y󸀠 = Z . (2.3)

Further,wehaveY∩Y󸀠 = 0because, in the contrary case, for any x ∈ Y∩Y󸀠 therewould
exist arcs c⃗ ∈ C⃗ and d⃗ ∈ D⃗ such that c⃗ ⪰ (Fx , F󸀠x) ⪯ d⃗, a contradiction with Proposi-
tion 2.4.

For any subset U ⊆ V of the vertex set of the complex ∆∩, define subsets
T(U) := ⋂

Zi⊆Z :(Zi ,Z󸀠
i )∈U

Z i and T󸀠(U) := ⋂
Z󸀠
i⊆Z :(Zi ,Z󸀠

i )∈U
Z󸀠
i

of the space Z, with T(0) = T󸀠(0) := Z. Let us show that

Y = ⋃
x∈Y(T(Fx) ∩ T󸀠(F󸀠x)) . (2.4)

For this, it suffices to show that

T(Fx) ∩ T󸀠(F󸀠x) ⊆ Y , (2.5)

for any element x ∈ Y.
Assume that inclusion (2.5) does not hold for some element a ∈ Y . Then there

exists an element b ∈ Y 󸀠 ∩ T(Fa) ∩ T󸀠(F󸀠a). As a consequence, there exist arcs c⃗ ∈ C⃗

and d⃗ ∈ D⃗ such that d⃗ ⪰ (Fb , F󸀠b) ⪰ (Fa , F󸀠a) ⪯ c⃗, a contradiction with Proposition 2.4.
Thus, relations (2.4) and (2.5) hold. It follows from the closedness of T(U) and T󸀠(U),
for U ⊆ V, and from the finiteness of V, taking into account (2.4), that Y is also closed.
Let us show that Y ̸= 0. Let c⃗ := (H1, H2) ∈ C⃗ ̸= 0. We have (A, A󸀠) := ⋂v∈H1

v ̸= (0, 0).
Specifically, suppose A ̸= 0 and pick some element x ∈ A. Then

Fx = H1 . (2.6)

It follows from the maximality of H1 that for (Z i , Z󸀠
i) ∈ V − H1 we have x ∈ Z󸀠

i , that is,

F󸀠x ⊇ V − H1 . (2.7)

Relations (2.6) and (2.7) imply

(Fx , F󸀠x) ⪰ (H1, V − H1) . (2.8)

Assume that Y = 0. Since Y ∪ Y 󸀠 = Z, we have x ∈ Y󸀠. It follows from the definition
of the set Y󸀠 that there exists an arc d⃗ ∈ D⃗ such that (Fx , F󸀠x) ⪯ d⃗. Then, taking into
account (2.8), we obtain

C⃗ ∋ c⃗ := (H1, H2) ⪰ (H1, V − H1) ⪯ (Fx , F󸀠x) ⪯ d⃗ ∈ D⃗ ,

a contradiction with Proposition 2.4. Thus, Y ̸= 0.
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It can be proved analogously that the set Y 󸀠 is nonempty and closed. Thus, we
have partitioned the connected space Z into two nonempty disjoint closed subsets Y
and Y󸀠 – such a contradiction proves the weak connectedness of the oriented graph of
the independence system 󳨀󳨀→ISG(V, ∆∩) and, as a consequence, the connectedness of the
underlying undirected graph ISG(V, ∆∩), thus completing the proof.

Proof of Proposition 2.4. Assume the converse: let there exist arcs ⃗c = (C1, C2) ∈ C⃗,
d⃗ = (D1, D2) ∈ D⃗ of the graph 󳨀󳨀→ISG(V, ∆), and nonempty subsets V1, V2 ⊆ V such
that V1 ∪ V2 = V and c⃗ ⪰ (V1, V2) ⪯ d⃗. Without loss of generality, we will suppose
that C1 ⊇ V1, C2 ⊇ V2, and V1 ⊆ D1, V2 ⊆ D2. Since V1 and V2 cover the set V
then moreover C1 ∪ D2 = V and thus e := {C1, D2} ∈ E. Specifically, suppose e ∈ C.
Then e ∩ d = {D2}, that is, the edges e ∈ C and d ∈ D of the graph ISG(V, ∆) are
adjacent, a contradiction.

Let F(Z) := {fi : i ∈ [m]}, m > 1, be a finite system of real continuous func-
tions fi : Z → ℝ over a connected topological space Z. Let us consider three classes of
complexes ∆≥, ∆̄ and ∆>, on the vertex set F(Z), defined via their nonempty faces F as
follows:
– F ∈ (F(Z), ∆≥) if and only if

⋂
f∈F{(αf , z) ∈ (ℝ − {0}) × Z : αf f(z) ≥ 0} ̸= 0

or, equivalently, the inequality system {αFf(z) ≥ 0: f ∈ F} is feasible for some
factor α⋆F ∈ ℝ − {0};

– F ∈ (F(Z), ∆̄) if and only if ⋂f∈F(C>(f), C<(f)) ̸= (0, 0), where C>(f) and C<(f) de-
note the closures of the sets

C>(f) := {z ∈ Z : f(z) > 0} and C<(f) := {z ∈ Z : f(z) < 0} ,
respectively;

– F ∈ (F(Z), ∆>) if and only if
⋂
f∈F{(αf , z) ∈ ℝ × Z : αf f(z) > 0} ̸= 0

or, equivalently, the inequality system {αFf(z) > 0: f ∈ F} is feasible for some
factor α⋆F ∈ ℝ.

Remark 2.6. If F is a nonempty face of the complex ∆≥ on the vertex set F(Z), and F󸀠 is
a face of this complex such that F󸀠 ⊇ F (if in particular F󸀠 is a facet containing F), that is,
the subsystem {αF󸀠 f(z) ≥ 0: f ∈ F󸀠} of the (in)feasible system {αF(Z)f(z) ≥ 0: f ∈ F(Z)}
is feasible for some factor α⋆F󸀠 , then the system

{αFf(z) ≥ 0: f ∈ F}
is also feasible when αF = α⋆F󸀠; an analogous observation is true for the faces F of the
complex ∆>.
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Let us comment on the definitions of the complexes ∆≥ and ∆> by the example of the
complex ∆≥ and an infeasible system of inequalities

{f(z) ≥ 0: f ∈ F(Z)} . (2.9)

Let Γ be a complex whose faces are the feasible subsystems of system (2.9); in other
words, if the inequality system {αFf(z) ≥ 0: f ∈ F} is feasible for the factor α⋆F := 1
then F ∈ Γ. If H ∈ 2F(Z) − Γ is an infeasible subsystem of system (2.9) then H ∈ ∆≥ − Γ if
and only if the inequality system {αHh(z) ≥ 0: h ∈ H} is feasible for some factor α⋆H ∈ℝ − {0, 1}. If G ⊆ H, G ̸= 0, then, according to Remark 2.6, the subset G is a face of the
complex ∆≥ because the system {α⋆Hg(z) ≥ 0: g ∈ G} is feasible. Thus,

∆≥ = Γ ∪ ∆(max (∆≥ − Γ)) .
For a nonempty face F of the complex ∆≥, denote by A⋆

F the set of all the nonzero
real factors α⋆F for which the inequality system {αFf(z) ≥ 0: f ∈ F} is feasible.
If H(F) := {H ∈ max ∆≥ : H ⊇ F} is the subfamily of facets of ∆≥ that contain the
face F, then the inequality system {αFf(z) ≥ 0: f ∈ F} turns out to be feasible for any
factor

α⋆F ∈ ⋂
H∈H(F)A

⋆
H ⊆ ⋃

H∈H(F)A
⋆
H ⊆ A⋆

F .

We proceed by investigating the connectedness of the graphs of independence
systems that correspond to the complexes of the three above-defined classes.

Proposition 2.7. If #max ∆≥ > 1 then the graph of the independence system
ISG(F(Z), ∆≥) is connected.
Proof. Let us consider a multifamily V := {(C≥(f), C≤(f)) : f ∈ F(Z)} of ordered pairs
whose sets C≥(f) and C≤(f) are defined as follows:

C≥(f) := {z ∈ Z : f(z) ≥ 0} and C≤(f) := {z ∈ Z : f(z) ≤ 0} .
The definition of the complex (F(Z), ∆≥) and definition (2.1) of the complex (V, ∆∩)
imply that they are isomorphic, (F(Z), ∆≥) ≃ (V, ∆∩); an isomorphism is provided by
the map F(Z) → V, f 󳨃→ (C≥(f), C≤(f)). Since the set V satisfies the conditions of
Proposition 2.5, the graph of the independence system ISG(V, ∆∩) is connected and,
as a consequence, the graph of the independence system ISG(F(Z), ∆≥), isomorphic
to the graph ISG(V, ∆∩), is also connected.
IfX is a subset of the space Z thenwewill use thenotationFr(X) to denote its boundary
in Z.

Proposition 2.8. If #max ∆̄ > 1 and the set f−1(0) is nowhere dense for each function
f ∈ F(Z), then the graph of the independence system ISG(F(Z), ∆̄) is connected.
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Proof. The multifamily V := {(C>(f), C<(f)) : f ∈ F(Z)} satisfies the conditions of
Proposition 2.5: indeed, C>(f) ∪ C<(f) = Z, for each continuous function f ∈ F(Z) be-
cause f−1(0) ⊆ Fr(C>(f)) ∪ Fr(C<(f)) and the preimage f−1(0) is by condition nowhere
dense in Z. The map F(Z) → V, f 󳨃→ (C>(f), C<(f)), is an isomorphism of the com-
plexes (F(Z), ∆̄) and (V, ∆∩); according to Proposition 2.5, the graph of the indepen-
dence system ISG(V, ∆∩) is connected and thus the isomorphic graph ISG(F(Z), ∆̄) is
also connected.

Proposition 2.9. Let F(Z) be a system of continuous functions, together with the corre-
sponding complex (F(Z), ∆>), such that #max ∆> > 1. If the sets f−1(0) are nowhere
dense for each function f ∈ F(Z), then for each facet H ∈max ∆> the inequality system

{{{
αf(z) > 0 , if f ∈ H ,−αf(z) > 0 , if f ∈ F(Z) − H ,

(2.10)

where α ∈ ℝ − {0}, is feasible.
Proof. By the hypothesis of the proposition, the system

{αf(z) > 0: f ∈ H} (2.11)

is feasible; its nonempty set of solutions S ⊂ Z is open. The maximality of H implies
that for each function f ∈ F(Z) − H and for any point z ∈ S it holds

αf(z) ≤ 0 . (2.12)

Since the preimage f−1(0) is nowhere dense for any function f ∈ F(Z), it follows
from (2.12) that the constraint system

{−αg(z) > 0: z ∈ S} (2.13)

is feasible for each function g ∈ F(Z)−H and, besides, its solutions represent an open
subset of the solution set S to system (2.11) – denote it by Sg; thus, Sg is the solution
set to the feasible system {{{

αf(z) > 0 , f ∈ H ,
α(−g(z)) > 0 .

Without loss of generality we will suppose that F(Z)−H = {f1, f2, . . . , fk}. If k = 1
then F(Z) − H = {g}, and the proposition is proved. If k > 1 then let us consider each
function g ∈ {f2, f3, . . . , fk} one by one. Repeating the above argument, we see that
for each index i, 2 ≤ i ≤ k, the subsystem

{{{
αf(z) > 0 , f ∈ H∪̇{f1, . . . , fi−1} ,
α(−fi(z)) > 0

is feasible. As a consequence, the initial system (2.10) is also feasible.
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Corollary 2.10. Under the hypothesis of Proposition 2.9,
(i) H ∈ max ∆> 󳨐⇒ F(Z) − H ∈ ∆>,
(ii) the graph of the independence system ISG(F(Z), ∆>) has no isolated vertices.
Proposition 2.11. Suppose that #max ∆> > 1. If for the system F(Z) the sets h−1(0) are
nowhere dense for all functions h ∈ F(Z), and the condition

f, g ∈ F(Z) , f ̸= g 󳨐⇒ f−1(0) ∩ g−1(0) = 0 (2.14)

is satisfied, then the graph of the independence system ISG(F(Z), ∆>) is connected.
Proof. Recall that, according to Proposition 2.8, the graph of the independence system
ISG(F(Z), ∆̄) is connected. Let us show that ∆> = ∆̄.

The inclusion ∆> ⊆ ∆̄ holds: indeed, let F be a nonempty face of the complex ∆>,
that is, for some real factor α⋆F the inequality system {α⋆Ff(z) > 0: f ∈ F} is feasible.
Then⋂f∈F C>(f) ̸= 0 and thus F ∈ ∆̄.

Let us prove the reverse inclusion ∆> ⊇ ∆̄. Let F ∈ ∆̄, that is,⋂f∈F(C>(f), C<(f)) ̸=(0, 0). Specifically, suppose that⋂f∈F C>(f) ̸= 0.
Since C>(f) = C>(f)∪̇Fr(C>(f)) and each function f is by condition continuous, the

inclusion Fr(C>(f)) ⊆ f−1(0) holds.
Taking into account condition (2.14), we have

⋂
f∈FC>(f) = ⋂

f∈F(C>(f)∪̇Fr(C>(f)))
= (⋂

f∈FC>(f)) ∪ ⋃
f∈F(Fr(C>(f)) ∩ ⋂

g∈F : g≠f C>(g)) ̸= 0 . (2.15)

If the intersection⋂f∈F C>(f) in expression (2.15) is nonempty then F ∈ ∆>.
If there exists a function f ∈ F such that

Fr(C>(f)) ∩ ⋂
g∈F, g ̸=f C>(g) ̸= 0 (2.16)

in expression (2.15), then ⋂g∈F C>(g) ̸= 0. Thus, F ∈ ∆> and, taking into account the
above argument, ∆̄ = ∆>. Since the graph ISG(F(Z), ∆̄) is connected, the isomorphic
graph ISG(F(Z), ∆>)is also connected.
Proposition 2.12. Suppose that #max ∆> > 1, and for the system F(Z) the sets h−1(0)
are nowhere dense for each function h ∈ F(Z). If the set

Z󸀠 := Z − ⋃
f,g∈F(Z) :

f ≠g
(f−1(0) ∩ g−1(0))

is connected then the graph of the independence system ISG(F(Z), ∆>) is connected.
Proof. Let us consider the collection F(Z󸀠) := {f |Z󸀠 : f ∈ F(Z)} of the maps from F(Z)
restricted to Z󸀠.



2.1 The graph of an independence system | 29

Let ∆󸀠> be a simplicial complex on the vertex set F(Z󸀠) whose nonempty faces are
by definition those subsets

F󸀠 := {(f 󸀠 := f |Z󸀠 ) : f ∈ F} ⊆ F(Z󸀠) (2.17)

corresponding to the sets F ⊆ F(Z) for which the inequality systems

{αF󸀠 f 󸀠(z) > 0: f 󸀠 ∈ F󸀠} (2.18)

are feasible for some factors α⋆F󸀠 ∈ ℝ.
For the nonempty subsets F󸀠 ⊆ F(Z󸀠) defined in (2.17), we have

F󸀠 ∈ ∆󸀠> ⇐⇒ F ∈ ∆> . (2.19)

The sufficiency is evident: indeed, if system (2.18) is feasible for some factor α⋆F󸀠 then
the system {α⋆F󸀠 f(z) > 0: f ∈ F} is also feasible.

The necessity. Let F ∈ ∆>, that is, the system {αFf(z) > 0: f ∈ F} is by defi-
nition feasible for some factor α⋆F ∈ ℝ; specifically, suppose that α⋆F > 0. If z⋆ is
a solution to the system {α⋆Ff(z) > 0: f ∈ F} then, because of the continuity of
the functions f ∈ F(Z), elements of some neighborhood Oz⋆ of the solution z⋆ are
also solutions to the system. Since the sets f−1(0) are nowhere dense for each func-
tion f ∈ F(Z), we have Oz⋆ − ⋃f∈F f−1(0) ̸= 0. As a consequence, there exists an el-
ement z󸀠 ∈ Z󸀠 such that f 󸀠(z󸀠) > 0, for each function f 󸀠 := f |Z󸀠 , that is, F󸀠 ∈ ∆󸀠>.
Thus, ∆(F(Z󸀠), ∆󸀠>) ≃ ∆(F(Z), ∆>).

According toProposition 2.11, thegraphof the independence systemISG(F(Z󸀠), ∆󸀠>)
is connected; therefore, the isomorphic graph ISG(F(Z), ∆>) is also connected.
We proceed by considering the graphs of independence systems that are associ-
ated with finite collections F(ℝn) := {fi : i ∈ [m]}, m > 1, of polynomial functions
fi : ℝn → ℝ on the real Euclidean spaceℝn, n > 1.

For a nonempty tuple F ⊆ F(ℝn), we will use the notation V(F) := ⋂f∈F{z ∈ ℝn:
f(z) = 0}.
Remark 2.13. If f, g : ℝn → ℝ are two relatively prime polynomials then the set V(f, g)
has the topological dimension at most n − 2.

In order to see that it suffices to consider the situation where the polynomials f
and g are irreducible – in this case the sets V(f) and V(g) are algebraic varieties, that
is, these sets are irreducible. Since g ̸= λf , for any factor λ ∈ ℝ, the strict inclu-
sion V(f, g) ⫋ V(f) holds. Thus, the algebraic dimension of the set V(f, g) does not
exceed n −2; recall that the topological dimension V(f, g) coincides with its algebraic
dimension.

Proposition 2.14. If F(ℝn) is a collection of pairwise relatively prime polynomials then
the graph of the independence system ISG(F(ℝn), ∆>) is connected.
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Proof. According to Remark 2.13, the sets f−1(0) ∩ g−1(0) have the topological dimen-
sion at most n − 2, for any distinct polynomials f, g ∈ F(ℝn). As a consequence, the
complementℝn −⋃f,g∈F(ℝn) :

f ̸=g (f−1(0)∩g−1(0)) is connected; therefore, Proposition 2.12
allows us to come to the conclusion that the graph ISG(F(ℝn), ∆>) is connected.
Letus consider somecorollaries of the aboveargument; twoof them follow fromPropo-
sition 2.7:

Corollary 2.15. Let (V , ∆) be the complex whose vertex set V is a finite subset of points
on the sphere 𝕊n−1, and a nonempty subset F ⊆ V is a face if and only if the set F is
contained in a closed hemisphere.

The graph of the independence system ISG(V , ∆) is connected.
Proof. Let us assign to each point v ∈ V the linear functional fv : ℝn → ℝ, z 󳨃→ ⟨v, z⟩,
and consider the collection F(ℝn) := {fv : v ∈ V} of all such functionals. Since the
spaceℝn is connected, the graph ISG(F(ℝn), ∆≥) is also connected in accordancewith
Proposition 2.7. Recall that a nonempty subset F of the set V is contained in a closed
hemisphere if and only if the inequality system {⟨v, z⟩ ≥ 0: v ∈ F} is feasible, that
is, {fv : v ∈ F} ∈ ∆≥. As a consequence, (V , ∆) ≃ (F(ℝn), ∆≥) and the graph of the
independence system ISG(V , ∆) is connected.
Corollary 2.16. Let (V , ∆) be the complexwhose vertex setV := {Pi : i ∈ [m]}, m > 1, is
a finite family of closed half-spaces of the spaceℝn with a nonempty intersection, and a
nonempty subfamily F ⊆ V is a face if and only if the polyhedron⋂P∈F P is unbounded.

The graph of the independence system ISG(V , ∆) is connected.
Proof. Let us represent each half-space P i in the form P i := {z ∈ ℝn : ⟨vi , z⟩ ≥ bi},
where vi ∈ 𝕊n−1 and bi ∈ ℝ. Since for a nonempty index subset L ⊆ [m] the polyhe-
dron ⋂i∈L Pi is unbounded if and only if the point set {vi : i ∈ L} is contained in a
closed hemisphere, the statement follows from Corollary 2.15.

We conclude this section by pointing out at two corollaries of Proposition 2.11:

Corollary 2.17. If F(ℝn) := {fi : i ∈ [m]} is a collection of linear functionals fi : ℝn → ℝ
and fi ̸= −λfj, for any distinct indices i, j ∈ [m] and for positive factors λ ∈ ℝ, then the
graph of the independence system ISG(F(ℝn), ∆>) is connected.
Proof. Suppose that fi = λfj for some distinct indices i, j ∈ [m] and for a real factor
λ > 0. In this case, thegraphof the independence systemISG(F(ℝn), ∆>) is isomorphic
to the graph ISG(F(ℝn) − {fj}, ∆󸀠>) that corresponds to the complex ∆󸀠> on the vertex
set F(ℝn) − {fj}. In this context, we can content ourselves with a discussion of the case
when the functionals from F(ℝn) satisfy the condition fi ̸= λfj, for i, j ∈ [m] and λ > 0.
Taking into account that, analogously, fi ̸= −λfj, for i, j ∈ [m] and λ > 0, we come to
the conclusion that the hypothesis of Proposition 2.12 holds and, as a consequence,
the graph of the independence system ISG(F(ℝn), ∆>) is connected.
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Corollary 2.18. Let (V , ∆) be the complex whose vertex set V is a finite subset of points
on the sphere 𝕊n−1, and a nonempty subset F ⊆ V is a face of ∆ if and only if the set F is
contained in an open hemisphere.

If the set V does not contain antipodes then the graph of the independence sys-
tem ISG(V , ∆) is connected.
Proof. Let us assign to each point v ∈ V the linear functional fv : ℝn → ℝ, z 󳨃→⟨v, z⟩, and consider the collection F(ℝn) := {fv : v ∈ V} of all such functionals. The
complex (V , ∆) is isomorphic to the complex (F(ℝn), ∆>), and the lack of antipodes
in V implies the fulfillment of conditions fv ̸= −λfw, for any points v,w ∈ V and
real factors λ > 0. According to Corollary 2.17, the graph of the independence sys-
tem ISG(F(ℝn), ∆>) is connected; as a consequence, the isomorphic graph ISG(V , ∆)
is also connected.

2.2 The hypergraph of an independence system

The so-called hypergraph of an independence system is a natural generalization of
the notion of graph of this system:

The hypergraph of the independence system ISH(V, ∆) corresponding to an abstract
simplicial complex (V, ∆), with the facet family max ∆ and with the vertex set V :=⋃H∈max ∆ H, is the hypergraph defined as follows:
– the vertex set of the hypergraph ISH(V, ∆) is the facet familymax ∆ of the complex ∆;
– the hyperedge family of the hypergraph ISH(V, ∆) is the family of all the unordered

collections of facets H ⊆ max ∆ of the complex ∆ that cover the vertex set of the
complex: ⋃

H∈HH = V .

Recall that any finite simple graph is isomorphic to the graph of some indepen-
dence system – see Proposition 2.2. Similarly, the family of hypergraphs that are iso-
morphic to the hypergraphs ISH(V, ∆) is quite large.

In this section, we will consider finite infeasible monotone systems of con-
straints S := {s1, s2, . . . , sm} and the corresponding maps π : 𝔹(m) → 2Γ , where Γ
is some nonempty set, such that

π({0}) = Γ , π([m]) = 0 ;{i} ∈ 𝔹(m)(1) 󳨐⇒ D i := π(i) ̸= 0 ;
A, B ∈ 𝔹(m) 󳨐⇒ π(A) ∩ π(B) = π(A ∪ B) ;

we studied similar systems in Chapter 1.
In other words, any such systemS represents an infeasible system of constraints

x ∈ Di ⊂ Γ , i ∈ [m] . (2.20)
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Let us denote the family of the multi-indices of MFSs of system (2.20) as usual
by J. The family of the multi-indices of all feasible subsystems of this system repre-
sents the abstract simplicial complex ∆(J) on the vertex set [m], with the facet fam-
ilymax (∆(J)) := J.
Proposition 2.19. Ahypergraph Λ := ({v1, . . . , vp}, E), with the vertex set {v1 , . . . , vp},
p > 1, andwith hyperedge familyE, is isomorphic to the hypergraph of the independence
system ISH([m], ∆(J)) that corresponds to system (2.20) for some relevant quantity m,
if and only if the hyperedge family E, partially ordered by inclusion, represents an order
filter in the Boolean lattice 𝔹(p) of subsets of the set {v1, . . . , vp} and, besides,

E ⊆ 𝔹(p) − {𝔹(p)(1)} . (2.21)

Proof. The necessity. Suppose that the hypergraph Λ with pairwise distinct hyper-
edges is isomorphic to the hypergraph of the independence system ISH([m], ∆(J)) that
corresponds to system (2.20); we denote an isomorphism providing this correspon-
dence by φ : {v1, . . . , vp} → J.

Let us show that inclusion (2.21) holds. Indeed, since by convention p > 1, sys-
tem (2.20) is infeasible and thus the hypergraph ISH([m], ∆(J)) has no loops; as a
consequence, the isomorphic hypergraph Λ also has no loops – in other words, E ∩𝔹(p)(1) = 0.

Let us verify that the hyperedge family E is an order filter. Consider an arbi-
trary hyperedge, say U := {v1, . . . , vk} ∈ E, such that U ̸= {v1, . . . , vp}, and con-
sider some hyperedge W := {v1, . . . , vk , . . . , vs} ⫌ U containing it as a subset; we
have φ(U) = {Ji1 , . . . , Jik} and φ(W) = {Ji1 , . . . , Jik , . . . , Jis }, where Ji1 , . . . , Jisare
the multi-indices of some maximal feasible subsystems of system (2.20). Since φ is
an isomorphism, the family φ(U) of the multi-indices of MFSs is a hyperedge of the
hypergraph ISH([m], ∆(J)), that is, according to the definition of this hypergraph,⋃k

e=1 Jie = [m]; moreover, ⋃s
e=1 Jie = [m] and thus the family φ(W) is a hyperedge of

the hypergraph ISH([m], ∆(J)). Since the inverse map φ−1 is also an isomorphism, the
familyW = φ−1(φ(W)) is a hyperedge of the hypergraph Λ.

The sufficiency. Let us show that if the hyperedge family E of the hypergraph Λ,
partially ordered by inclusion, represents an order filter in the Boolean lattice 𝔹(p),
and condition (2.21) is satisfied, then there exist an integerm and setsD1, . . . , Dm ⊂ ℕ
such that the hypergraph of the independence system ISH([m], ∆(J)) corresponding to
system (2.20) is isomorphic to the hypergraph Λ.

Recall that, by the hypothesis, p > 1, and consider the family

F := 𝔹(p) − {E ∪ {0̂}} ,
that is the order ideal 𝔹(p) − E with the minimal element removed. Since the hyper-
graph Λ has no loops, the finite nonempty family F := {F1, . . . , Fm} contains all one-
element subsets of the set 𝔹(p)(1) := {v1, . . . , vp}. Suppose

Jk := {i ∈ [m] : vk ̸∈ Fi}
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for all k ∈ [p]. The sets, constructed in such a way, satisfy the following conditions:
0 ̸= Jk ⊂ [m] , (2.22)

k1, k2 ∈ [p], k1 ̸= k2 󳨐⇒ Jk1 − Jk2 ̸= 0 , (2.23)⋃
k∈L Jk = [m] ⇐⇒ {vk ∈ 𝔹(p)(1) : k ∈ L} ∈ E , 0 ̸= L ⊂ [p] . (2.24)

Let us show that relation (2.24) holds. Consider an arbitrary proper subset L of the set[p].
Let a set {vk ∈ 𝔹(p)(1) : k ∈ L} be a hyperedge of the hypergraph Λ. Assume that⋃k∈L Jk ̸= [m]. Then there exists an index i0 ∈ [m] such that for all elements k ∈ L

we have vk ∈ Fi0 . Thus, Fi0 ⊇ {vk ∈ 𝔹(p)(1) : k ∈ L} ∈ E, a contradiction with the fact
that E is an order filter in 𝔹(p). We have verified that {vk ∈ 𝔹(p)(1) : k ∈ L} ∈ E 󳨐⇒⋃k∈L Jk = [m].

Now suppose that ⋃k∈L Jk = [m]. Since for each index i ∈ [m] we have {vk ∈𝔹(p)(1) : k ∈ L} ∩ Ji ̸= 0, then 0̂ ̸= {vk ∈ 𝔹(p)(1) : k ∈ L} ̸∈ F; thus, ⋃k∈L Jk = [m] 󳨐⇒{vk ∈ 𝔹(p)(1) : k ∈ L} ∈ E.
Conditions (2.22)–(2.24) guarantee that the sets J1, . . . , Jp are the multi-indices of

MFSs of some constraint system. Indeed, for each j ∈ [p], suppose
Dj := {i ∈ [p] : j ∈ Ji} . (2.25)

The sets J1, . . . , Jp only are the multi-indices ofMFSs of system (2.20), with the sets Dj
determined by relation (2.25). Indeed, for each Ji and for any j ∈ Ji, by construction,
the inclusion i ∈ D j holds; as a consequence, ⋂j∈Ji D j ̸= 0. On the other hand, let⋂j∈L D j ̸= 0, where L ̸= 0. By construction, there exists a number i ∈ [p] such that i ∈
D j for each j ∈ L; thus, L ⊆ Ji.

By using the bijection φ : {v1, . . . , vp} → J, vk 󳨃→ Jk, we verify that, because of
condition (2.24), themapφ is an isomorphismof thehypergraphsΛ andISH([m], ∆(J)).

2.3 The graph of maximal feasible subsystems of an infeasible
system of linear inequalities

In this section,we study the graphs of independence systems associatedwith the com-
plexes (of the multi-indices) of the feasible subsystems of infeasible systems of linear
inequalities.

We will investigate the properties of the finite infeasible system

S := {⟨ai , x⟩ > 0: ai , x ∈ ℝn; ‖a i‖ = 1, i ∈ [m]; i1 ̸= i2 ⇒ ai1 ̸= −ai2} (2.26)

of homogeneous strict linear inequalities, of rank n, over the real Euclidean spaceℝn,
whose set of determining vectorsA(S) := {ai : i ∈ [m]} contains nopairs of antipodes.
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Following the argument presented on page 18, we assign to system (2.26) the map

π : 𝔹(m) → 2ℝn , 0̂ ̸= T 󳨃→ ⋂
t∈T{x ∈ ℝn : ⟨at , x⟩ > 0} ,

0̂ 󳨃→ ℝn , (2.27)

putting in correspondence with each nonempty multi-index T ∈ 𝔹(m) of the subsys-
tem {⟨at , x⟩ > 0: t ∈ T} of the system S the open cone of its solutions. Since we
will consider ordered pairs of subsets of the spaceℝn associated with these cones, we
also use the synonymous notation C>(T) := π(T) resembling the notation used in Sec-
tion 2.1. The linear subspaces⋂t∈T{x ∈ ℝn : ⟨at , x⟩ = 0}will be denoted by H(T). For
brevity, we use the notation C>(i), instead of C>({i}), for open half-spaces, and H(i),
instead of H({i}), for hyperplanes; C<(T) := −C>(T).

Let T be the multi-index of a feasible subsystem of the system S, and L ⊆ T a
multi-index such that for any index i ∈ [m] − L the strict inclusion H(L ∪̇{i}) ⫋ H(L)
holds; in this case the face, open with respect to the subspaceH(L),H(L)∩C>(T−L) of
the closed cone C>(T)will be denoted byF(L, T). If dimH(L) = r then the faceF(L, T)
of the cone C>(T) is called r-dimensional.

Let us denote by [x, y] := conv {x, y} the closed segment connecting the points
x, y ∈ ℝn; (x, y) := [x, y] − {x, y} is the corresponding open segment.

Let us denote by J the family of the multi-indices of MFSs of system (2.26). The
abstract simplicial complex ∆(J), with the facet family J, on the vertex set [m], is the
family of the multi-indices of all feasible subsystems of the systemS.

With system (2.26) is put in correspondence a specific graph-theoretic construc-
tion from the common family of the graphs of independence systems defined in Sec-
tion 2.1:

The graph MFSG(S) of maximal feasible subsystems (the graph of MFSs) of the sys-
temS is defined as the graph

MFSG(S) := ISG([m], ∆(J))
of the independence system that corresponds to the complex ([m], ∆(J)). Thus, by def-
inition,
– the vertex set of the graph MFSG(S) is the family J of the multi-indices of MFSs of the

systemS;
– the edge family of the graph MFSG(S) is the family of all the unordered pairs {J, J󸀠} of

the multi-indices of MFSs of the systemS that cover the index set of the inequalities
of the system:

J ∪ J󸀠 = [m] .
Theorem 2.20. The graph MFSG(S) of maximal feasible subsystems of system (2.26) is
connected.

Proof. Let (V , ∆) be the abstract simplicial complex on the vertex set V := A(S) rep-
resenting the vectors that define system (2.26); a nonempty subset F ⊆ V is by defini-
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tion a face of ∆ if and only if the set F is contained in an open hemisphere of the unit
sphere 𝕊n−1.

Using Corollary 2.18 and the isomorphism [m] → V, i 󳨃→ ai, of the com-
plex ([m], ∆(J)) onto the complex (V , ∆), considered in Corollary 2.18, we verify that
the graph MFSG(S) is connected.
It will be shown below that the problem of extracting MFSs of the system S, as well
as the properties of the graph of MFSs of the system S, play a significant role in the
solving of pattern recognition problems in their geometric setting.

When constructing algorithms of extracting MFSs of the systemS, it is important
to know those properties of its graph of MFSs that characterize the neighborhoods of
vertices, say some estimates for the degrees of vertices. We will denote the neighbor-
hood of the vertex Js in the graph MFSG(S) byN(Js).

It is useful to keep in mind the following properties of convex polyhedral cones:

Lemma 2.21. (i) If M ⊂ [m] and C>(M) ̸= 0, then H(M) ⊂ C>(M).
(ii) If L,M ⊂ [m], C>(L) ̸= 0 and C>(M) ̸= 0, then

(1) C>(L) ∩ C>(M) ̸= 0 ⇐⇒ C>(L) ∩ C>(M) ̸= 0 and
(2) H(L) ∩ C>(M) ̸= 0 󳨐⇒ C>(L) ∩ C>(M) ̸= 0.

Lemma 2.22. For the multi-index Js ∈ J of an arbitrary maximal feasible subsystem of
the systemS the inclusion −C>(Js) ⫋ C>([m] − Js) holds.
Proof. Let us fix some vector x∗ ∈ C>(Js) and show that the inclusion −x∗ ∈ C>([m] −
Js) holds. Assume the converse: let j∗ ∈ [m]− Js be an index such that −x∗ ̸∈ C>(j∗). In
this case, the relations x∗ ∈ C>(j∗) and C>(j∗) ∩ C>(Js) ̸= 0 imply C>(j∗) ∩ C>(Js) ̸= 0,
a contradiction with the maximality of the subsystem with the multi-index Js. Thus,−C>(Js) ⊆ C>([m] − Js). The equality −C>(Js) = C>([m] − Js) is impossible because the
set A(S) of vectors determining the system (2.26) by convention contains no pairs of
antipodes.

Lemma 2.23. Suppose that each subsystem of cardinality k + 1, where 2 ≤ k ≤ n − 1,
of the systemS is feasible. Given the multi-index Js ∈ J of some of its maximal feasible
subsystem, let us consider an arbitrary (n − k)-dimensional face F(L, Js) of the closed
cone C>(Js).
(i) The inclusion −F(L, Js) ⊂ C>([m] − Js) holds, and
(ii) C>(L) ∩ C>([m] − Js) ̸= 0, that is, the subsystem {⟨a i , x⟩ > 0: ai , x ∈ ℝn; i ∈

L ∪ ([m] − Js)} of the systemS is feasible.

Proof. (i) Suppose to the contrary that there exists an index j∗ ∈ [m] − Js such that−F(L, Js) ̸⊂ C>(j∗). Using Lemma 2.22, we have −F(L, Js) ⊂ −C>(Js) ⊆ C>([m] − Js) ⊆
C>(j∗). Thus, the two cases are only possible:
(1) −F(L, Js) ∩ C>(j∗) ̸= 0 and −F(L, Js) ∩H(j∗) ̸= 0;
(2) −F(L, Js) ∩ C>(j∗) = 0 and, as a consequence, −F(L, Js) ⊂ H(j∗).
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In the first case, let us pick some points x ∈ −F(L, Js) ∩ C>(j∗) and y ∈ −F(L, Js) ∩
H(j∗). Under λ > 0 the inclusion z := −λx + (1 + λ)y ∈ −C>(j∗) holds. Since x, y ∈−F(L, Js) and the set−F(L, Js) is convex and openwith respect toH(L), thenmoreover
z ∈ −F(L, Js) ⊆ −C>(Js) for a sufficiently small λ > 0. Thus, z ∈ −C>(j∗) ∩ −C>(Js) for a
sufficiently small λ > 0; as a consequence, −C>(j∗) ∩−C>(Js) ̸= 0, a contradictionwith
the maximality of the feasible subsystem with the multi-index Js.

Consider the second case: −F(L, Js) ⊂ H(j∗). Since the set −F(L, Js) is open with
respect to the subspace H(L), then H(L) ⊆ H(j∗), that is, the rank of the subsystem
with the multi-index L ∪ {j∗} equals the rank of the subsystem with the multi-index L,
namely k. Since any subsystem, with k+1 inequalities, of the systemS is feasible, the
rank k subsystemwith the multi-index L∪{j∗} is also feasible, that is, C>(L∪{j∗}) ̸= 0.

By definition, F(L, Js) ⊂ C>(Js − L); on the other hand, using Lemma 2.21 (i) for
the multi-index L ∪ {j∗}, we have F(L, Js) ⊂ H(L) = H(L ∪ {j∗}) ⊆ C>(L ∪ {j∗}). Thus,
C>(Js − L) ∩ C>(L ∪ {j∗}) ⊇ F(L, Js) or C(Js ∪ {j∗}) ̸= 0, a contradiction with the max-
imality of the feasible subsystem with the multi-index Js. This proves the inclusion−F(L, Js) ⊂ C>([m] − Js).

(ii) Since −F(L, Js) ⊂ H(L) ⊆ C>(L), then C>(L) ∩ C>([m] − Js) ⊇ −F(L, Js), and
thus C>(L) ∩ C>([m] − Js) ̸= 0.
Lemma 2.24. If any subsystem, of cardinality n, of the system S is feasible then for
the multi-index Js ∈ J of each of its maximal feasible subsystem and for an arbitrary
collection of |N(Js)| representatives {yt ∈ C>(Jt) : Jt ∈ N(Js)} the inclusion −C>(Js) ⊆
pos {yt ∈ C>(Jt) : Jt ∈ N(Js)} holds.
Proof. Let {F(Lk , Js) : k ∈ [l]} be the set of all one-dimensional faces of the cone
C>(Js), that is, by definition, dimH(Lk) = 1 and Lk ⊂ Js for each k ∈ [l]; let {xk ∈
F(Lk , Js) − {0} : k ∈ [l]} be an arbitrary collection of l representatives of these faces.
Recall that

pos {xk : k ∈ [l]} = C>(Js) . (2.28)

Let us assign to each representative xk, k ∈ [l], a vector zk ∈ −C>(Js) and the multi-
index of a MFS Jtk ∈ N(Js) such that −xk ∈ (ytk , zk). For this, let us choose the multi-
index Jtk in such a way that the inclusion Jtk ⊇ Lk ∪ ([m] − Js) holds. We can do that
because, in accordance with Lemma 2.23 (ii), C>(Lk ∪ ([m] − Js)) ̸= 0 for all k ∈ [l]. By
Lemma 2.21 (i), −xk ∈ −F(Lk , Js) ⊂ H(Lk) ⊆ C>(Lk). By the choice of the number tk, we
have ytk ∈ C>(Jtk ) ⊆ C>(Lk).

Let us suppose zk := −λytk + (1 + λ)(−xk) and show that zk ∈ −C>(Js) for a suffi-
ciently small parameter λ > 0.

Indeed, for any λ > 0 we have ⟨ai , zk⟩ = −λ⟨a i , ytk⟩ + (1 + λ)⟨a i , −xk⟩, for each
i ∈ Lk; that is, ⟨a i , zk⟩ < 0, because ytk ∈ C>(Lk) and −xk ∈ H(Lk).

Further, for each i ∈ Js−Lkwehave ⟨a i , zk⟩ = ⟨ai , −xk⟩+λ(⟨ai , −xk⟩−⟨a i , ytk⟩) < 0
for a sufficiently small λ > 0 because −xk ∈ H(Lk) ∩ −C>(Js − Lk). By the choice of zk,
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the inclusion −xk ∈ [ytk , zk] holds and, because of ytk ∈ C>(Lk) and zk ∈ −C>(Lk), we
have −xk ∈ (ytk , zk).

Let us pick an arbitrary index k∗ ∈ [m] − Js. Denote H∗ := {x ∈ ℝn : ⟨ak∗ , x⟩ = 1}.
According to Lemma 2.23, −xk ∈ −F(Lk , Js) ⊂ C>([m] − Js) and, as a consequence,−C>(Js) = pos {−xk : k ∈ [l]} ⊂ C>([m] − Js) ⊂ C>(k∗). Besides, for each k ∈ [l] we
have ytk ∈ C>(Jtk ) ⊂ C>([m] − Js) ⊆ C>(k∗). Thus, for each k ∈ [l] the inequalities⟨ak∗ , −xk⟩ > 0 and ⟨ak∗ , ytk⟩ > 0 are fulfilled; therefore, without loss of generality we
can suppose that the vectors −xk and ytk , k ∈ [l], are chosen by their norms in such
a way that they belong to the hyperplane H∗. But this means that the inclusions zk ∈
H∗, k ∈ [l], also hold. Besides, we have

H∗ ∩ −C>(Js) = conv {−xk : k ∈ [l]} ,−xk , zk ∈ conv {−xk : k ∈ [l]} , − xk ∈ (ytk , zk) , k ∈ [l] . (2.29)

It follows from a geometric argument that the following statement is true: If E ⊆ ℝn,
as well as x, z ∈ conv E and x ∈ (y, z), then conv E ⊆ conv ((E ∪ {y}) − {x}). Using this
observation and relations (2.29), let us write down the following chain of inclusions:

conv {−x1, . . . , −xl}⊆ conv {yt1 , −x2, . . . , −x l} ⊆ ⋅ ⋅ ⋅ ⊆ conv {yt1 , yt2 , . . . , ytl−1 , −xl}⊆ conv {yt1 , yt2 , . . . , ytl} ⊆ conv {yt : Jt ∈ N(Js)} . (2.30)

Note that (2.28) and (2.30) imply −C>(Js) = pos {−x1, . . . , −xl} ⊆ pos {yt : Jt ∈ N(Js)},
and the lemma is proved.

As mentioned earlier, the degrees of the vertices of the graph of MFSs of system (2.26)
are important parameters.We present two estimates whichwill be augmented later by
Proposition 2.36.

Theorem 2.25. Let Js ∈ J be the multi-index of some maximal feasible subsystem of
system (2.26).
(i) The degree of the vertex Js in its graph MFSG(S) is at least two: |N(Js)| ≥ 2.
(ii) If each subsystem, of cardinality n, of system (2.26) is feasible then the degree of the

vertex Js in its graph MFSG(S) is at least n: |N(Js)| ≥ n.
Proof. (i) Let {F(Lk , Js) : k ∈ [d]} be the set of all (n−1)-dimensional faces of the cone
C>(Js). According to Lemma 2.22, C>([m] − Js) ̸= 0 and, as a consequence, there exists
a maximal feasible subsystem of the systemS with a multi-index Jp ⊃ [m] − Js.

Since Js and Jp are the multi-indices of distinct MFSs, we have C>(Js) ∩C>(Jp) ̸= 0.
Then there exists the index k∗ of an (n − 1)-dimensional face F(Lk∗ , Js) of the cone
C>(Js) such that Lk∗ ⫋ Jp, because otherwise the inclusion Lk ⊆ Jp would hold for
each of d such faces, and this would imply the relations C>(Jp) ⊆ C>(⋃d

k=1 Lk) = C>(Js)
and C>(Jp) ∩ C>(Js) = C>(Jp) ̸= 0.
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In the systemS every subsystem with two inequalities is by convention feasible,
and this implies, according to Lemma 2.23 (ii), that for the (n − 1)-dimensional face
F(Lk∗ , Js)we have C>(Lk∗ ∪ ([m] − Js)) ̸= 0; as a consequence, there exists a maximal
feasible subsystem with a multi-index Jt ⊇ Lk∗ ∪ ([m] − Js), Jt ̸= Jp, because Lk∗ ⊂ Jt
and Lk∗ ⫋ Jp, that is,N(Js) ⊇ {Jp, Jt} and thus |N(Js)| ≥ 2.

(ii) Let us pick for the open cone C>(Jt) of solutions to eachmaximal feasible sub-
system, with a multi-index Jt ∈ N(Js), one representative yt ∈ C>(Jt). According to
Lemma 2.24, the inclusion −C>(Js) ⊆ pos {yt ∈ C>(Jt)} holds. Since the cone C>(Js) is
n-dimensional, the relation |N(Js)| ≥ n holds.
Lemma 2.26. If Js ∈ J and Jt ∈ J are the multi-indices of two distinct maximal feasible
subsystems of system (2.26) then Js ∩ Jt ̸= 0.
Proof. Suppose to the contrary that Js ∩ Jt = 0. LetF(L, Jt) be an (n − 1)-dimensional
face of the cone C>(Jt). Since the set A(S) of vectors that determine the system S by
convention contains no pairs of antipodes, we haveC>([m]− Jt)∩C>(L) ̸= 0, according
to Lemma 2.23 (ii), that is, the subsystem of the systemS, with the multi-index ([m] −
Jt) ∪ L, is feasible; since L ̸= 0 and L∩ Js ̸= 0, this contradicts the maximality of Js.

Lemma 2.27. Let a partition J = J󸀠 ∪̇ J󸀠󸀠, #J󸀠 > 0, #J󸀠󸀠 > 0, of the family of the multi-
indices of MFSs of system (2.26) be given, and let J󸀠 ∈ J󸀠 and J󸀠󸀠 ∈ J󸀠󸀠 be the multi-indices
of maximal feasible subsystems such that |J󸀠 ∩ J󸀠󸀠| = maxL∈J󸀠 , M∈J󸀠󸀠 |L ∩ M|. Then the
subsystem of the systemS, with the multi-index ([m] − J󸀠) ∪ ([m] − J󸀠󸀠), is feasible.
Proof. By Lemma 2.26, J󸀠 ∩ J󸀠󸀠 ̸= 0. For the multi-index J := J󸀠 ∩ J󸀠󸀠 and for any indices
j󸀠 ∈ J󸀠 − J and j󸀠󸀠 ∈ J󸀠󸀠 − J, we have

C>(J ∪ {j󸀠} ∪ {j󸀠󸀠}) = 0 . (2.31)

Indeed, suppose to the contrary that C>(J ∪ {j󸀠} ∪ {j󸀠󸀠}) ̸= 0 for some indices j󸀠 ∈ J󸀠 − J
and j󸀠󸀠 ∈ J󸀠󸀠−J. Then there exists amaximal feasible subsystemwith amulti-index J∗ ⊇
J ∪ {j󸀠} ∪ {j󸀠󸀠}. Let J∗ ∈ J󸀠. Then J󸀠󸀠 ∈ J󸀠󸀠 and |J∗ ∩ J󸀠󸀠| ≥ |J ∪ {j󸀠󸀠}| = |J| +1, a contradiction
with the maximal cardinality |J| of the multi-index J. The case J∗ ∈ J󸀠󸀠, analogously,
leads to a contradiction. These contradictions verify (2.31).

Fix two vectors x ∈ C>(J󸀠) and y ∈ C>(J󸀠󸀠). Let us define the sets
C󸀠 := ⋃

j󸀠∈J󸀠−J C>(J ∪ {j󸀠}) and C󸀠󸀠 := ⋃
j󸀠󸀠∈J󸀠󸀠−J C>(J ∪ {j󸀠󸀠}) .

Note that the inclusions

C>(J󸀠) ⊂ C󸀠 ⊂ C>(J) , C>(J󸀠󸀠) ⊂ C󸀠󸀠 ⊂ C>(J) , [x, y] ⊂ C>(J) . (2.32)

hold.
Wealso have [x, y]∩C󸀠 = [x, z1] and [x, y]∩C󸀠󸀠 = [z2, y], for some vectors z1, z2 ∈[x, y].
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Suppose that [x, z1]∩[z2, y] ̸= 0, and fix a vector z∗ ∈ [x, z1]∩[z2, y] ⊂ C󸀠∪C󸀠󸀠. It
follows from the definition of the sets C󸀠 and C󸀠󸀠 that z∗ ∈ C>(J ∪ {j󸀠}) ∩ C>(J ∪ {j󸀠󸀠}) ⊆
C>(j󸀠) ∩ C>(j󸀠󸀠) for some indices j󸀠 ∈ J󸀠 − J and j󸀠󸀠 ∈ J󸀠󸀠 − J. Since the set A(S) of
vectors determining system (2.26) by convention contains no pairs of antipodes, we
haveC>(j󸀠)∩C>(j󸀠󸀠) ̸= 0. Let us pick a vector v ∈ C>(j󸀠)∩C>(j󸀠󸀠). Since [x, y] ∈ C>(J), the
inclusion z∗ ∈ C>(J) holds; but then z∗ + εv ∈ C>(J󸀠) ∩C>(j󸀠) ∩C>(j󸀠󸀠) for a sufficiently
small ε > 0, a contradiction with (2.31); as a consequence, [x, z1] ∩ [z2, y] = 0 and
thus (z1, z2) ̸= 0 and (z1, z2) ∩ (C󸀠 ∪ C󸀠󸀠) = 0. Consider a vector w ∈ (z1, z2); for
each index j󸀠 ∈ J󸀠 − J we have w ∈ −C>(j󸀠), because otherwise w ∈ C>(j󸀠) ∩ C>(J) =
C>({j󸀠} ∪ J) ⊆ C󸀠. Analogously, for each index j󸀠󸀠 ∈ J󸀠󸀠 − J the inclusion w ∈ −C>(j󸀠󸀠)
holds. Thus,

w ∈ −C>((J󸀠 − J) ∪ (J󸀠󸀠 − J)) . (2.33)

According to Lemma 2.22, x ∈ −C>([m] − J󸀠) and y ∈ −C>([m] − J󸀠󸀠). If ([m] − J󸀠) ∩([m] − J󸀠󸀠) ̸= 0 then we have
w ∈ [x, y] ⊂ −C>(([m] − J󸀠) ∩ ([m] − J󸀠󸀠)) . (2.34)

Besides, the equality

(([m] − J󸀠) ∩ ([m] − J󸀠󸀠)) ∪ (J󸀠 − J) ∪ (J󸀠󸀠 − J) = ([m] − J󸀠) ∪ ([m] − J󸀠󸀠) (2.35)

holds. It follows from (2.33)–(2.35) that w ∈ C>(([m] − J󸀠) ∪ ([m] − J󸀠󸀠)) ̸= 0, and the
lemma is proved.

Theorem 2.28. The graph MFSG(S) of system (2.26) contains at least one cycle of odd
length.

Proof. Suppose to the contrary that the graph MFSG(S) contains no cycles of odd
length. In this case MFSG(S) is bipartite, that is, there exists a partition J = J󸀠 ∪̇ J󸀠󸀠,
#J󸀠 > 0, #J󸀠󸀠 > 0, of its vertex set such that the vertices from the parts J󸀠 and J󸀠󸀠 are
not linked by an edge. According to Lemma 2.27, there exist the multi-indices of MFSs
J󸀠 ∈ J󸀠 and J󸀠󸀠 ∈ J󸀠󸀠 such that the subsystem with the multi-index ([m] − J󸀠) ∪ ([m] − J󸀠󸀠)
is feasible. As a consequence, there exists a subsystem of the systemS, with a multi-
index J, such that J ⊇ ([m] − J󸀠) ∪ ([m] − J󸀠󸀠) and thus the pairs {J, J󸀠} and {J, J󸀠󸀠}
are edges of the graph MFSG(S). Since J ∈ J󸀠 ∪̇ J󸀠󸀠 = [m], either the edge {J, J󸀠} or the
edge {J, J󸀠󸀠} contradicts the assumption that the graph MFSG(S) is bipartite.
For the construction of algorithms of extracting maximal feasible subsystems of sys-
tem (2.26) it is important to know a characterization of the graphs of MFSs of such sys-
tems. The answer to this question is well known in the case of the rank 2 systems S.
Before recalling it, we will describe some additional properties of the systemsS.

Let L ⊂ [m] be the multi-index of a feasible subsystem of system (2.26), that is,
C>(L) ̸= 0. The inequality with an index l ∈ L is called an inequality implied by the
subsystem with the multi-index L − {l} when C>(L − {l}) = C>(L). Let us denote by
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mmi(L) ⊆ L the inclusion-minimalmulti-index of the subsystem of the system with
the multi-index L such that C>(mmi(L)) = C>(L); in other words, the setmmi(L) is by
definition composed of those indices i ∈ [m] for which the half-spacesH(i) represent
the linear hulls of the (n − 1)-dimensional faces of the cone C>(L).
Remark 2.29. If L ⊂ [m] is the multi-index of a feasible subsystem of system (2.26) then
(i) i ∈ L −mmi(L) ⇐⇒ C>(L) = C>(L − {i});
(ii) i ∈ mmi(L) ⇐⇒ F({i}, L) ̸= 0, dim lin (F({i}, L)) = n − 1.
Lemma 2.30. If Js and Jt are the multi-indices of two distinct MFSs of system (2.26) then

mmi(Js) ∩ Jt ̸= 0 , (2.36)
mmi(Js) ∩ ([m] − Jt) ̸= 0 . (2.37)

Proof. Let us prove (2.36): suppose to the contrary that mmi(Js) ∩ Jt = 0. Then
mmi(Js) ⊆ [m] − Jt and C>(Js) = C>([m] − Jt) ⊃ −C>(Jt) ̸= 0. If −C>(Jt) ∩ C>(Js) ̸= 0
then Js ∩ Jt = 0, a contradiction with Lemma 2.26.

Relation (2.37) is proved similarly.

Lemma 2.31. If Js and Jt are the multi-indices of MFSs of system (2.26) such that
Js ∪ Jt = [m], that is, {Js , Jt} is an edge of the graph MFSG(S), then 0 ̸= mmi(Js) − Jt ⊆
mmi([m] − Jt).
Proof. According to Lemma 2.30, mmi(Js) − Jt ̸= 0. Let us consider an arbitrary in-
dex j∗ ∈ mmi(Js) − Jt ⊆ Js − Jt. Let us show that j∗ ∈ mmi([m] − Jt). Suppose
to the contrary that j∗ ∈ ([m] − Jt) − mmi([m] − Jt). According to Remark 2.29 (i),
C> (([m] − Jt) − {j∗}) = C>([m] − Jt). Since, by definition, Js ∪ Jt = [m], we have
Js ⊇ [m] − Jt. Let us represent the multi-index Js in the form Js = (Js − ([m] − Jt)) ∪([m]−Jt). ThenC>(Js) = C> (Js − ([m] − Jt))∩C>([m]−Jt) and, because ofC>([m]−Jt) =
C> (([m] − Jt) − {j∗}) and j∗ ∈ [m] − Jt, we have C>(Js) = C>(Js − {j∗}), from where, ac-
cording to Remark 2.29 (i), we obtain j∗ ∈ Js−mmi(Js), a contradictionwith the choice
of the index j∗.
Lemma 2.32. IfS is a rank two system (2.26) overℝ2, then the degree of each vertex of
its graph MFSG(S) is 2.
Proof. Let Js be an arbitrary vertex of the graph MFSG(S). Without loss of gener-
ality we will suppose that in the graph MFSG(S) this vertex is adjacent to the ver-
tices J1, J2, . . . , Jp. Since, by Theorem 2.25 (i), we have p ≥ 2, it suffices to show that
p ≤ 2. Since Ji ⊇ [m] − Js for each index i, 1 ≤ i ≤ p, the inclusions

C>(Ji) ⊆ C>([m] − Js) , 1 ≤ i ≤ p ,

hold. Further, according to Lemma 2.31, 0 ̸= mmi(Ji) − Js ⊆ mmi([m] − Js), for each
index i, 1 ≤ i ≤ p. For each such an index, let us pick an index ti ∈ mmi(Ji) ∩ ([m] −
mmi(Jt)) ̸= 0. Then the inclusions

0 ̸= F({ti}, Ji) ⊆ F({ti}, [m] − Js) , 1 ≤ i ≤ p , (2.38)
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hold. Let us show that the implications

i1 ̸= i2 󳨐⇒ F({ti1}, Ji1) ∩ F({ti2}, Ji2) ̸= 0 , 1 ≤ i1, i2 ≤ p , (2.39)

are true. Suppose to the contrary that there exist distinct indices i1 and i2, 1≤ i1, i2≤#J,
such that some vector x∗ ∈ F({ti1}, Ji1) ∩ F({ti2}, Ji2) can be chosen, x∗ ̸= 0, that
is, x∗ ∈ H(ti1 ) ∩ C>(Ji1 − {ti1}) ∩H(ti2 ) ∩ C>(Ji2 − {ti2}). Since n = 2, then H(i1) = H(i2)
for i1 ̸= i2; this is impossible because each subsystem of the system S, with two
inequalities, is by definition of rank 2.

Since 0 ̸= C>([m] − Js) ⊂ ℝ2, the boundary of the cone C>([m] − Js) can be repre-
sented as a union of two rays l1 and l2 radiating from the point 0; thus,F({j}, [m] − Js)⊆ l1 ∪ l2, for each index j ∈ mmi([m] − Js). For each index i, 1 ≤ i ≤ p, the nonempty
faceF({ti}, Ji) represents a ray radiating from the point 0 and not containing it. It fol-
lows from (2.38) that for eachnumber i, 1 ≤ i ≤ p, one of the two equalitiesF({ti}, Ji) =
l1 − {0} and F({ti}, Ji) = l2 − {0} only holds, from where it follows, taking into ac-
count (2.39), that p ≤ 2.
Proposition 2.33. Some graph is isomorphic to the graph MFSG(S) of a rank two system
S overℝ2 if and only if this graph represents a simple cycle of odd length q, 3 ≤ q ≤ m.
Proof. The necessity. Let an arbitrary system (2.26), with m inequalities, over ℝ2 be
given. It is well known that the system S contains an odd number, not exceeding m,
of MFSs. Since, by Theorem 2.20, the graph MFSG(S) is connected and, by Lemma 2.32,
the degree of each of its vertex equals 2, the graph MFSG(S) represents a simple cycle
of odd length #J.

The sufficiency is verified by explicit constructing, for an arbitrary odd q, 3≤q≤m,
a rank 2 system (2.26), with m inequalities, over ℝ2. Let each vector a󸀠

i ∈ ℝ2,
1 ≤ i ≤ q, be obtained by rotating the vector (0, 1) ∈ ℝ2 through a counterclock-
wise angle of 2πi/q. The infeasible system S󸀠 := {⟨a󸀠

i , x⟩ > 0: i ∈ [q]}, com-
posed of q inequalities, has q maximal feasible subsystems with the multi-indices
J1 := {1, 2, . . . , ⌊q/2⌋ + 1}, J2 := {2, 3, . . . , ⌊q/2⌋ + 2}, . . ., Jq := {q, 1, . . . , ⌊q/2⌋}.
The correspondingmulti-indicesmmi(Ji) describing the one-dimensional faces of the
closures of the solution cones to themaximal feasible subsystems are the two-element
sets mmi(J1) = {1, ⌊q/2⌋ + 1},mmi(J2) = {2, ⌊q/2⌋ + 2}, . . .,mmi(Jq) = {q, ⌊q/2⌋};
note that the index of each inequality of the system S󸀠 occurs in the multi-indices
mmi(Ji) twice. The graph MFSG(S󸀠) is a simple cycle of length q. Let us choose the
value of angular deviation ϵ sufficiently small for the augmented inequality system
S := {S󸀠, {⟨ak , x⟩ > 0: k ∈ [m − q]}} – in which the determining vector ak is ob-
tained from the vector a󸀠

1 by rotating through an angle of kϵ – to differ from the initial
systemS󸀠 by a deformation of the solution cone to a uniquemaximal feasible subsys-
tem. By construction, the resulting systemS, withm inequalities andwith qmaximal
feasible subsystems, has the graph MFSG(S) isomorphic to the graph MFSG(S󸀠) and
representing a simple cycle of odd length q.
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Recall that a shortest simple path connecting two vertices of a graph is called a
geodesic, and the diameter of the graph is defined as the length of its largest geodesic.

According to Proposition 2.33, the graph of MFSs of a rank 2 system (2.26) has the
following properties: any its edge belongs to a simple cycle of length not exceedingm;
the graph contains a simple cycle of odd length not exceeding m; the diameter of the
graph does not exceed ⌊m2 ⌋.

It turns out that the graphs of MFSs of the systems S, of any rank n, have analo-
gous properties. Before verifying this claim, let us turn to the half-spaces defined by
the inequalities of system (2.26), and prove an auxiliary statement.

Let us consider the family

{(C>(i), C<(i)) : i ∈ [m]} (2.40)

of the ordered pairs of open half-spaces associated with system (2.26), and con-
sider the abstract simplicial complex ([m], ∆>), on the vertex set [m], defined for
the nonempty subfamilies F ⊂ [m] as follows:

F ∈ ∆> ⇐⇒ ⋂
f∈F(C>(f), C<(f)) ̸= (0, 0) .

If S is a subspace of the spaceℝn then the complex ([m], ∆>
S ) is defined in a similar

way:
F ∈ ∆>

S ⇐⇒ ⋂
f∈F(C>(f), C<(f)) ∩ (S, S) ̸= (0, 0) ; (2.41)

in particular, ([m], ∆>) := ([m], ∆>ℝn ).
Lemma 2.34. Suppose that each subsystem of cardinality k, where 3 ≤ k ≤ n, of sys-
tem (2.26) of rank n ≥ 3 has rank k.

Consider an arbitrary family {Js1 , Js2 , . . . , Jsr} ⊂ J of the multi-indices of its MFSs,
where 1 ≤ r ≤ min{k, n − 1}.

There exists an (n − 1)-dimensional subspace R ⊂ ℝn satisfying the condition
L ⊂ [m], |L| = r 󳨐⇒ dim(R ∩ H(L)) = n − r − 1 .

In the graph of the independence system ISG([m], ∆>) there are vertices J∗t1 ,
J∗t2 , . . . , J∗tr such that J∗ti = Jsi , 1 ≤ i ≤ r.

There exists a homomorphism ψ : ISG([m], ∆>
R) → ISG([m], ∆>) of the graphs of

independence systems such that for each facet J∗ ∈ max ∆>
R the inclusion ψ(J∗) ⊇ J∗

holds, and for each i, 1 ≤ i ≤ r, the relations ψ(J∗ti ) = Jsi and ψ−1(Jsi ) = {J∗ti} hold.
Proof. Let us define, for any vector x ∈ ℝn, a continuous map φx : ℝn → ℝn, y 󳨃→⟨y, y⟩x − ⟨x, y⟩y. Let us pick unique representatives xi ∈ C>(Jsi ), 1 ≤ i ≤ r. Since
r ≤ n − 1, there exists a vector z∗ such that ‖z∗‖ = 1 and ⟨xi , z∗⟩ = 0, 1 ≤ i ≤ r. Then
φxi (z∗) = xi, 1 ≤ i ≤ r, and thus z∗ ∈ ⋂1≤i≤r φ−1

xi (x i) ⊂ V := ⋂1≤i≤r φ−1
xi (C>(Jsi )) ̸= 0.
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The set V is open because of the continuity of the maps φxi and the openness of the
cones C>(Jsi ), 1 ≤ i ≤ r. Family (2.40) satisfies the condition

L ⊂ [m], |L| = r 󳨐⇒ dimH(L) = n − r . (2.42)

For an arbitrarymulti-index L ⊆ [m], let us denote by (H(L))⊥ the orthogonal comple-
ment of the subspaceH(L) up toℝn; thus,ℝn = H(L)⊕(H(L))⊥. Since 2 ≤ r ≤ n−1, the
set U := ⋃|L|=r(H(L))⊥ is nowhere dense inℝn; as a consequence, V ∩(ℝn−U) ̸= 0. Let
us pick a vector z ∈ V ∩ (ℝn − U), z ̸= 0. Suppose R := {x ∈ ℝn : ⟨z, x⟩ = 0}. Since for
any multi-index L ⊆ [m], |L| = r, we have z ̸∈ U, that is, z ̸∈ (H(L))⊥, then R ⫌ H(L),
L ⊆ [m], |L| = r, from where, taking into account (2.42), we obtain

L ⊆ [m], |L| = r 󳨐⇒ dim(R ∩ H(L)) = (n − 1) − r . (2.43)

Consider the family

{(C>(i), C<(i)) ∩ (R, R) : i ∈ [m]} (2.44)

over the (n − 1)-dimensional subspace R, and the corresponding abstract simplicial
complex ∆>

R defined in (2.41). Since z ∈ V := ⋂1≤i≤r φ−1
xi (C>(Jsi )), for each i, 1 ≤ i ≤ r,

the inclusions φxi (z) ∈ C>(Jsi ) hold. Besides, ⟨φxi (z), z⟩ = 0, 1 ≤ i ≤ r, that is,
φxi (z) ∈ R, 1 ≤ i ≤ r. Thus, φxi (z) ∈ R ∩ C>(Jsi ), 1 ≤ i ≤ r, and comparing fami-
lies (2.40) and (2.44) verifies that the subset Jsi ⊂ [m] is a facet of the complex ∆>

R,
that is, in the graph ISG([m], ∆>

R) there are vertices J∗t1 , J∗t2 , . . . , J∗tr such that Jsi = J∗ti ,
1 ≤ i ≤ r. For any subsets F ⊂ [m], the implications ⋂f∈F(C>(f), C<(f)) ∩ (R, R) ̸=(0, 0) ⇒ ⋂f∈F(C>(f), C<(f)) ̸= (0, 0) are true and thus, according to Proposition 2.1,
there exists a homomorphism ψ : ISG([m], ∆>

R) → ISG([m], ∆>) such that ψ(J∗i ) ⊇ Ji,
for each facet J∗i ∈ max ∆>

R. The maximality of the sets Jsi and J∗ti , and the equali-
ties Jsi = J∗ti for all i, 1 ≤ i ≤ r, imply that ψ(J∗ti ) = Jsi and ψ−1(Jsi ) = {J∗ti}, 1 ≤ i ≤ r.
Proposition 2.35. (i) Any edge of the graph MFSG(S) of system (2.26) belongs to a sim-

ple cycle (and, as a consequence, the graph MFSG(S) has no bridges) of length not
exceeding m;

(ii) the graph MFSG(S) contains a simple cycle of odd length not exceeding m;
(iii) the diameter of the graph MFSG(S) does not exceed ⌊m2 ⌋.
Proof. (i) The proof is by induction on the rank n of system (2.26). The statement is
true for n = 2 because, according to Proposition 2.33, the graph MFSG(S) represents a
simple cycle of odd length not exceeding m.

Let us assume that the statement is true for an arbitrary system (2.26) of rank n−1
over ℝn−1, where n ≥ 3. Let us consider family (2.40) of the ordered pairs of sub-
spaces associated with the rank n system S over ℝn; this family satisfies condi-
tion (2.42). Let us consider an arbitrary edge of the graph MFSG(S); without loss of
generality we will suppose that this edge is the pair {J1, J2}. Let us set r := 2 ≤
min{2, n − 1} and use Lemma 2.34 for the r multi-indices J1 and J2 of MFSs of the
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system S with the corresponding family (2.40). Let R be an (n − 1)-dimensional
subspace of the space ℝn; it is assigned to family (2.44) of subspace pairs and the
graph of the independence system ISG([m], ∆>

R). According to Lemma 2.34, in the
graph ISG([m], ∆>

R) there exist vertices J∗t1 and J∗t2 such that J∗t1 = J1 and J∗t2 = J2. Since
J∗t1 ∪ J∗t2 = J1 ∪ J2 = [m], the pair {J∗t1 , J∗t2} is an edge of the graph ISG([m], ∆>

R). Then
by the induction hypothesis, in the graph ISG([m], ∆>

R) there exists a simple cycle(J∗t1 , J∗t2 , . . . , J∗tp , J∗t1), 3 ≤ p ≤ m, containing the edge {J∗t1 , J∗t2}. Let ψ : ISG([m], ∆>
R) →

ISG([m], ∆>) be the homomorphism mentioned in Lemma 2.34. Let us consider the
sequence (ψ(J∗t2), ψ(J∗t3 ), . . . , ψ(J∗tp ), ψ(J∗t1 )) of the vertices of the graph ISG([m], ∆>),
isomorphic to the graph MFSG(S), which is a (ψ(J∗t2 ) ↔ ψ(J∗t1 ))-path because of
the conservation of vertex adjacency under the homomorphism ψ : ISG([m], ∆>

R) →
ISG([m], ∆>). Sinceψ−1(ψ(J∗t1 )) = {J∗t1},ψ−1(ψ(J∗t2 )) = {J∗t2}, and J∗t1 , J∗t2 ̸∈ {J∗t3 , . . . , J∗tp},
then ψ(J∗t1 ), ψ(J∗t2 ) ̸∈ {ψ(J∗t3 ), . . . , ψ(J∗tp )}.

Let us consider the two possible cases: (1) ψ(J∗t3 ) = ψ(J∗tp ) and (2) ψ(J∗t3 ) ̸= ψ(J∗tp ).
In the case 1, we have the simple cycle (ψ(J∗t1), ψ(J∗t2 ), ψ(J∗t3 ), ψ(J∗t1 )) = (J1, J2,

ψ(J∗t3), J1), of length three, containing the edge {J1, J2}.
In the case 2, one can distinguish in the path (ψ(J∗t3 ), . . . , ψ(J∗tp )) a simple

chain (ψ(J∗t3 ), ψ(J∗q1 ), . . . , ψ(J∗qk ), ψ(J∗tp )), where (ψ(J∗t3 ), ψ(J∗q1 ), . . . , ψ(J∗qk ), ψ(J∗tp )) ⊆{ψ(J∗t3 ), ψ(J∗t4 ), . . . , ψ(J∗tp )}, and thus ψ(J∗t1 ), ψ(J∗t2 ) ̸∈ (ψ(J∗t3 ), ψ(J∗q1 ), . . . , ψ(J∗qk ),
ψ(J∗tp )). Since k + 2 ≤ p − 2, the sequence (ψ(J∗t1 ), ψ(J∗t2 ), ψ(J∗t3 ), ψ(J∗q1 ), . . . , ψ(J∗qk ),
ψ(J∗tp ), ψ(J∗t1 )) represents a simple cycle of length k + 4 ≤ p ≤ m, and it contains the
edge {ψ(J∗t1), ψ(J∗t2 )} = {J1, J2}, as was to be proved.

(ii) Recall that the existence of a cycle of odd length in the graph MFSG(S) was
proved in Theorem 2.28. We will show here, by using a similar argument, that there
exists such a cycle of length not exceeding m. In the case of a rank 2 system (2.26) the
graph MFSG(S) represents such a cycle – see Proposition 2.33. Assume by induction
that the statement is true for all systems of rank n −1 ≥ 2. Let us fix inℝn an arbitrary(n − 1)-dimensional subspace R; then, as in the proof of statement (i), let us turn to
Lemma 2.34 in the situation where r := 2 ≤ min{2, n − 1}. Let us choose in the graph
ISG([m], ∆>

R) some cycle (J∗t1 , J∗t2 , . . . , J∗tp , J∗t1) of odd length p such that 3 ≤ p ≤ m
which is contained in the graph by the induction hypothesis. We will use the deno-
tations Z∗ := {J∗t1 , J∗t2 , . . . , J∗tp } and Z := {ψ(J∗t1 ), ψ(J∗t2 ), . . . , ψ(J∗tp )} and show that the
induced subgraph ISG([m], ∆>)⟨Z⟩ of the graph ISG([m], ∆>) contains a simple cycle
of odd length not exceeding m.

First, assume that the subgraph ISG([m], ∆>)⟨Z⟩ contains no simple cycles of odd
length at all, that is, it is bipartite. Then there exists a partition Z = Z1 ∪̇Z2, #Z1 > 0,
#Z2 > 0, such that the induced subgraphs ISG([m], ∆>)⟨Z1⟩ and ISG([m], ∆>)⟨Z2⟩ are
edgeless. In this case, we get the partition of the family Z∗ into two nonempty sub-
familiesψ−1(Z1)∩Z∗ and ψ−1(Z2)∩Z∗. Under the homomorphism ψ, the edge {J∗ti , J∗tj }
is mapped onto the edge {ψ(J∗ti ), ψ(J∗tj )}; indeed, the situation where ψ(J∗ti ) = ψ(J∗tj )
is impossible – that would mean that ψ(J∗ti ) ∪ ψ(J∗tj ) ̸= [m], a contradiction with
the condition according to which the map ψ is a homomorphism. Then the edge-
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lessness of the subgraphs ISG([m], ∆>)⟨Z1⟩ and ISG([m], ∆>)⟨Z2⟩ implies that the
subgraphs ISG([m], ∆>

R)⟨ψ−1(Z1) ∩Z∗⟩ and ISG([m], ∆>
R)⟨ψ−1(Z2) ∩Z∗⟩ are also edge-

less, but this is impossible because the subgraph ISG([m], ∆>
R)⟨Z∗⟩ contains a simple

cycle of odd length. As a consequence, the subgraph ISG([m], ∆>)⟨Z⟩, as well as the
graph ISG([m], ∆>) itself which is isomorphic to the graph MFSG(S), contains a simple
graph of odd length not exceeding m, because |Z| ≤ |Z∗| ≤ p ≤ m, as was to be proved.

(iii) It was mentioned in the proof of (i) and (ii) that the statement is true for any
rank 2 system S – see Proposition 2.33. Assume that it is true for any system S of
rank n−1,where n−1 ≥ 2. Letus consider family (2.40) and the correspondinggraphof
the independence system ISG([m], ∆>) that is isomorphic to the graph MFSG(S). Let Js1
and Js2 be arbitrary vertices of the graph ISG([m], ∆>). Let us show that they are linked
by a simple chain of length not exceeding ⌊m2 ⌋. Taking into account that family (2.40)
satisfies restriction (2.42), let us set r := 2 ≤ min{2, n−1} and use Lemma 2.34 for fam-
ily (2.40) and for the distinguished vertices Js1 and Js2 of the graph ISG([m], ∆>). Let R
be an (n−1)-dimensional subspace of the spaceℝn, and (2.44) the corresponding fam-
ily of subspace pairs, which in its turn is assigned the graph of the independence sys-
tem ISG([m], ∆>

R). Let ψ : ISG([m], ∆>
R) → ISG([m], ∆>) be the graph homomorphism

mentioned in Lemma 2.34; according to this lemma, in the graph ISG([m], ∆>
R) there

exist vertices J∗t1 and J∗t2 such that J∗t1 = Js1 , J∗t2=Js2 , and ψ(J∗t1 ) = Js1 , ψ(J∗t2 ) = Js2. By
the induction hypothesis, in the graph ISG([m], ∆>

R) there exists a simple (J∗t1 ↔ J∗t2)-
chain of length p ≤ ⌊m2 ⌋. Under the homomorphism ψ, this chain is mapped onto
a (ψ(J∗t1 ) ↔ ψ(J∗t2 ))-walk in the graph ISG([m], ∆>) containing p ≤ ⌊m2 ⌋ edges. One can
distinguish in this walk a simple (ψ(J∗t1) ↔ ψ(J∗t2 ))-chain containing at most p ≤ ⌊m2 ⌋
edges and linking the vertices Js1 and Js2 , because ψ(J∗t1 ) = Js1 and ψ(J∗t2 ) = Js2; this
completes the proof of the statement.

When constructing algorithms of extracting maximal feasible subsystems of sys-
tem (2.26), with the use of its graph MFSG(S), those properties of the graph MFSG(S)
play a significant role which characterize its type of connectedness. It turns out that
the graph of MFSs of the system S conditionally has a connectedness type, which is
stronger than just the connectedness certified by Theorem 2.20.

We will need an auxiliary statement that complements Theorem 2.25 and whose
proof is given on page 47; it touches on the degrees of vertices in MFSG(S).
Proposition 2.36. Suppose that for some k, 1 ≤ k ≤ n − 1, each subsystem with k + 1
inequalities of system (2.26) is feasible. Then the degree of any vertex Js in the graph
MFSG(S) is at least k + 1.
Proposition 2.37. If the rank of each subsystem with 3 inequalities of system (2.26)
equals 3, then its graph MFSG(S) is 2-connected.
Proof. According to Proposition 2.36, the graph MFSG(S) has at least four vertices:
#J ≥ 4; it suffices to show that MFSG(S) does not contain a cutvertex, that is a ver-
tex J ∈ J such that the subgraph MFSG(S)⟨J − {J}⟩ is disconnected.
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Suppose to the contrary that the graph of MFSs of system (2.26) has a cutver-
tex, say the vertex Jq, that is, the graph MFSG(S)⟨J − {Jq}⟩ is disconnected. With-
out loss of generality we will suppose that the vertices J1 and J2 belong in the sub-
graph MFSG(S)⟨J−{Jq}⟩ to distinct connected components. According to relation (2.37)
of Lemma 2.30, mmi(J1) ∩ ([m] − Jq) ̸= 0 and mmi(J2) ∩ ([m] − Jq) ̸= 0. Let us
choose arbitrary indices j1 ∈ mmi(J1) ∩ ([m] − Jq) and j2 ∈ mmi(J2) ∩ ([m] − Jq).
For the (n − 1)-dimensional faces F({j1}, J1) and F({j2}, J2) of the cones C>(J1) and
C>(J2), respectively, we have

H(J1) ∩ C>(J1 − {j1}) ̸= 0 and H(J2) ∩ C>(J2 − {j2}) ̸= 0 . (2.45)

Let us consider the families

{(C>(i) ∩H(j1), −C>(i) ∩H(j1)) : i ∈ [m] − {j1}} ,{(C>(i) ∩H(j2), −C>(i) ∩H(j2)) : i ∈ [m] − {j2}}
and

{(C>(i) ∩H(j1) ∩ H(j2), −C>(i) ∩ H(j1) ∩H(j2)) : i ∈ [m] − {j1, j2}} ; (2.46)

they are assigned the abstract simplicial complexes ∆>
H(j1), ∆>

H(j2) and ∆>
H(j1)∩H(j2), re-

spectively, defined in (2.41).
Since the implications

|L| = 3 󳨐⇒ dimH(L) = n − 3 (2.47)

are by condition true for all multi-indices L ⊆ [m], we conclude with the help of
Theorem 2.20 that the graphs of the independence systems ISG([m], ∆>

H(j1)) and
ISG([m], ∆>

H(j2)), isomorphic to the graphs ofMFSs of some rank n−1 linear inequality
systems, are connected.

Let us show that the graphof the independence system ISG([m], ∆>
H(j1)∩H(j2)) is not

edgeless. Let Js be some facet of the complex ∆>
H(j1)∩H(j2). Fix an arbitrary vector x∗ ∈

C>(Js)∩H(j1)∩H(j2). Then−x∗ ∈ C>(([m]−{j1, j2})− Js)∩H(j1)∩H(j2), because other-
wise, under the assumption that −x∗ ∈ −C>(j0) for some index j0 ∈ ([m]− {j1, j2})− Js,
we would obtain C>(Js) ∩C>(j0) ∩H(j1) ∩H(j2) ̸= 0, taking into account (2.47) – a con-
tradiction with the maximality of the feasible subsystem with the multi-index Js. As a
consequence, the subfamily, with the multi-index ([m] − {j1, j2}) − Js, of family (2.46)
has an intersection different from (0, 0), and thus there exists a facet Jt of the com-
plex ∆>

H(j1)∩H(j2) such that Jt ⊃ ([m] − {j1, j2}) − Js. Thus, {Js , Jt} is an edge of the graph
ISG([m], ∆>

H(j1)∩H(j2)).
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Note that, according to Lemma 2.21 (ii), the implications

L ⊆ [m] − {j1} , C>(L) ∩H(j1) ̸= 0 󳨐⇒ C>(L ∪ {j1}) ̸= 0 ,
L ⊆ [m] − {j2} , C>(L) ∩H(j2) ̸= 0 󳨐⇒ C>(L ∪ {j2}) ̸= 0 ,
L ⊆ [m] − {j1, j2} , C>(L) ∩H(j1) ∩ H(j2) ̸= 0 󳨐⇒ C>(L ∪ {j1, j2}) ̸= 0

hold.
These implications imply that there exist maps ψ1 : max ∆>

H(j1) → max ∆>, ψ2:
max ∆>

H(j2) → max ∆>,ψ3 : max ∆>
H(j1)∩H(j2) → max ∆>

H(j1) andψ4 : max ∆>
H(j1)∩H(j2) →

max ∆>
H(j2) such that the relations

J ∈ max ∆>
H(j1) 󳨐⇒ ψ1(J) ⊇ J ∪ {j1} ,

J ∈ max ∆>
H(j2) 󳨐⇒ ψ2(J) ⊇ J ∪ {j2} ,

J ∈ max ∆>
H(j1)∩H(j2) 󳨐⇒ ψ3(J) ⊇ J ∪ {j1} ,

J ∈ max ∆>
H(j1)∩H(j2) 󳨐⇒ ψ4(J) ⊇ J ∪ {j2} (2.48)

hold.
Themapsψ1,ψ2,ψ3, andψ4 are homomorphisms of the corresponding graphs of

independence systems. Since thegraphsof the independence systemsISG([m], ∆>
H(j1))

and ISG([m], ∆>
H(j2)) are connected, the subgraphs ISG([m], ∆>)⟨ψ1(max ∆>

H(j1))⟩
and ISG([m], ∆>)⟨ψ2(max ∆>

H(j2))⟩ are also connected.
Now let {Js, Jt} be an edge of the graph ISG([m], ∆>

H(j1)∩H(j2)), that is, Js ∪ Jt =[m] − {j1, j2}; then ψ3(Js) ∪ ψ4(Jt) = [m] and thus ψ1(ψ3(Js)) ∪ ψ2(ψ4(Jt)) = [m]. As
a consequence, the vertex ψ1(ψ3(Js)) ∈ ψ1(max ∆>

H(j1)) is adjacent in the graph
ISG([m], ∆>) to the vertex ψ2(ψ4(Jt)) ∈ ψ2(max ∆>

H(j2)), and thus the subgraph
ISG([m], ∆>)⟨ψ1(max ∆>

H(j1)) ∪ ψ2(max ∆>
H(j2))⟩ is connected. According to (2.48),

any vertex from ψ1(max ∆>
H(j1)) ∪ ψ2(max ∆>

H(j2)) contains either the index j1 or the
index j2, and because of j1, j2 ̸∈ Jq, we have Jq ̸∈ ψ1(max ∆>

H(j1))∪ψ2(max ∆>
H(j2)), that

is, the vertices from ψ1(max ∆>
H(j1)) ∪ ψ2(max ∆>

H(j2)) belong to the same connected
component of the subgraph ISG([m], ∆>)⟨J − {Jq}⟩. It follows from (2.45) that there
exist facets Jt1 ∈ ISG([m], ∆>

H(j1)) and Jt2 ∈ ISG([m], ∆>
H(j2)) such that Jt1 ⊇ J1−{j1} and

Jt2 ⊇ J2 − {j2}. Because of the maximality of the feasible subsystems with the multi-
indices J1 and J2, we see, taking into account (2.48), that ψ(Jt1 ) = J1 and ψ(Jt2 ) = J2;
thus, J1, J2 ∈ ψ1(max ∆>

H(j1)) ∪ ψ2(max ∆>
H(j2)), a contradiction with the assump-

tion that the vertices J1 and J2 in the graph ISG([m], ∆>)⟨J − {Jq}⟩ belong to distinct
connected components. This contradiction proves the proposition.

Proof of Proposition 2.36. As a matter of fact, we will present the proofs of several in-
dependent statements that lead to the result formulated in the proposition:
(A) Suppose that each subsystem with k + 1 inequalities, where 1 ≤ k ≤ n − 1, of

system (2.26) is feasible; let Js ∈ Jbe themulti-index of some of its MFS, andF(L, Js)
an arbitrary (n − k)-dimensional face of the cone C>(Js).
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The inclusion −F(L, Js) ⊂ C>([m] − Js) (2.49)

and the relation C>([m] − Js) ∩ C>(L) ̸= 0 hold.
⊳ Proof. Let us first show that inclusion (2.49) holds. Suppose to the contrary that there
exists an index j0 ∈ [m] − Js such that −F(L, Js) ̸⊂ C>(j0). Recall that the complement,
up to the index set [m], of the multi-index of any maximal feasible subsystem of the
system S is the multi-index of a feasible subsystem. Hence −F(L, Js) ⊂ −C>(Js) ⊆
C>([m] − Js) ⊆ C>(j0). Thus, two cases are only possible: (1) −F(L, Js) ∩C>(j0) ̸= 0 and
(2) −F(L, Js) ∩ C>(j0) = 0 and, as a consequence, −F(L, Js) ⊂ H(j0).
(1) Let us consider the first case, andpick two vectors x∗ ∈ −F(L, Js)∩C>(j0) and y∗ ∈−F(L, Js) ∩ H>(j0). Under λ > 0 we have the inclusion z∗ := −λx∗ + (1 + λ)y∗ ∈−C>(j0). Since x∗, y∗ ∈ −F(L, Js) and the set −F(L, Js) is convex and open with

respect to the subspaceH(L), then also z∗ ∈ −F(L, Js) ⊆ −C>(Js), for a sufficiently
small λ > 0. Thus, z∗ ∈ −C>(j0) ∩ −C>(Js). As a consequence, C>(j0) ∩ C>(Js) ̸= 0;
this contradicts the maximality of the feasible subsystem with the multi-index Js.

(2) Let us consider the second case, that is, −F(L, Js) ⊂ H(j0). Since the set −F(L, Js)
is open with respect to the subspace H(L), then H(L) ⊆ H(j0), that is, the rank
of the subsystem with the multi-index L ∪ {j0} equals the rank of the subsystem
with themulti-index L, namely k. Since in the systemS each subsystemwith k+1
inequalities is by convention feasible, the rank k subsystem with the multi-index
L∪{j0} is also feasible, that is,C>(L∪{j0}) ̸= 0. By definition,F(L, Js) ⊂ C>(Js − L);
on the other hand, by applying Lemma 2.21 (i) to the multi-index L ∪ {j0}, we ob-
tain F(L, Js) ⊂ H(L) = H(L ∪ {j0}) ⊆ C>(L ∪ {j0}). Thus, C>(Js − L) ∩ C>(L ∪ {j0}) ⊇
F(L, Js) ̸= 0 or C>(Js ∪ {j0}) ̸= 0; this contradicts the maximality of the feasible
subsystem with the multi-index Js.

Thus, inclusion (2.49) is proved.
Since −F(L, Js) ⊂ H(L) ⊆ C>(L), then C>(L) ∩ C>([m] − Js) ⊇ −F(L, Js) ̸= 0, and

thus C>(L) ∩ C>([m] − Js) ̸= 0, and this completes the proof of statement (A). ⊲
(B) Let A := {a1, . . . , ap} ⊂ ℝn, p ≥ 2; pick two vectors x∗, z∗ ∈ posA, x∗ ̸= z∗,

x∗ ∈ (y∗, z∗). Let b ∈ ℝn be a vector such that ⟨y∗, b⟩ > 0 and ⟨a, b⟩ ≥ 0, for each
vector a ∈ A.
Then posA ⊆ pos (A ∪ {y∗} − {x∗}).

⊳ Proof. Let us show that z∗ ∈ pos (A ∪ {y∗} − {x∗}).
If z∗ ∈ A then z∗ ∈ A ∪ {y∗} − {x∗} because z∗ ̸= x∗.
If x∗ ̸∈ A then pos (A − {x∗}) = posA and z∗ ∈ pos (A ∪ {y∗} − {x∗}).
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Now let z∗ ̸∈ A and x∗ ∈ A; specifically, let us set x∗ = a1. The expression
z∗ = α1x∗ + p∑

i=2 αiai , αi ≥ 0 , 1 ≤ i ≤ p , (2.50)

is true.
If α1 = 0 then z∗ ∈ pos (A − {x∗}) ⊆ pos (A ∪ {y∗} − {x∗}).
Suppose α1 > 0. Since x∗ = μz∗ + (1 − μ)y∗, for some μ, 0 < μ < 1, then (2.50)

implies that

z∗(1 − α1μ) = α1(1 − μ)y∗ + p∑
i=2 αiai , α1 > 0 , 0 < μ < 1 . (2.51)

By multiplying scalarly both sides of expression (2.51) by the vector b, we obtain

(1 − α1μ)⟨z∗, b⟩ = α1(1 − μ)⟨y∗, b⟩ + p∑
i=2 αi⟨ai , b⟩ . (2.52)

The right-hand side of (2.52) is positive because α1(1 − μ)⟨y∗, b⟩ > 0, and for all i,
2 ≤ i ≤ p, the relations ⟨ai , b⟩ ≥ 0 are fulfilled.

Since z∗ ∈ posA, we have ⟨z∗, b⟩ ≥ 0 and, as a consequence, 1 − α1μ > 0.
By dividing both sides of (2.51) by 1 − α1μ, we obtain z∗ ∈ pos (A ∪ {y∗} − {x∗});
this inclusion implies that x∗ ∈ (z∗, y∗) ⊂ pos (A ∪ {y∗} − {x∗}) and, as a conse-
quence, posA ⊆ pos (A ∪ {y∗} − {x∗}). Statement (B) is proved. ⊲

Recall two definitions. LetM ⊂ ℝn be a convex body. A point x∗ ∈ bdM is said to
be lightened from the outside by a source y∗ ∈ ℝn if there exists a point z∗ ∈ intM such
that x∗ ∈ (y∗, z∗). The set B ⊂ bdM is lightened from the outside by a source family
N ⊂ ℝn when each point is lightened from the outside by at least one source y∗ ∈ N.
(C) Let us consider system (2.26). Let M ⊂ [m], M ̸= 0,C>(M) ̸= 0, L ̸= 0, and letF(L,M)

be a face of dimension r, 0 ≤ r ≤ n − 1, of the cone C>(M). A point x∗ ∈ F(L,M) is
lightened from the outside by a source y∗ ∈ ℝn if and only if y∗ ∈ −C>(L).

⊳ Proof. The necessity. Let the point x∗ ∈ F(L,M) ̸= 0 be lightened from the outside by
the source y∗, that is, there exists a point z∗ ∈ C>(M) ⊆ C>(L) such that x∗ ∈ (y∗ , z∗),
that is, x∗ = αz∗ + (1 − α)y∗, where 0 < α < 1. Further, x∗ ∈ H(L) ∩ C>(M − L),
z∗ ∈ C>(M); as a consequence, for y∗ = 1

1−α x∗− α
1−α z∗wehave ⟨ai , y∗⟩ = 1

1−α ⟨a i , x∗⟩−
α

1−α ⟨ai , z∗⟩ < 0, for each index i ∈ L, that is, y∗ ∈ −C>(L).
The sufficiency. Let y∗ ∈ −C>(L), x∗ ∈ H(L) ∩ C>(M − L). Let us consider a vector

z∗ := −εy∗ + (1 + ε)x∗, where ε > 0. Then −εy∗ ∈ C>(L) and (1 + ε)x∗ ∈ H(L) ∩
C>(M − L) ⊆ C>(L); as a consequence, z∗ ∈ C>(L) for any ε > 0, and z∗ ∈ C>(M − L)
for a sufficiently small ε > 0; therefore, z∗ ∈ C>(M) for a sufficiently small ε > 0.
Since x∗ = 1

1+ε z∗ + ε
1+ε y∗, where ε > 0, we have x∗ ∈ (y∗, z∗), that is, the point x∗ is

lightened from the outside by the source y∗. ⊲
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(D) Suppose that for some k, 1 ≤ k ≤ n − 1, each subsystem with k + 1 inequalities
of system (2.26) is feasible; let Js be the multi-index of some of its maximal feasible
subsystem, q the degree of the vertex Js in the graph MFSG(S),N(Js) := {Js1 , . . . , Jsq}
the neighborhood of the vertex Js in the graph MFSG(S), and y∗i ∈ −C>(Jsi ) some
representatives of the sets −C>(Jsi ), 1 ≤ i ≤ q.
Each (n − k)-dimensional face F(L, Js) of the cone C>(Js) is lightened from the out-
side by the source family N := {y∗i : 1 ≤ i ≤ q}.

⊳ Proof. Under the hypothesis of statement (D) for an (n−k)-dimensional faceF(L, Js)
of the cone C>(Js), we see that C>([m] − Js) ∩ C>(L) ̸= 0, in accordance with state-
ment (A). As a consequence, there exists a MFS with a multi-index Jp ⊇ ([m] − Js) ∪ L,
and since Jp ∪ Js = [m], then Jp ∈ {Jsi : 1 ≤ i ≤ q}. Specifically, let Jp = Js1 .
Then y∗s1 ∈ −C>(Js1) = −C>(Jp) ⊆ −C>(L) and, according to statement (C), the face
F(L, Js) is lightened from the outside by the source y∗s1 ∈ N; this completes the
proof. ⊲
(E) Let us consider system (2.26). Let 0 ̸= M ⊂ [m], C>(M) ̸= 0, r := dimH(M) < n − 1,

and suppose that all (r+1)-dimensional faces of the cone C>(M) are lightened from
the outside by a source family N and, besides, there exists a vector b ∈ ℝn such that⟨y∗, b⟩ > 0, for each y∗ ∈ N, and ⟨c, b⟩ ≥ 0, for each c ∈ C>(M).
Then C>(M) ⊆ pos (H(M) ∪ N).

⊳ Proof. Let vectors b1, b2, . . . , br ∈ H(M) represent a basis of the space H(M), and
let us consider the vector b0 := −b1 − b2 − ⋅ ⋅ ⋅ − br. We set B := {b0, b1, . . . , br}. Let
us choose, for each (r+1)-dimensional faceF(L,M) of the cone C>(M), one represen-
tative x∗ ∈ F(L,M), and let us form the set {xj : 1 ≤ j ≤ l} containing precisely these
points; let l be the number of the (r + 1)-dimensional faces of the cone C>(M); note
that l > 0 because dimH(M) = r and C>(M) ̸= 0. It is well known that

C>(M) = pos (B ∪ {x∗j : 1 ≤ j ≤ l}) . (2.53)

By convention, the set {x∗j : 1 ≤ j ≤ l} is lightened from the outside by the source
family N. Let us assign to each point x∗j , 1 ≤ j ≤ l, a source y∗j that lighten x∗j from
the outside. Then it follows from the definition that for each number j, 1 ≤ j ≤ l, there
exists a point z∗j ∈ C>(M) such that

x∗j ∈ (z∗j , y∗j ) . (2.54)

By the hypothesis of the statement, we have

⟨c, b⟩ ≥ 0 , ∀c ∈ C>(M) and ⟨y∗j , b⟩ > 0 , 1 ≤ j ≤ l . (2.55)

Besides,
x∗j ̸= y∗j , 1 ≤ i, j ≤ l and x∗j ̸∈ H(M) , 1 ≤ i ≤ l . (2.56)
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By using statement (C) and relations (2.53), (2.54), and (2.56), let us write down
the chain of inclusions

pos (H(M) ∪ {x∗1 , x∗2 , . . . , x∗l−1, x∗l }) ⊆ pos (H(M) ∪ {y∗1 , x∗2 , . . . , x∗l−1, x∗l })⊆ ⋅ ⋅ ⋅ ⊆ pos (H(M) ∪ {y∗1 , y∗2 , . . . , y∗l−1, x∗l }) ⊆ pos (H(M) ∪ {y∗1 , y∗2 , . . . , y∗l−1, y∗l })⊆ pos (H(M) ∪ N) . (2.57)

Relations (2.53) and (2.57) imply the inclusion C>(M) ⊆ pos (H(M) ∪ N), which com-
pletes the proof. ⊲

Let Js be the multi-index of an arbitrary maximal feasible subsystem of sys-
tem (2.26), q the degree of the vertex Js in the graph MFSG(S) of that system, N(Js) :={Js1 , . . . , Jsq} the neighborhood of the vertex Js in the graph MFSG(S), and y∗i ∈−C>(Jsi ) some representatives of the open cones −C>(Jsi ), 1 ≤ i ≤ q. Let r0 be the
least integer such that all r0-dimensional faces of the cone C>(Js) are lightened from
the outside by the source set {y∗i : 1 ≤ i ≤ q}. Since, according to statement (D),
all (n − k)-dimensional faces of the cone C>(Js) are lightened from the outside by the
source family {y∗i : 1 ≤ i ≤ q}, then r0 ≤ n − k ∈ [n − 1].

The following assertion is true:
(F) Under the hypothesis of Proposition 2.36, there exists a cone C>(M), M ⊆ Js, such

that dimH(M) = r0 − 1, all r0-dimensional faces of the cone C>(M) are lightened
from the outside by a source family N := {y∗i : 1 ≤ i ≤ q}, and there exists a vec-
tor b ∈ ℝn such that ⟨y∗, b⟩ > 0 for each y∗ ∈ N, and ⟨c, b⟩ ≥ 0 for each c ∈ C>(M).

⊳ Proof. According to Lemma 2.26, Jsi ∩ Js ̸= 0, for each i, 1 ≤ i ≤ q; therefore, C>(Jsi ) ∩−C>(Js) ̸= 0, 1 ≤ i ≤ q. As a consequence, {y∗i : 1 ≤ i ≤ q} ∩ −C>(Js) = 0, and
therefore, because of statement (C), the face F(Js , Js) = H(Js) of dimension dimH(Js)
is not lightened from the outside by the source family {y∗i : 1 ≤ i ≤ q}. Since the
face F(Js , Js) = H(Js) is of dimension that is minimal among all faces of the cone
C>(M), then r0 > dimH(Js) and, by the definition of the quantity r0, there exists
an (r0 − 1)-dimensional faceF(M, Js) of the cone C>(Js), which is not lightened from
the outside by the source family {y∗i : 1 ≤ i ≤ q}. Let us show that the cone C>(M)
satisfies statement (E). Let us show that

F(M, Js) ∩ −C>([m] − Js) = 0 . (2.58)

Assume the converse. Then, becauseofF(M, Js)⊂H(M), wehaveH(M)∩C>([m]−Js) ̸=0
and, according to Lemma 2.21 (ii), C>(M) ∩ C>([m] − Js) ̸= 0, from where we conclude
that there exists a maximal feasible subsystem with a multi-index Jp ⊇ M ∪ ([m] − Js).
Since Jp ∪ Js = [m], then Jp ∈ {Js1 , . . . , Jsq}. Specifically, let Jp = Js1 . Then the face
F(M, Js) is lightened from the outside by a source y∗s1 ∈ −C>(Js1) ⊆ −C>(M); this
contradicts the choice of the faceF(M, Js). This contradiction proves (2.58).
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On the other hand,F(M, Js) ⊂ C>(Js) ⊂ −C>([m] − Js). Taking into account (2.58),
wehaveF(M, Js) ⊆ −C>([m]−Js)−(−C>([m]−Js)). Since−C>([m]−Js)−(−C>([m]−Js)) ⊂⋃j∈[m]−Js H(j), the inclusion F(M, Js) ⊂ ⋃j∈[m]−Js H(j) holds, and thus there exists an
index j0 ∈ [m] − Js such thatF(M, Js) ∩H(j0) ̸= 0. Let us show that C>(M) ∩C>(j0) = 0.
Suppose to the contrary that C>(M) ∩ C>(j0) ̸= 0. Then we derive from the rela-
tions F(M, Js) ∩ H(j0) = H(M) ∩ C>(Js − M) ∩ H(j0) ̸= 0 and C>(M) ∪ {j0} ̸= 0, in
accordance with Lemma 2.21 (ii), that C>(M) ∩ C>(Js − M) ∩ C>(j0) = C>(Js ∪ {j0}) ̸= 0,
j0 ∈ [m] − Js – a contradiction with the maximality of the feasible subsystem with
the multi-index Js; thus, C>(M) ∩ C>(j0) = 0. Since C>(M) ∩ C>(j0) = 0 and the
sets C>(M) and C>(j0) are open in ℝn, then C>(M) ∩ C>(j0) = 0; as a consequence,
C>(M) ⊂ −C>(j0). Since C>(M) ⊂ −C>(j0) and −C>(Jsi ) ⊂ −C>([m] − Js) ⊆ −C>(j0),
1 ≤ i ≤ q, the vector b ∈ ℝn in statement (F) can be replaced with the vector −aj0 for
which −C>(j0) = {x ∈ ℝn : ⟨−aj0 , x⟩ > 0}.

Now suppose L0 ⊂ M, and let F(L0,M) be an arbitrary r0-dimensional face of
the cone C>(M); such faces in the cone C>(M) do exist because dimH(M) = r0 − 1
and C>(M) ̸= 0. Let us show that then F(L0, Js) represents an r0-dimensional face of
the cone C>(Js), thus,F(L0, Js) = H(L0) ∩ C>(Js − L0) ̸= 0. Let us pick two vectors x∗ ∈
F(M, Js) = H(M)∩C>(Js−M) = H(L0)∩H(M−L0)∩C>(Js−M) ̸= 0 and y∗ ∈ F(L0,M) =
H(L0) ∩ C>(M − L0) ̸= 0. Since L0 ⊂ M ⊂ [m], then for the vector z∗ := x∗ + εy∗ we
have z∗ ∈ H(L), for any ε; z∗ ∈ C>(M − L0) for any ε > 0, and z∗ ∈ C>([m] − M) for
a sufficiently small ε; as a consequence, z∗ ∈ H(L0) ∩ C>(M − L0) ∩ C>([m] − M) =
H(L0) ∩C>(Js − L0) = F(L0, Js) ̸= 0 for a sufficiently small ε > 0. SinceF(L0, Js), being
an r0-dimensional face of the cone C>(Js), is lightened from the outside by the source
family {y∗i : 1 ≤ i ≤ q}, according to statement (C), −C>(L0) ∩ {y∗i : 1 ≤ i ≤ q} ̸= 0;
as a consequence, according to statement (C), the face F(L0,M) of the cone C>(M) is
lightened from the outside by the source family {y∗i : 1 ≤ i ≤ q}; this completes the
proof of statement (F). ⊲

Nowwe can complete the proof of Proposition 2.36. For the coneC>(M) from state-
ment (F), according to statement (E), we have C>(M) ⊆ pos (H(M) ∪ {y∗i : 1 ≤ i ≤ q}).
Since dimH(M) = r0 −1 and the cone C>(M) is n-dimensional, then the rank of the set{y∗i : 1 ≤ i ≤ q} is at least n − (r0 −1); as a consequence, q ≥ n − (r0 −1), and q ≥ k +1
because r0 ≤ n − k. Proposition 2.36 is proved.
Recall some basic properties of 2-connected graphs:

Proposition 2.38. LetG be a simple connected graph. Then the following assertions are
equivalent:
(1) the graph G is 2-connected;
(2) any two vertices of the graph G belong to some simple cycle;
(3) any vertex and any edge of the graph G belong to some simple cycle;
(4) any two edges belong to a simple cycle;
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(5) for any two vertices a and b, and for any edge E, there exists a simple (a ↔ b)-chain,
containing E;

(6) for any three vertices a, b and c, there exists a simple (a ↔ b)-chain going through c.
The following statement summarizes Propositions 2.37 and 2.38:

Corollary 2.39. If the rank of each subsystem with three inequalities of system (2.26)
equals 3, then the following assertions are equivalent:
(1) The multi-indices of any two MFSs Ji1 and Ji2 of the system S belong to a simple

cycle of the graph MFSG(S);
(2) the multi-index of any MFS Ji1 and the multi-indices of any two MFSs Ji2 and Ji3 ,

such that Ji2 ∪ Ji3 = [m], belong to a simple cycle of the graph MFSG(S);
(3) the multi-indices of any four MFSs Ji1 , Ji2 , Ji3 , and Ji4 , such that Ji1 ∪ Ji2 = Ji3 ∪ Ji4= [m], belong to a simple cycle of the graph MFSG(S);
(4) for themulti-indices of any twoMFSs Ji1 and Ji2, and for themulti-indices of any pair

of MFSs Ji3 and Ji4 , such that Ji3 ∪ Ji4 = [m], there exists a simple (Ji1 ↔ Ji2)-chain
of the graph MFSG(S) containing the pair of multi-indices Ji3 and Ji4;

(5) for the multi-indices of any three MFSs Ji1 , Ji2 , and Ji3 , there exists a simple(Ji1 ↔ Ji2)-chain of the graph MFSG(S) going through the vertex Ji3 .
2.4 The hypergraph of maximal feasible subsystems of an

infeasible system of linear inequalities

An analysis of covers of the index set of the inequalities of system (2.26) by arbitrary
families of the multi-indices of its MFSs leads to a natural generalization of the notion
of graph of MFSs, which represented the research subject in Section 2.3:

The hypergraph MFSH(S) of maximal feasible subsystems (hypergraph of MFSs) of
the systemS is defined as follows:
– the vertex set of the hypergraph MFSH(S) is the family J of the multi-indices of MFSs

of the systemS;
– the hyperedge family of the hypergraph MFSH(S) is the family of all the unordered

collections J ⊆ J of the multi-indices of MFSs of the system S that cover the index
set of the inequalities of the system:

⋃
J∈J J = [m] .

The properties of the hypergraph of MFSs of a rank 2 system S over ℝ2 are well
studied and thus augment the information from Proposition 2.33 on the graph of MFSs
of this system:

Let J := {J1, . . . , Jq}; recall that the number q of maximal feasible subsystems of
the systemS is odd, that is, q = 2t + 1 for some t. Let us consider a {0, 1}-matrixM of
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sizem × qwhose (j, i)th entry mji by definition is

mji :={{{
1 , if j ∈ Ji ,
0 , if j ̸∈ Ji .

Let us re-index the inequalities and multi-indices of MFSs of the system S in such a
way that the matrix M gets a presentation suitable for consideration. For this to be
done, let us assign to each inequality of the systemS a directing unit vector cj of the
line {x ∈ ℝ2 : ⟨a j , x⟩ = 0}, by choosing between the two possible vectors the unique
vector such that, whenmoving along the line in the direction prescribed by it, the half-
plane {x ∈ ℝ2 : ⟨aj , x⟩ > 0} is left on the right-hand side. Without loss of generality,
we will suppose that the multi-indices J1, . . . , Jq of maximal feasible subsystems of
the system S are indexed in the ascending order with respect to the polar angles of
the corresponding vectors cj, supposing that the index 1 is assigned to the directing
vector of the left boundary of the solution cone to the maximal feasible subsystem
with the multi-index J1.

Under the chosen numeration of the inequalities andmulti-indices of MFSs of the
systemS, the matrixM obtains the following form:

M :=
((((((((((
(

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1

))))))))))
)

.

The index of each inequality is included in the multi-indices of precisely t + 1
MFSs; since in the matrixM there are precisely q = 2t + 1 pairwise distinct rows, then
the indices of the inequalities that compose the systemS, are partitioned into q equiv-
alence classes: the inequalities with indices j1 and j2 are included in themulti-indices
of the sameMFSs if and only if they are representatives of the same class (respectively
when the rows of the matrixM, with the indices j1 and j2, coincide.) Let us index the
equivalence classes of the inequalities of the system S, in natural order, by the inte-
gers 1, . . . , q.

Let us consider the hypergraph (J, E) := MFSH(S), on the vertex set J, with the
hyperedge family E, of a rank 2 system S. For investigating the structure of the hy-
peredge family E, it suffices to leave for consideration the index of one inequality for
each equivalence class, by considering – instead of the initial matrixM – the square{0, 1}-matrixM󸀠 of size q × q:
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M󸀠 :=

((((((((((((((((((((((((
(

t + 1
1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1 1

1 1 0
. . .

. . . 0
. . .

. . . 1
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

1
. . .

. . . 1 0
. . .

. . . 0 1

t + 1 1
. . .

. . .
. . . 1 0

. . .
. . . 0

0 1
. . .

. . .
. . . 1

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0

...

0
. . .

. . . 1
. . .

. . .
. . . 1 0

0 0 ⋅ ⋅ ⋅ 0 1 1 ⋅ ⋅ ⋅ 1 1

))))))))))))))))))))))))
)

.

According to the description of the matrixM󸀠, the vertex J1 is, for example, included
into two-element hyperedges {J1, Jt+1} and {J1, jt+2}. The following assertion poses
a condition on the indices of the vertices that are included in some vertex subset
U ⊂ J, necessary and sufficient for the inclusion U ∈ E to hold. When we write U :={Ji1 , Ji2 , . . . , Jis } below we will mean that the ordering i1 < i2 < ⋅ ⋅ ⋅ < is is the case.
Proposition 2.40. A vertex subset U := {Ji1 , . . . , Jis } of the hypergraph (J, E) :=
MFSH(S) is its hyperedge, that is, U ∈ E, if and only if for each k ∈ [s] the condition

(i(k (mod s))+1 − ik) (mod q) ≤ t + 1
is satisfied.

Proof. The sufficiency follows from the structure off the matrixM󸀠.
The necessity. Let U ∈ E. Then ⋃s

k=1 Jik = [m], by the definition of the hyper-
graph MFSH(S). Let us show that, for example, i2 − i1 ≤ t + 1. Note that into the
maximal feasible subsystem with a multi-index Jk are included all the inequalities-
representatives of the classes onlywith the numbers: k, (k (mod q))+1, . . ., (k+(t−1))(mod q) + 1. Let us consider an arbitrary inequality with an index τ from the class((i1 + t) (mod q)) + 1. We have τ ̸∈ Ji1 and, as a consequence, there exists k ∈{2, 3, . . . , s} such that τ ∈ Jik . Thus, all the inequalities from the specified class are
included in theMFSwith themulti-index Jik , that is, either ik = ((i1+ t) (mod q))+1 or
there exists e ∈ {0, 1, . . . , t−1} such that ((ik +e) (mod q))+1 = ((i1+ t) (mod q))+1.
In the first case, ik − 1 = (ik − 1) (mod q) = (i1 + t) (mod q), hence ik − i1 = (ik − i1)(mod q) = (t+1) (mod q) = t+1. In the second case, ik− i1 = (ik− i1) (mod q) = (t−e)(mod q) = t − e ≤ t. Since i2 − i1 ≤ ik − i1 then i2 − i1 ≤ t + 1. The proposition is
proved.

In particular, it follows from Proposition 2.40 that if the number q := #J of maximal
feasible subsystems of the system S is quite large, then the hyperedge family E of
the hypergraph MFSH(S) has hyperedges that contain no two-element hyperedges as
subsets.
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Notes

The graphs of independence systems that describe the covers of the vertex sets of any
abstract simplicial complexes by pairs of their facets – the research subject in Sec-
tion 2.1 –were studied inworks [48, 53]. They are a natural generalization of the notion
of the graph of MFSs of a finite infeasible system of linear inequalities.

Homomorphisms (simplicialmaps) of simplicial complexes arebasic tools of com-
binatorial topology, see, for example, [121, 130, 132].

In Section 2.1, we use the standard terminology (open and closed sets, connected-
ness, density, continuous maps, and so on) of general topology which is presented in
various texts; we will point out at just a few sources: [4, 6, 11, 22, 38, 44, 73, 77].

The connectedness regarded from different points of view is one of the most im-
portant sides of the description of graphs of general kind, see [13, 28, 32, 67, 104, 136,
147, 156, 166].

Formulating Remark 2.13, we use the information on algebraic varieties from [23].
The notion of hypergraph of an independence system discussed in Section 2.2 re-

produces the construction of the hypergraph of maximal feasible subsystems of an
infeasible system of constraints, see, for example, [76, 98] and references mentioned
in these surveys. Proposition 2.19 is a reformulated Theorem 3.1 from [76] which in its
turn is borrowed from [74].

Linear inequality systems are a fundamental subject of pure and applied mathe-
matical research, see, for example, [17, 39–43, 146]; recall that in Section 2.3 we ad-
dress an analysis of the combinatorial properties of a particular class of infeasible
systems of the form (2.26) because of their significance in the simulation of the con-
tradictory problems of pattern recognition.

The notion of graph of MFSs of a finite infeasible system of linear inequalities was
introduced by the second and third authors of work [58] as a result of a generalization
of constructions presented in [148].Works in [47, 51, 58] are devoted to a detailed study
of the properties of the graph of MFSs.

The proof of Theorem 2.20 describes one of several approaches to the verification
of the connectedness of the graph of MFSs of infeasible system (2.26). The first result
in this directionwas the derivation, by the second author ofwork [58], of Theorem 2.20
from the assertion, proved by him, on the connectedness of the square of the graph
of MFSs. Another justification of the statement is provided by the proof of Theorem 2
from [58]. The proof of Theorem 2.20 given in Section 2.3 follows the works [48, 53].

Theorem 2.25 (i) is proved in work [148] and reproduced in [58] as Theorem 1.
The proof of Theorem 2.28 is, in particular, based on the well-known observation

that a graph is bipartite if and only if all its simple cycles are of even length, see, for
example, [67, 165].

One component of the proof of Proposition 2.33 is an important proposition pre-
sented in [94], according to which the number of MFSs of an infeasible rank 2 sys-
tem (2.26) over ℝ2 is odd and it does not exceed m.
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In the proof of Proposition 2.35 (iii) we mention the observation verified in [165],
according to which in a walk between two vertices of a graph one can distinguish a
simple chain linking them.

In section (A) of the proof of Proposition 2.36, we use the assertion that the com-
plement of any MFS of infeasible system (2.26) is feasible; the proof of this fact is pre-
sented in [148].

The terminology related to the lightening of convex bodies, which we recall
on page 49 is borrowed from [20].

The list of basic properties of bipartite graphs presented in Proposition 2.38 is the
content of Theorem 34.1 from [104].

The properties of the hypergraph of MFSs of an infeasible rank 2 system (2.26)
over ℝ2, described in Section 2.4, are borrowed from survey [76]. Proposition 2.40 re-
produces Proposition 3.1 from [76], which in its turn can be found in [74].



3 Polytopes, positive bases, and inequality systems

In this chapter, we study some combinatorial and structural properties of convex poly-
topes, positive bases of vector spaces, and infeasible systems of linear inequalities.

Itwas shown in theprevious chapters that infeasible systemsof linear inequalities
inherit their significant properties from other fundamental mathematical construc-
tions. For example, being infeasible systems with the monotonicity property, systems
of linear inequalities can additionally be described in the language of abstract simpli-
cial complexes. The connectedness of the graphs of maximal feasible subsystems of
such systems follows from the fundamental topological property of the connectedness
of the spaceℝn.

Infeasible systems of linear inequalities are our main subject of consideration in
the present and subsequent chapters. Vector spaces and convex polytopes play in
a sense a subordinate role for the following reason: the combinatorial properties of
rank n infeasible systems with m homogeneous strict liner inequalities over ℝn can
be investigated via the properties of anm-point subset of the spaceℝm−n−1. Moreover,
under appropriate circumstances, the properties of inequality systems turn out to be
equivalent to the properties of (m − n − 1)-dimensional convex polytopes. In an anal-
ysis of infeasible systems of linear inequalities by means of a study of polytopes, the
notions of faces and diagonals of polytopes play an important role. In an investigation
of the construction of the family of minimal infeasible subsystems, it is important to
understand the structure of positive bases of ℝn.
3.1 Faces and diagonals of convex polytopes

In plane geometry, the notion of diagonal plays a role similar to that played by the
notion of side of a polygon. In higher dimensions, sides of polygons are general-
ized to faces playing an important role in problems of combinatorial classification of
polytopes. The notion of diagonal deserving the same attention has less successful
d-dimensional fate.

In this section, we consider three possible generalizations of the notion of diago-
nal to an arbitrary d-dimensional case. Each of them can be taken as the basis of some
combinatorial classification of polytopes, and in the case of the so-called G-diagonals
one obtains a classification agreeing with the conventional one defined by the struc-
ture of faces.

Weuse the standardnotation: aff for theaffinehull, pos for thepositivehull, conv
for the convex hull, ri for the relative interior, rbd for the relative boundary, vert for
the vertex set, and dim for the affine dimension.
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Three notions of diagonals and their relationships

We consider convex and bounded polytopes only. The polytopes of dimension d are
called, for brevity, d-polytopes. Speaking of the faces of a polytope, we always mean
proper faces, that is, the faces different from the empty set and the entire polytope.

Recall that a cyclic d-polytope is the convex hull of a finite m-subset, m > d, of
points of themoment curve (t, t2, . . . , td), where t ∈ ℝ, t ̸= 0.

A k-neighborly polytope is a polytope such that any of its k-subsets of vertices
are the vertex sets of some faces. It is well known that the cyclic d-polytope is⌊ d2 ⌋-neighborly.

We will say that a polytope P is obtained from polytopes P1,P2, . . . ,Pk by the
operation of cross, and use in this case the notation P = P1⊥P2⊥ ⋅ ⋅ ⋅ ⊥Pk, when
dimaffP = ∑j∈[k] dimaffPj and the intersection⋂j∈[k] riP is nonempty and, as a con-
sequence, it represents a unique point.

Let us consider two auxiliary statements:

Lemma 3.1. If P := P1⊥P2⊥ ⋅ ⋅ ⋅ ⊥Pk, then the faces of the polytope P are precisely all
the sets of the form FFF = conv (FFFj1 ∪ FFFj2 ∪ ⋅ ⋅ ⋅ ∪ FFFjs ), where FFFj is a face ofPj; here FFFj ̸= Pj ,
j ∈ {j1, j2, . . . , js} ⊂ [k].
Proof. Since P1⊥P2⊥ ⋅ ⋅ ⋅ ⊥Pk = (P1⊥P2⊥ ⋅ ⋅ ⋅ ⊥Pk−1)⊥Pk, it suffices to prove the
lemma for the case k = 2. Let FFFi be faces of the polytopes Pi, i ∈ [2], and thus of the
polytope P. Let us prove that conv (FFF1 ∪ FFF2) is also a face ofP. Let H i be a supporting
hyperplane of Pi in affPi, FFFi = H i ∩ Pi, i ∈ [2]. Note that dimaff (H1 ∪ H2) = d − 1.
Let H := aff (H1 ∪ H2). Taking into account that H is a hyperplane in affPi, we see
that H i = H ∩ affPi, i ∈ [2]; thus, the hyperplane H supports both P1 and P2 and,
because of riP1 ∩ riP2 ̸= 0, it also supports P. It is clear that conv (FFF1 ∪ FFF2) = H ∩P.
Now suppose that FFF is a face of P, and H is a hyperplane supporting P in ℝd, such
that FFF = H ∩ P. Let Vi := vert (FFF ∩ Pi), i ∈ [2]. We see that FFFi = convVi is a face of Pi
because convVi = H ∩Pi, and Pi ̸⊂ H because {z} = riP1 ∩ riP2 ⊂ riP ̸⊂ H.
Lemma 3.2. Let P1 and P2 be polytopes; let H1 := affP1 and H2 := affP2 be skew
planes, and FFF1 and FFF2 are faces of the polytopes P1 and P2, respectively. Then
conv (FFF1 ∪ FFF2) is a face of the polytope conv (P1 ∪P2).
Proof. Let d1 := dimH1 and d2 := dimH2. Let us choose a di-simplex Si ⊃ Pi con-
taining the set FFFi = rbdSi ∩Pi inside of some of its face Qi, i ∈ [2]. The statement now
follows from the observation that conv (S1 ∪S2) is a simplex, and conv (Q1 ∪Q2) is its
face.

Let P be a polytope, D ⫋ vertP. We will say that the set D (or the set convD – it will be
clear from the context) is
– anA-diagonal, if convD∩ riP ̸= 0, but for any proper subset D󸀠 ⫋ D the set convD󸀠

is a face of the polytope P;



60 | 3 Polytopes, positive bases, and inequality systems

– a G-diagonal, if convD ∩ riP ̸= 0, but any proper subset D󸀠 ⫋ D lies in some proper
face of the polytope P;

– an F-diagonal, if convD ∩ riP = ri convD ∩ riP ̸= 0.
We will denote the family of all A-, G- and F-diagonals of the polytope P by DA(P),
DG(P), and DF(P), respectively; the family of all r-dimensional diagonals (or r-
diagonals) will be denoted byDr

A(P), Dr
G(P), andDr

F(P), respectively. The following
statement follows immediately from the definition of diagonals:

Proposition 3.3. For A-, G-, and F-diagonals of a d-polytope P the following relations
hold:

Dr
A(P) ⊂ Dr

G(P) ⊂ Dr
F(P), r ∈ [d − 1] ; (3.1)

D0
A(P) = D0

G(P) = D0
F(P) = Dd

A(P) = Dd
G(P) = Dd

F(P) = 0 ; (3.2)
D1

A(P) = D1
G(P) = D1

F(P) . (3.3)

Another observation on the relationship between the notions of F- and G-diagonals:

Proposition 3.4. An F-diagonal D of a polytope P is a G-diagonal if and only if P is a
simplex.

Proposition 3.5. Let P be a pyramid, namely P := conv ({v} ∪ P), for some polyhedral
basis P󸀠 and a point v ̸∈ affP󸀠. Then

DA(P) = 0 ; (3.4)
DG(P) = {D = {v} ∪ D󸀠 : D󸀠 ∈ DG(P󸀠)} ; (3.5)
DF(P) = {D = {v} ∪ D󸀠 : D󸀠 ∈ DF(P󸀠)} . (3.6)

Proof. If D is a diagonal of the polytopeP, of any type, then v ∈ D, because otherwise
the convex hull convD would lie in a face of P. By a similar argument, in all three
cases the relation (D − {v}) ∩ riP󸀠 ̸= 0 (3.7)

holds.
Now in the case (3.4) the set conv (D − {v}), being a face of the polytope P, must

coincide with P󸀠, that is, convD = P, and thus D = vertP, a contradiction.
For (3.5), the set D󸀠 = D − {v} is inclusion-minimal with respect to property (3.7) if

and only if D is minimal with respect to the property convD ∩ riP ̸= 0; relation (3.5) is
thus proved.

As to relation (3.6), it should bementioned that the fulfillment of rbdD󸀠∩ riP󸀠 ̸= 0
is equivalent to the fulfillment of rbdD ∩ riP ̸= 0.
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Proposition 3.6. Let P := P1⊥P2⊥ ⋅ ⋅ ⋅ ⊥Pk. Then

DA(P) = ⋃
j∈[k]DA(Pj) ∪ {Pi : Pi is a simplex} ; (3.8)

DG(P) = ⋃
j∈[k]DG(Pj) ∪ {Pi : Pi is a simplex} ; (3.9)

DF(P) = {D ⊂ vertP : convD = convDj1⊥convDj2⊥ ⋅ ⋅ ⋅ ⊥convDjm } , (3.10)

where either Dji ∈ DF(Pji ) or Dji = vertPji ; besides, {ji : Dji = vertPji } ⫋ [k].
Proof. In the cases (3.8) and (3.9), if D is a diagonal (of the corresponding type) of the
polytopeP, and Dj = D∩vertPj, then, in view of Lemma 3.1, we have convDj∩riP ̸= 0
for some j. Hence, because of the minimality property of diagonals of these types, we
obtain D = Dj, and Dj is a diagonal ofPj or, in the case wherePj is a simplex, Dj = Pj.

In the case (3.10), let us denote {z} := ⋂j∈[k] riPj. For j ∈ [l], let us denote Dj :=
D∩vertPj ̸= 0, and show that, under l ≥ 2,wehave z ∈ ri convDj, j ∈ [l]. Indeed, if z ̸∈
ri convD1, then ri convD1 ∩ ri conv (D − D1) = 0, convD1 ⊂ rbd convD, and conv (D −
D1) ⊂ rbd convD. Hence, by the definition of F-diagonals, convD1 ⊂ rbdP, convD2 ⊂
rbd (P2⊥ ⋅ ⋅ ⋅ ⊥Pk), and D1 ⊂ FFF1, D2 ⊂ FFF2, for some faces FFF1 and FFF2 of the polytopesP1
andP2⊥ ⋅ ⋅ ⋅ ⊥Pk, respectively; but, by Lemma3.1, the setFFF := conv (FFF1∪FFF2) is a face of
the polytopeP and it contains D, a contradictionwith the inclusion D ∈ DF(P). Thus,
under l ≥ 2, convD = convD1⊥convD2⊥ ⋅ ⋅ ⋅ ⊥convDl and, in view of Lemma 3.1,
rbd convD ⊂ rbdP implies the inclusion rbd convDj ⊂ rbdPj, that is, Dj ∈ DF(P)
or Dj = Pj. The case l = 1, that is, Dj = D, is obvious.
Proposition 3.7. Each vertex of an arbitrary polytope, which is not a simplex, is con-
tained in at least one its G-diagonal

We now ascertain the relationships between the following properties:
C1: a polytope P is cyclic;
C2: the vertex set vertP is in general position in affP;
C3: the polytope P is simplicial;
C4: DA(P) = DF(P);
C5: DA(P) = DG(P);
C6: DG(P) = DF(P).
Proposition 3.8. Defining, for any polytope P,

cij := {{{
1, if Ci ⇒ Ci ,
0, otherwise ,

we have (cij)i,j∈[6] = (
1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 0 1 0
0 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1

).
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Proof. The binary relation C, where iCj ⇔ cij = 1, is transitive; we will use below this
property without special mention.

The equalities cii = 1 for i ∈ [6], and c23 = c45 = c46 = 1, c32 = 0, are easily
verified.

Example 3.9. Let P := P1⊥P2, where P1 is a one-dimensional polytope, P2 is a(d − 1)-dimensional simplicial polytope, which is not a simplex. It is easily seen that P
is a simplicial polytope, and P2 is its F-diagonal, which is not a G-diagonal (Proposi-
tions 3.4 and 3.6.) ⊲
Example 3.9 yields c36 = 0, hence c34 = 0. Since any vertex subset of a simplex forms
its face, it follows immediately from the definitions that c35 = 1; hence c25 = 1. Taking
into account Proposition 3.6, Example 3.9 implies c56 = c54 = 0.

Proposition 3.4 yields c26 = 1; this observation and the equality c25 = 1 imply
c24 = 1.
Example 3.10. Let P be a pyramid whose basis P󸀠 is in general position in ℝd−1 :=
affP󸀠. ⊲
Because of the above-proved equality c26 = 1, we haveDG(P󸀠) = DF(P󸀠), fromwhere,
by Propositions 3.5 and 3.7, it follows that DG(P) = DF(P) ̸= 0; at the same time, by
Proposition 3.5,DA(P) = 0; thus, c65 = c64 = 0. It is known that ifP is a cyclic polytope
then vertP is a set in general position in ℝd, that is, c12 = 1. We now have c1j = 1,
3 ≤ j ≤ 6. In order to prove that c21 = 0, let us consider Example 3.9 in the situa-
tion where P2 is a simplex. In this case, the polytope whose vertices are obviously in
general position has the one-dimensional diagonal P1, and for this reason it is not
2-neighborly, and it cannot be cyclic. We now have ci1 = 0, 3 ≤ i ≤ 6.

It remains to show that c43 = c42 = c53 = c52 = c62 = 0. For this, it suffices to
check the property c43 = 0.
Example 3.11. Let {e1, e2, . . . , ed} be an orthonormal basis ofℝd. Let us define the sets

P1 := conv {±ei : i ∈ [d − 1]} ,
P2 := conv {v := ∑

i∈[d−1] αiei + ed : αi ∈ {−1, 1}, i ∈ [d − 1]} ,
P := conv (P1 ∪ P2) , H1 := affP1 , H2 := affP2 .

Wewill call a pair of vertices {u , v}, u ∈ vertP1, v ∈ vertP2,diagonal if ⟨u, v⟩ = −1,
that is, for u = αkek, αk ∈ {−1, 1}, we must have

v = −αkek + ∑
i∈[d−1] ,

i≠k
αiei + ed .

Let us show that the following two assertions are true:
(1) any diagonal pair of vertices {u, v} forms a diagonal of the polytopeP– it is obvious

that {u, v} ∈ DA(P) ⊂ DG(P) ⊂ DF(P);
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(2) any inclusion-maximal vertex subset of the polytope P, containing no diagonal
pairs, forms some face of P.

In order to prove (1) assume the converse. Let u := e1, v := −e1 +∑d−1
i=2 α̃iei + ed, where

α̃i ∈ {−1, 1}, 2 ≤ i ≤ d − 1. Further, let β := (β1, β2, . . . , βk), and let the equation⟨β, x⟩ = 1 determine a supporting hyperplane of P that contains the points u and v.
Since P contains the origin, we have ⟨β, x⟩ ≤ 1 for all x ∈ P. We thus obtain

⟨β, v⟩ = −β1 + ∑
2≤i≤d−1 α̃iβi + βd = 1 , (3.11)

⟨β, u⟩ = β1 = 1 , (3.12)

and for the vertex w := e1 + ∑2≤i≤d−1 α̃iei + ed, we have
⟨β,w⟩ = β1 + ∑

2≤i≤d−1 α̃iβi + βd ≤ 1 . (3.13)

Taking into account (3.12), relations (3.11) and (3.13) lead to a contradiction.
We now prove assertion (2). Let S be an inclusion-maximal subset of vertices of the

polytope P that contains no diagonal pairs. It is clear that it suffices to prove the case
where the sets S ∩ vertP1 and S ∩ vertP2 are both nonempty.

It follows from the definition of diagonal pairs that S ∩ vertP1 contains no pair{ej , −ej} for any j. Thus, without loss of generality we suppose that
S := {e1, e2, . . . , ek , e1 + e2 + ⋅ ⋅ ⋅ + ek + ∑

k+1≤i≤d−1αiei + ed :

αi ∈ {−1, 1}, k + 1 ≤ i ≤ d − 1} .
Let us define β := (β1, β2, . . . , βd) as follows:

βi := {{{{{{{
1, if i ∈ [k] ,
0, if k + 1 ≤ i ≤ d − 1 ,
1 − k, if i = d .

Note that for all vectors x ∈ S the equality ⟨β, x⟩ = 1 holds.
Now let x ∈ vertP − S. If x ∈ vertP1, then

⟨β, x⟩ = {{{
−1, if x = −ej , j ≤ k ,
0, if x = ±ej , k + 1 ≤ j ≤ d − 1 .

But if x ∈ vertP2 − S, that is, x = ∑0≤i≤d−1 αiei + ed, where αi ∈ {−1, 1}, i ∈[d − 1], and among α1, α2, . . . , αk there are numbers different from 1, then ⟨β, x⟩ =∑i∈[k] αi+(1 − k) < 1. Thus, for any vector x ∈ vertP − S, we have ⟨β, x⟩ < 1, and for
any vector x ∈ S, we have ⟨β, x⟩ = 1, that is, conv S is a face of the polytope P. ⊲
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Example 3.11 provides a nonsimplicial polytope P such that DG(P) = D1
G(P) =

D1
A(P) = DA(P), and it thus proves the equality c53 = 0. For the polytope P, we

haveDA(P) ̸= DF(P). For example,

S := {e1, −e1, e1 + ∑
2≤i≤d−1αiei + ed , −e1 + ∑

2≤i≤d−1 αie i + ed} ∈ DF(P) −DA(P) ;
this follows from the above-proved assertions (1) and (2).

The following example proves the stronger property c43 = 0.
Example 3.12. The desired polytope Q is obtained from P (see Example 3.11) by the re-
placement of the vertices ui ∈ vertP1 by sufficiently close vertices wi, i ∈ [2(d − 1)],
lying in the hyperplane H1. Let Ui be an ϵ-neighborhood of the point ui ∈ vertP in
the plane H1 := affP1, and wi ∈ Ui an arbitrary point, i ∈ [2(d − 1)]. Let us set
Q := conv (P2 ∪ {w1,w2, . . . ,w2(d−1)}).

We will call {wj , vi} ⊂ vertQ a diagonal pair for P if {uj , vi} is a diagonal pair for
the polytope P.

Note that the properties (1) and (2) of diagonal pairs P also remain true for di-
agonal pairs Q under the condition that ϵ > 0 is sufficiently small. It deserves ex-
planation (concerning (2)) that an inclusion-maximal vertex set containing no di-
agonal pairs and coinciding with neither vertP2 nor {w1,w2, . . . ,w2(d−1)} has the
form {w1,w2, . . . ,wk,w1 + w2 + ⋅ ⋅ ⋅ + wk + ∑k+1≤i≤d−1 αiui + ed : αi ∈ {−1, 1},
k + 1 ≤ i ≤ d − 1}, that is, it is composed of the points w1,w2, . . . ,wk and other points
lying in a (d − k − 1)-dimensional face of the cube P2, and it thus necessarily lies in
some hyperplane of ℝd. The latter, because of the small value of ϵ, will be close to the
corresponding hyperplane that supports P and, as a consequence, it also supports Q.

Now we describe an inductive approach to the choice of wi ∈ Ui, i ∈ [2(d − 1)],
which leads to a desired polytopeQ.

Suppose w1 := u1. Let the vectors w1,w2, . . . ,wr be already chosen. Let us con-
sider all the planes spanned by the subsets of the set vertP2 ∪ {w1,w2, . . . ,wr} and
not containing H1. By the Baire category theorem, their union does not cover H1. Let us
pick for wr+1 ∈ Ur+1 an arbitrary uncovered point.

Let us now show that the polytope Q does satisfy the prescribed conditionDF(Q) =
DA(Q).

Let S := {w1,w2, . . . ,wl , v1, v2, . . . , vm} be an arbitrary F-diagonal of the poly-
tope Q. In view of the above argument, it must contain a diagonal pair, say the pair{ws ,wt}.

We have chosen the vectors wi, i ∈ [2(d −1)], in such a way that E1 := aff {w1,w2,
. . . ,wl} and E2 := aff {v1,w2, . . . vm} are skew planes. Indeed, let E1 := w1 + L1,
E2 := w2 + L2, where L1 and L2 are linear subspaces of the space ℝd. Suppose to the
contrary that L is a one-dimensional linear subspace contained in L1 ∩ L2. Further, let j
be a number such that aff {w1,w2, . . .wj} ̸⊃ w1 + L ⊂ aff {w1,w2, . . . ,wj ,wj+1}. This
means that wj+1 ∈ aff {w1,w2, . . . ,wj} + L ⊂ aff {w1,w2, . . . ,wj , v1, v2, . . . , vm}, a
contradiction with the choice of wj+1.
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Now, if S ̸= {ws , vt} then, by Lemma 3.2, conv {ws , vt} is a face of conv S and, by the
definition of F-diagonals, conv {ws , vt} lies in some face of the polytopeQ. The obtained
contradiction yields S = {ws , vt}, that is,DF(Q) = D1

F(Q) = D1
A(Q) = DA(Q). ⊲

Thus, c43 = 0 is established.
Diagonals and combinatorial classification of polytopes

Two polytopes P and Q, whose face lattices are isomorphic, by definition have the
same combinatorial type. The relation “to have the same combinatorial type” is an
equivalence relation, and it determines a classification on the set of all polytopes. A
similar classification is also possible on the basis of the notion of diagonal.

Proposition 3.13. Let L be the face lattice of a bounded convex polytope P (which is
not a simplex) with the atom set La := {{v} : v ∈ vertP} and the coatom set Lc := {H ⊂
vertP : convH is a facet of P}. The following relations hold:

DG(P) = B ({I(H) ∩ La : H ∈ Lc}⊥) , (3.14){I(H) ∩ La : H ∈ Lc}⊥ = B(DG(P)) ; (3.15)
DG(P) = minDF(P) , (3.16)

DA(P) = {D ∈ DG(P) : D − {u} ∈ L, ∀u ∈ D} , (3.17)

where, as earlier, B(⋅) denotes the blocker of a set family; I(H) := {Y ∈ L : Y ⪯ H} is
the order ideal of the lattice L generated by its element H; {I(H) ∩ La : H ∈ Lc}⊥ :={La − (I(H) ∩ La) : H ∈ Lc}.
Proof. Assertions (3.14), (3.16), and (3.17) follow immediately from the definitions. Re-
lation (3.15) follows easily from (3.14), taking into account Proposition 1.1.

One says that a nonempty familyA := {A1, A2, . . . , Aα}of nonempty subsets of a finite
set⋃i∈[α] Ai is combinatorially isomorphic to a familyB := {B1, B2, . . . , Bα} of subsets
of a set ⋃i∈[α] Bi, if there exists a one-to-one map φ : ⋃i∈[α] Ai → ⋃i∈[α]Bi

such that
for each i ∈ [α] it holds φ(Ai) = Bi.

We will say that polytopes P and Q have the same A-, G- or F-diagonal types, if
the familiesDA(P) andDA(Q),DG(P) andDG(Q),DF(P) andDF(Q), respectively, are
combinatorially isomorphic.

It is obvious that the relation “to have the same diagonal combinatorial type” is
also an equivalence relation, and it determines a combinatorial classification on the
set of all polytopes.

Given a polytope P, let us denote by F(P) the class of all the polytopes whose
combinatorial type coincides with that of P, and denote by FA(P) the class of all
the polytopes whose A-diagonal type coincides with that ofP; the denotations FG(P)
and FF(P) have the analogous meaning.
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Proposition 3.14. For an arbitrary polytope P the relations

FA(P) ⊃ F(P) = FG(P) ⊃ FF(P)
hold.

Proof. Note that if a subset family of a certain type always determines uniquely a sub-
set family of another type by means of operations that are invariant with respect to
one-to-one maps, then the combinatorial equivalence on the basis of the combinato-
rial isomorphism of subset families of the first type implies the combinatorial equiva-
lence on the basis of the combinatorial isomorphism of subset families of the second
type; in other words, the combinatorial types defined by subsets of the second type
are “wider.” In view of the above argument, we obtain from Proposition 3.13:

(3.14) 󳨐⇒ FG(P) ⊃ FF(P) ,(3.15) 󳨐⇒ F(P) ⊃ FG(P) ,(3.16) 󳨐⇒ FG(P) ⊃ F(P) ,(3.17) 󳨐⇒ FA(P) ⊃ FG(P) .
It is known that the facial structure of a simplicial polytope is determined (in our ter-
minology) by the structure of the family of its A-diagonals. We can now interpret this
statement as a corollary of the fact thatFG(P) = F(P) and,moreover, for the simplicial
polytope P we haveDA(P) = DG(P). A stronger assertion is also true:

Proposition 3.15. If P is a simplicial polytope then FA(P) = F(P) = FG(P).
Proof. In view of the above argument, it suffices to show that if Q ∈ FA(P) then Q is
simplicial. For this, it suffices to verify that every face of the polytope Q has at most d
vertices. If V ⊂ vertQ determines a face of Q then V contains no A-diagonals of the
polytopeQ, thereforeW ⊂ vertQ – the image of the set V, under the bijection that re-
alizes a combinatorial isomorphismof the families of A-diagonals, does not containA-
diagonals of the polytope P, and it thus lies in some face of P. Hence, |W| = |V| ≤ d,
because of the simpliciality of P.

There are instances of polytopes for which FA(P) = FG(P) = F(P) = FF(P).
Example 3.16. Let P := P1⊥P2, where P1 and P2 are both simplices. Let us show
that Q ∈ FA(P) implies Q ∈ FF(P). By Proposition 3.6 (relation (3.8)), DA(P) ={vertP1, vertP2}. Let vertQ = V1 ∪ V2, where V1, V2 are A-diagonals of Q corre-
sponding toA-diagonals vertP1 and vertP2 of the polytopeP. It easily follows from the
definitions that in this situation we have Q = convV1⊥convV2 (where the convex hulls
are both simplices) and now, by Proposition 3.6 (relation (3.10)),DF(Q) = {V1, V2}, that
is,Q ∈ FF(P). ⊲
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Thus, the simpliciality of thepolytopeP implies thatFA(P) = FG(P) (Proposition 3.15).
Besides (Example 3.16), we have instances of (simplicial) polytopes for whichFG(P) =
FF(P). The latter, though, seems to be rather an exception than a rule, even in the case
of simplicial polytopes. At least, Example 3.9 provides simplicial polytopes P with
FG(P) ̸= FF(P). Indeed, it suffices to move, by a small perturbation, the vertices of
the polytope P into general position for obtaining a polytope Q with the isomorphic
face lattice (i.e.,Q ∈ FG(P)), but without F-diagonals that are not G-diagonals – at the
same time,P has such an F-diagonal, namely vertP2 (i.e.,Q ̸∈ FF(P)).

A particular case of Example 3.9, a 3-polytope P0 (P2 is a planar polygon), al-
lows us to construct a series of examples of polytopes such that in the chain FA(P) ⊃
FG(P) ⊃ FF(P) both inclusions are strict.
Example 3.17. Let us consider in the space ℝd, where d ≥ 4, two polytopes with the
equal number2d of vertices, namelyQ1, a prismwhose basis is a (d−1)-simplex, andP,
a (d − 3)-fold pyramid over a 3-polytope P0. It is easily verified that for both polytopes
the families of A-diagonals are empty and, thus,Q1 ∈ FA(P), however, it is obvious that
Q1 and P are not combinatorially equivalent and, thus, Q1 ̸∈ FG(P). ⊲
Let us now take into consideration a polytope Q2 obtained from P by the above-
mentioned small perturbation of the vertices of P0 that moves them into general
position in ℝ3 without a change in the facial structure of P0. By Propositions 3.4
and 3.5, the polytope Q2 has no F-diagonals different from G-diagonals; at the same
time,P has such a diagonal, a (d −3)-fold pyramid over the planar polygon P2. Thus,
Q2 ∈ FG(P), butQ2 ̸∈ FF(P) and, thus, FA(P) ⫌ FG(P) ⫌ FF(P).
3.2 Positive bases of linear spaces

A positive basis (PB) B of a linear space L is defined as an inclusion-minimal subset
of L whose positive hull (i.e., the inclusion-minimal convex cone, with the apex at the
origin 0 ∈ L, which contains B) coincides with L.

We study positive bases in ℝn, in particular, from the point of view of the combi-
natorial structure of two special subset families, the so-calledminimal sub-bases and
maximal one-sided subsets.

It is well known that for positive bases B of the spaceℝn the inequalities n + 1 ≤|B| ≤ 2n hold.
A positive basis B of ℝn is called minimal when |B| = n + 1, and maximal when|B| = 2n.
A subset B󸀠 of a positive basis B is called a sub-basis of the basis B, if B󸀠 is a

positive basis of the linear hull linB󸀠 of the set B󸀠. A sub-basis B󸀠 ⊂ B is called a
minimal sub-basis, if B󸀠 is a minimal positive basis of linB󸀠, that is, pos B󸀠 = linB󸀠
and |B󸀠| = dim linB󸀠 + 1.



68 | 3 Polytopes, positive bases, and inequality systems

A positive basis B of the space ℝn is called a strict positive basis (SPB), if for any
of its disjoint subsets B1 and B2 it holds posB1 ∩ pos B2 = {0}. A positive basis B
consisting of n + r points in ℝn is a SPB if and only if there exists a partition B =
B1 ∪̇B2 ∪̇ ⋅ ⋅ ⋅ ∪̇Br, whereB1, B2, . . . , Br arepairwisedisjointminimal sub-bases of the
positive basis ofB. In addition, the space is represented as the direct sumℝn = linB1+
linB2+⋅ ⋅ ⋅+linBr. In particular,minimal andmaximal positive bases are strict positive
bases.

In the general case, the following assertion is true:

Proposition 3.18. Let B be a positive basis consisting of n + r points in ℝn. Then there
exists a partition B = B1 ∪̇B2 ∪̇ ⋅ ⋅ ⋅ ∪̇Br satisfying the following conditions:
(1) |Bi| ≥ |Bi+1| ≥ 2, i ∈ [r].
(2) pos (B1 ∪̇B2 ∪̇ ⋅ ⋅ ⋅ ∪̇Bj) is a linear subspace of dimension |B1 ∪̇B2 ∪̇ ⋅ ⋅ ⋅ ∪̇Bj| − j, j ∈[r].
We will call the set X ⊂ ℝn one-sided if it is contained entirely in an open half-space
bounded by a hyperplane that contains 0. The inclusion-maximal one-sided subsets
of some set will be called itsmaximal one-sided subsets.

In the study of positive bases, the notion of diagram of a positive basis turned out
to be very useful.

Let us consider tuples of vectors B := (b1, b2, . . . , bn+r) ⊂ ℝn and E := (e1, e2,
. . . , en+r) ⊂ ℝr. The tuple E is called a linear representation of the tuple B if the (n+ r)× (n + r) matrix C whose ith row is the vector (bi1, bi2, . . . , bin, ei1, ei2, . . . , eir),
where (bi1, bi2, . . . , bin) =: b i and (ei1, ei2, . . . , eir) =: ei, is nonsingular, and each
of its first n columns is orthogonal to any of its last r columns. If the tuple B is spanned
positively by the space ℝn then the set of points from the tuple E is one-sided. Let H
be a hyperplane that strictly separates the one-element set {0} from the convex hull
conv E. Let us denote by bi the intersection point of the hyperplane H and the ray
pos {ei}. The tuple B := (b1, b2, . . . , bn+r) is called a diagram of the positive ba-
sis B := (b1, b2, . . . , bn+r). We will use the following properties of the diagrams of
positive bases:

Proposition 3.19. (i) Each point of a diagram B := (b1, b2, . . . , bn+r), which is a ver-
tex of the polytope convB, occurs in the tuple B at least twice, and dim B = r − 1.

(ii) Any tuple satisfying conditions listed in (i) is a diagram of some positive basis B :=(b1, b2, . . . , bn+r) of ℝn.
(iii) A set B is a strict positive basis if and only if convB is a simplex, and every point b i

from the tuple B coincides with one of its vertices.
(iv) A subset B󸀠 := {bi : i ∈ I ⊆ [n + r]} of a positive basis B is a minimal sub-basis if

and only if in a diagram B the subtuple B − B󸀠 coincides with F ∩ B for some facet
F of the polytope convB.

(v) A subset B󸀠 of a positive basis B is maximal one-sided if and only if the subtuple B−
B󸀠 is a G-diagonal of the tuple B.
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We will need below the following auxiliary statement:

Proposition 3.20. Let P1 and P2 be d-dimensional polytopes, P1 ⊂ P2, vertP1 ̸=
vertP2. Then a certain proper face of the polytopeP1 has a nonempty intersection with
the interior of the polytope P2.

The maximal one-sided subsets of a positive basis

Let B := (b1, b2, . . . , bn+r) be a positive basis of the space ℝn, and {Bi : i ∈ [k]} the
family of maximal one-sided subsets of the set B. We will use the notation α(B) :=
maxi∈[k] |Bi| and β(B) := mini∈[k] |Bi|.

Let us characterize the strict positive bases in terms of their one-sided subsets:

Proposition 3.21. A positive basis B of the spaceℝn is a strict positive basis if and only
if any one-sided subset B󸀠 ⊂ B contains at most n elements, that is, α(B) = β(B) = n.
Proof. The necessity. If B is an SPB, then all points of the tuple B are situated in the
vertices of the (r − 1)-dimensional simplex convB; as a consequence, any G-diagonal
of the tuple B contains r elements, and therefore (see Proposition 3.19 (v)) any one-
sided subset of B contains at most n elements.

The sufficiency. Let any one-sided subset of a positive basis B of the spaceℝn con-
tain at most n elements. Suppose to the contrary that B is not a SPB. Then two cases
are possible:
(a) convB is not a simplex;
(b) convB is a simplex, and there exists a point b ∈ B, but b ̸∈ vert convB.
In the case (a), in the tuple B there exists a G-diagonal B(N), N ⊂ [n + r], consisting
of k ≤ r − 1 points, that is, |N| = k ≤ r − 1. Indeed, let B(M) be a tuple, consisting of r
points, of affine dimension r−1 = dim B, that is, convB(M) is a simplex. Since convB
is not a simplex, then (see Proposition 3.20) at least one face of the set conv B(M) has a
nonempty intersection with the interior of the set conv B. As a consequence, this face
contains a G-diagonal B(N), N ⊂ M, where |N| < |M| = r.

In the case (b), let us consider a tuple B(M), where M ⊂ [n + r], consisting of r
points, of affine dimension r − 1, which contains the point b. Since b ̸∈ vert convB,
then (see Proposition 3.20) at least one face of the simplex convB(M) has a nonempty
intersection with the interior of the simplex conv B. As a consequence, this face con-
tains a G-diagonal B(N), N ⊂ M, where |N| < |M| = r.

Thus, in both cases, B contains a G-diagonalwith less than r points from the tuple
and, as a consequence (see Proposition 3.19 (v)), in the positive basis B there exists a
maximal one-sided subset of cardinality at least n + 1, a contradiction.
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Proposition 3.22. Let B be a positive basis of the spaceℝn that consists of n+ r points.
Then

n ≤ α(B) ≤ {{{
n + r − 1 if r ∈ [n − 1] ,
0 if r = n .

Moreover, if r ∈ [n−1] then for each s, such that n ≤ s ≤ n+ r−1, there exists a positive
basis of the space ℝn that consists of n + r points, such that α(B) = s.
Proof. The inequality n ≤ α(B) ≤ n + r − 1 is obvious. If r = n then B is a maximal
positive basis; as a consequence, B is a SPB and, by Proposition 3.21, wehave α(B) = n.

Now suppose 1 ≤ r ≤ n − 1 and n ≤ s ≤ n + r − 1. Let us construct a positive
basis, with n + r points, of ℝn, such that α(B) = s. For this, it suffices to choose for
B a tuple of points B := (b1, b2, . . . , bn+r) from ℝr−1 such that convB is an (r − 1)-
dimensional simplex whose every vertex occurs in the tuple B at least twice, and the
remaining n+r−2r = n−r ≥ 1points lie in the relative interior of an (s−n)-dimensional
faceof convB. ThenallG-diagonals of the tupleB havedimensionat least (r−1)−(s−n)
and, in addition, there exists a G-diagonal of dimension (r − 1) − (s − n), that is, it
consists of r − s + n points. Then α(B) = n + r − (r − s + n) = s.
Proposition 3.23. Let s and d be nonnegative integers such that s ≤ d. There ex-
ists a d-dimensional polytope with 2d − s + 1 vertices, all G-diagonals of which are
s-dimensional.

Proof. If s := 1 then a polytope with the desired property is the convex hull of the
set {x1, x2, . . . , xd , −x1, −x2, . . . , −xd}, where {x1, x2, . . . , xd} is a linear basis ofℝd.
We proceed by induction on s. Suppose that in the spaceℝd−1, d ≥ s, by the induction
hypothesis, there exists a polytopeP with2(d−1)+1−(s−1)vertices, all G-diagonals of
which are (s−1)-dimensional. Let us embed the polytope P into a hyperplaneH ∈ ℝd
and pick an arbitrary point x ̸∈ H. Then the polytope conv (P∪̇{x}), with 2d + 1 − s
vertices, has dimension d, and all its G-diagonals are s-dimensional.

Proposition 3.24. Let B be a positive basis, with n + r points, of ℝn. Then
n ≤ β(B) ≤ {{{

n if r ∈ {1, 2, n − 1, n} ,
n + r − 2 if 2 ≤ r < n − 1 .

If n + r ≥ 4(r − 1) then for any s, such that n ≤ s ≤ n + r − 2, there exists a positive basis
B of the space ℝn, with n + r points, such that β(B) = s.
Proof. If r := 1 or r := n, then the set B is a SPB and, by Proposition 3.21, we
have β(B) = n. Suppose r := n − 1. Then for a diagram B we have dimB = n − 2,|vert convB| ≤ n+r

2 = n − 1
2 , that is, convB is a simplex. As a consequence, in B

there exists a G-diagonal consisting of n − 1 points, and thus β(B) = n (see Proposi-
tion 3.19 (v)). If r ≥ 2, then there does not exist a tupleB, with n+r points, of dimension
dimB = r − 1 ≥ 1, such that all its G-diagonals are zero-dimensional. As a conse-
quence, in this case β(B) ≤ n + r − 2. Since linB = ℝn, then β(B) ≥ n. Now suppose
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n + r ≥ 4(r − 1), n ≤ s ≤ n + r − 2 and r ≥ 2. In the spaceℝd, where d := r − 1, one can
construct (see Proposition 3.23) a d-dimensional polytope P, with 2d +1− s󸀠 vertices,
all G-diagonals of which are s󸀠-dimensional, for any s󸀠 ∈ [d]. Suppose s󸀠 := n + d − s.
Let us construct a tuple E consisting of n + r points of the space ℝn, in which every
point from the vertex set vertP occurs at least twice, and vert convB = vertP. The
tuple E is a diagram of some positive basis B of ℝn (see Proposition 3.19 (ii)). Since
all G-diagonals of the tuple E are s󸀠-dimensional, then β(B) = n + r − (s󸀠 + 1) = s
(see Proposition 3.19 (v)).

Simplicial representation of a positive basis

Proposition 3.25. Let H be a hyperplane of the space ℝn that does not contain the ori-
gin 0, and let B󸀠, B󸀠󸀠 be finite subsets of points from H. Suppose B := B󸀠 ∪ −B󸀠󸀠. Then
the set B is a positive basis of the space ℝn if and only if

dim(B󸀠 ∪ B󸀠󸀠) = n − 1 , (3.18)
ri convB󸀠 ∩ ri convB󸀠󸀠 ̸= 0 , (3.19)

and for any B󸀠
1 ⊂ B1, B󸀠

2 ⊂ B2, such that B󸀠
1 ∪ B󸀠

2 ̸= B1 ∪ B2, conditions (3.18) and (3.19)
are not satisfied simultaneously.

Proof. It suffices to show that properties (3.18) and (3.19) are equivalent to the claim
that the set B󸀠∪−B󸀠󸀠 spans positively the spaceℝn. Suppose to the contrary that prop-
erties (3.18) and (3.19) are fulfilled. Assume that B󸀠 ∪ −B󸀠󸀠 does not span positively the
space ℝn. Then pos (B󸀠 ∪ −B󸀠󸀠) ̸= ℝn, and there exists a hyperplane Γ that supports
the convex hull pos (B󸀠 ∪ −B󸀠󸀠) at the point 0. It is clear thatH ∩ Γ ̸= 0, because other-
wise we would come to a contradiction with the inclusion B󸀠, B󸀠󸀠 ⊂ H. Let Γ+ and Γ−
be two half-spaces bounded by the hyperplane Γ and, specifically, let us suppose that
pos (B󸀠 ∪ −B󸀠󸀠) ⊂ Γ+. Suppose E := Γ ∩ H, E+ := Γ+ ∩ H, E− := Γ− ∩ H. Then for the
half-planes E+ and E− the inclusions B󸀠 ⊂ E+ and B󸀠󸀠 ⊂ E− hold, that is, the plane E
separates the set E+ from the set E− in the hyperplaneH, but this is impossible in view
of (3.18) and (3.19).

Now suppose that B󸀠 ∪ −B󸀠󸀠 spans positively the space ℝn . This implies that the
sets B󸀠 and B󸀠󸀠 are not separated in the hyperplaneH by an (n−2)-dimensional plane,
but this implies (3.18) and (3.19).

Thus, with a positive basis B of the space ℝn can be put in correspondence a pair(B󸀠, B󸀠󸀠), if one takes an arbitrary hyperplane H, such that 0 ̸∈ H, and {γb : γ ∈ ℝ} ∩
H ̸= 0 for each b ∈ B; then one sets B󸀠 := {γB : γ > 0} ∩H, B󸀠󸀠 := {−γB : γ > 0} ∩H. In
such a situation the positive bases B and B󸀠 ∪ −B󸀠󸀠 coincide up to positive factors.

We will call the pair (B󸀠, B󸀠󸀠) a representation of the positive basis B.
A representation (B󸀠, B󸀠󸀠) of a positive basis B in which the convex hulls convB󸀠

and convB󸀠󸀠 are simplices will be called a simplicial representation.
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Proposition 3.26. Let B be a positive basis, consisting of n+r points, ofℝn. There exists
a linear basis B󸀠 ⊂ B of ℝn strictly separated in ℝn from its complement up to B by a
hyperplane that contains the origin 0. Moreover, the number of such distinct linear bases
is at least 2r.

Proof. We proceed by induction on n and r. If n := 1 and r := 1 then the statement is
obvious.Now suppose that n > 1 and r > 1. Let us use a partition B = E1 ∪̇ E2 ∪̇ ⋅ ⋅ ⋅ ∪̇ Er
with theproperties guaranteedbyProposition 3.18. Letusdenote E := E1 ∪̇ E2 ∪̇ ⋅ ⋅ ⋅ ∪̇ Er−1
and p := |Br|, where p ≥ 2. Note that the convex hull conv Er is a simplex; moreover,
the intersection aff E ∩ aff Er consists of a unique point z ∈ ri conv Er, and the sub-
space L := posB has dimension n − p − 1. By the induction hypothesis, there exists
a linear basis E󸀠 ⊂ E strictly separable in L from E − E󸀠 by some subspace L1 ⊂ L
of dimension n − p − 2. In view of the above argument, any subset E󸀠

r ⊂ Er, which
consists of p − 1 points, together with the set E󸀠 ⊂ L, form a linear basis of ℝn. Let
us show that E󸀠 ∪ E󸀠

r is strictly separated from its complement up to B. Let H1 be a
plane of dimension p − 2 containing the point z that strictly separates E󸀠

r from Er − E󸀠
r

in aff Er. Let us consider the hyperplane H := aff (L ∪ H1) = lin (L ∪ H1) in ℝn, and
consider a subspace L2, which is contained in it, of dimension n − 2, with the condi-
tions L1 ⊆ L2, L2 ∩ E = 0. By a sufficiently small rotation of the hyperplane H around
L2 in a relevant direction, we obtain a hyperplaneH∗, such that 0 ∈ H∗, which strictly
separates the linear basis E󸀠 ∪ E󸀠

r from its complement up to B. It remains to note that,
by the induction hypothesis, E󸀠 can be chosen in at least 2r−1 ways, and E󸀠

r can be
chosen in precisely p ≥ 2 ways; thus, there exist at least 2r desired linear bases.
Proposition 3.27. Any positive basis of the space ℝn has a simplicial representation.
Proof. According to Proposition 3.26, one can distinguish in the positive basis B a lin-
ear basis B0 ⊂ B such that the sets B0 and B − B0 are strictly separated by a hyper-
planeH that contains the origin 0. Let c be a normal vector ofH, and ⟨c, b⟩ > 0 for all
b ∈ B0, and also ⟨c, b⟩ < 0 for all b ∈ B − B0. Suppose H1 := {x ∈ ℝn : ⟨c, x⟩ = 1}.
Then the pair (B󸀠, B󸀠󸀠), where B󸀠 := {λB0 : λ > 0} ∩ H1, B󸀠󸀠 := {−λ(B − B0) : λ >
0} ∩ H1, is in fact a desired representation. Indeed, since B0 is linear basis, this im-
plies that convB󸀠 is a simplex of dimension n−1. Suppose to the contrary that convB󸀠󸀠
is not a simplex. Let x0 ∈ ri convB󸀠 ∩ ri convB󸀠󸀠. By Carathéodory’s theorem, there
exists a subset B󸀠󸀠

1 ⊆ B󸀠󸀠 such that x0 ∈ convB󸀠󸀠
1 , and convB󸀠󸀠

1 is a simplex, that is,
B󸀠󸀠
1 ⫋ B󸀠󸀠. Since dim B󸀠 = n − 1, then ri convB󸀠 ∩ ri convB󸀠󸀠

1 ̸= 0 and, in addition,
dim(B󸀠

1∪B󸀠󸀠) = n−1, B󸀠
1∪B󸀠󸀠

1 ̸= B󸀠 ⊂ B󸀠󸀠. We have come to a contradictionwith Propo-
sition 3.25.
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Regular positive bases

We will call a positive basis B of the spaceℝn regular if for some of its simplicial rep-
resentation (B󸀠, B󸀠󸀠) the inclusison B󸀠󸀠 ⊂ convB󸀠 holds.
Proposition 3.28. Let B be a positive basis, consisting of n+ r points, ofℝn. The follow-
ing assertions are equivalent:
(i) B is a regular positive basis.
(ii) β(B) = n.
(iii) B has precisely r minimal sub-bases.
(iv) The set convB is a simplex.
(v) In every minimal sub-basis there are at least two points that are not contained in

the other minimal sub-bases.
(vi) The family of minimal sub-bases of the positive basis B forms an inclusion-minimal

cover of the set B.

Proof. (i) ⇒ (iii). Let (B󸀠, B󸀠󸀠) be a simplicial representation of the positive basis B,
B󸀠󸀠 ⊂ convB󸀠, and E ⊆ B. Suppose E+ := {λE : λ > 0}∩B󸀠 and E− := {−λE : λ > 0}∩B󸀠󸀠.
It follows from Proposition 3.25 that E is a minimal sub-basis if and only if the sets E+
and E− are inclusion-minimal with respect to the property ri conv E+ ∩ ri conv E− ̸= 0.
Since the vertex set B󸀠 of the simplex convB󸀠 is affinely independent, then for every
point b ∈ convB󸀠 there exists a unique subset Bb ⊆ B󸀠 such that b ∈ ri convBb;
besides, if C ⫋ convB󸀠 and x ∈ ri conv C, then Bb ⊆ Bx for any b ∈ C. Summarizing
the above said, we conclude that the set E ⊆ B is a minimal sub-basis of the regular
positive basis B if and only if E− = {e}, E+ = Be, for some vector e ∈ B󸀠󸀠. Thus, B has
precisely |B󸀠󸀠| = r minimal sub-bases.(iii) ⇒ (iv). The set convB inℝr−1 has (see Proposition 3.19 (iv)) precisely r facets
and, because of aff B = ℝr−1, this means that conv B is a simplex.(iv) ⇒ (ii). In the simplex convB there are G-diagonals consisting of precisely
r points (all vertices of the simplex) and, as a consequence (see Proposition 3.19 (v)),
in B there is a maximal one-sided subset with n points, that is, β(B) = n.(ii) ⇒ (i). Let B󸀠 be a maximal one-sided subset, and |B󸀠| = n. Note that the set B󸀠
is linearly independent; it remains to show that−(B−B󸀠) ⊂ posB󸀠. Suppose to the con-
trary that b ∈ B − B󸀠 and −b ̸∈ posB󸀠. Since posB󸀠 is an acute cone, then there exists
a hyperplane that contains the origin 0 and strictly separates the vector −b from B󸀠,
and thus the point b and the set B󸀠 lie in the same open half-space, a contradiction
with the maximality of the one-sided set B󸀠.(iv) ⇒ (v). Let E be aminimal sub-basis of B. It is assigned a facet F of the simplex
convB such that b ∈ E ⇐⇒ b ̸∈ F for any vector b ∈ B (see Proposition 3.19 (iv)). Let
us choose a vector x ∈ vert convB such that x ̸∈ F. In the positive basis B there exist
two distinct points b and e such that b = e = x (see Proposition 3.19 (i)). Since the
vector x is contained in all other facets of the simplex convB, then the only minimal
sub-basis containing the points b and e is the sub-basis E, see Proposition 3.19 (iv).
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(v) ⇒ (vi). Easily verified.(vi) ⇒ (iv). Suppose to the contrary that the set convB is not a simplex; then the
number of its facets N satisfies the inequality N ≥ r + 1. Because of the minimality
of the cover by minimal sub-bases and the characterization of minimal sub-bases in
the language of diagrams (see Proposition 3.19 (iv)), any N − 1 ≥ r facets of convB
have a nonempty intersection. Hence, by Helly’s theorem applied to the space ℝr−1,
we conclude that all N facets have a nonempty intersection, a contradiction.

Corollary 3.29. Any SPB is regular.

Proof. By Proposition 3.21, for some strict positive basis B of the space ℝn the equal-
ity β(B) = α(B) = n holds.
Corollary 3.30. If n ∈ [4] then any positive basis of the spaceℝn is regular. Besides, for
an arbitrary n, if r ∈ {1, 2, n − 1, n} then any positive basis of the space ℝn, consisting
of n + r points, is regular.
Proof. In view of Proposition 3.24, in the listed cases we have β(B) = n.
Corollary 3.31. For each n ≥ 5, in the space ℝn there exists a positive basis that is not
regular.

Proof. In view of Proposition 3.24, for each n ≥ 5, inℝn there exists a positive basis B,
consisting of n + 3 ≥ 4(3 − 1) points, for which β(B) = n + 1.
Proposition 3.32. Let B and E be positive bases, consisting of n + r points, of the
space ℝn. The family of minimal sub-bases of the positive basis B is combinatorially
isomorphic to the family of minimal sub-bases of the positive basis E if and only if the
family of maximal one-sided subsets of the set B is combinatorially isomorphic to the
family of maximal one-sided subsets of the set E.

Proof. It suffices to recall that for any positive basis of the space ℝn, the family of its
minimal sub-bases and the family of its maximal one-sided subsets uniquely deter-
mine each other.

Proposition 3.33. Let I1, I2, . . . , Ir ⊂ [n]. The family {I1, I2, . . . , Ir} formsan inclusion-
minimal cover of the set [n] if and only if there exists a regular positive basis B :={b1, b2, . . . , bn, . . . , bn+r} of the spaceℝn with the family ofminimal sub-bases {B(I1∪{n + 1}), B(I2 ∪ {n + 2}), . . . , B(Ir ∪ {n + r})}, where B(I󸀠) = {bi : i ∈ I󸀠}. Besides, B is a
strict positive basis if and only if I1, I2, . . . , Ir are pairwise disjoint subsets.

Proof. The sufficiency follows from Proposition 3.28 (v).
The necessity. LetH be a hyperplane in the spaceℝn that does not contain the ori-

gin0. Letb1, b2, . . . , bn be thevertices of somesimplex inH. For each index i ∈ [r], let
us pick a point ei ∈ ri conv {bj : j ∈ Ii}. Let us denote B󸀠 := {b1, b2, . . . , bn} and B󸀠󸀠 :={e1, e2, . . . , er}. Then ri convB󸀠 ∩ ri convB󸀠󸀠 ̸= 0, because I1 ∪ I2 ∪ ⋅ ⋅ ⋅ ∪ Ir = [n]. Sup-
pose B󸀠

1 ⊆ B󸀠 and B󸀠󸀠
1 ⊆ B󸀠󸀠. If B󸀠

1 = B󸀠 and B󸀠󸀠
1 ̸= B󸀠󸀠, then ri convB󸀠

1 ∩ ri convB󸀠󸀠
1 = 0,
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because of the minimality of the cover {I1, I2, . . . , Ir} of the set [n]. Suppose B󸀠
1 ̸= B󸀠.

Then B󸀠
1 lies in some facet F of the simplex convB󸀠. Suppose H1 := aff F, where

dimH1 = n − 2. Note that ri convB󸀠
1 ∩ ri convB󸀠󸀠

1 ̸= 0 implies that B󸀠
1 ∪ B󸀠󸀠

1 ⊂ H1,
that is, dim(B󸀠

1 ∪ B󸀠󸀠
2 ) = n − 2. Thus, the conditions from Proposition 3.25 are fulfilled;

therefore, the set B := B󸀠
1 ∪ −B󸀠󸀠

1 is a positive basis of the space ℝn. The pair (B󸀠
1, B󸀠󸀠

1 )
is a simplicial representation of the positive basis B, see the proof of Proposition 3.27.
The positive basis B is regular, because, by construction, B󸀠󸀠 ⊂ convB󸀠. Let us denote
bn+1 := −ei, for i ∈ [r]. The regular positive basis B has the family of minimal sub-
bases {{bn+i}∪{bj : j ∈ Ii} : i ∈ [r]}, aswe saw in the proof of the implication (i) ⇒ (iii)
of Proposition 3.28. The first assertion of the proposition is thus proved. The second
assertion of the proposition, which concerns SPBs, is a known fact.

3.3 Polytopes and infeasible systems of inequalities

We continue the study, initiated in Section 2.3, of infeasible systems (2.26) of homoge-
neous strict linear inequalities of rank r over the real Euclidean spaceℝr. The subject
of our investigation is the system of the more general form

S := {⟨ai , x⟩ > 0: ai , x ∈ ℝr; ‖a i‖ = 1, i ∈ [m]} , (3.20)

with the set of its determining vectors A(S) := {ai : i ∈ [m]}.
We use the notation J to denote the family of themulti-indices of maximal feasible

subsystems of the systemS, and thenotation I to denote the family of themulti-indices
of its minimal infeasible subsystems. The characters q and p denote the number of
multi-indices in the families J and I, respectively; q := #J, p := #I.

We will need two statements:

Lemma 3.34. System (3.20) is infeasible if and only if∑i∈[m] λiai = 0, for some nonneg-
ative numbers λ1, . . . , λm, at least one of which is not 0.

Lemma 3.35. Let V andW be convex sets in ℝr such that aff (V ∪W) = ℝr. The sets V
andW can be separated by a hyperplane if and only if riV ∩ riW = 0.
An inequality ⟨ai , x⟩ > 0 of the system S is called essential if it does not belong to at
least one its MFS. The system S is called irreducible if all its inequalities are essential.

Proposition 3.36. A system S is irreducible if and only if the set posA(S) is a linear
subspace.

Proof. The necessity. Let system (3.20) be irreducible. Let us show that the set K :=
pos A(S) is a linear subspace. Assume the converse. Let us assign to an index sub-
set L ⊆ [m] the subset AL(S) := {ai : i ∈ L} of the corresponding vectors that define a
subsystem, and suppose J0 := {i ∈ [m] : ai ∈ K ∩ −K} and J󸀠 := [m] − J0 = {i ∈ [m]:
ai ̸∈ K ∩ −K}. Since the set K ∩ −K is a linear subspace, according to our assumption,
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K ̸= K ∩ −K, and thus |J󸀠| > 0, dim(K ∩ −K) ≤ r − 1. Let us denote by K∗ the polar of
the cone K, that is, the set K∗ := {x ∈ ℝr : ⟨g , x⟩ ≥ 0, ∀g ∈ K}. Taking into account
the relation dim(K ∩ −K) + dimK∗ = r, we have dimK∗ ≥ 1. For an arbitrary vector
b ∈ riK∗ the relation 0 ≤ ⟨K ∩ −K , b⟩ ≤ 0 holds, therefore, ⟨AJ0(S), b⟩ = 0.

Let us show that ⟨AJ󸀠(S), b⟩ > 0. Suppose to the contrary that there exists an
index s ∈ J󸀠 such that ⟨as , b⟩ = 0. Since (K∩−K)+lin K∗ = ℝr, then as = z1+z2, where
z1 ∈ K ∩ −K, z2 ∈ linK∗, and z2 ̸= 0 in view of as ̸∈ K ∩ −K. But then ⟨as , b − ϵz2⟩ =−ϵ⟨z2, z2⟩ < 0 for any ϵ > 0 and, in addition, b − ϵz2 ∈ linK∗, which contradicts
the choice of the point b ∈ K∗. Further, since ⟨AJ0(S), b⟩ = 0 and ⟨AJ󸀠(S), b⟩ > 0, the
equality ∑i∈[m] λiai = 0 implies the equality λi = 0 for all indices i ∈ J󸀠. This means,
with respect to Lemma 3.34, that the inequalities with the indices from J󸀠 are included
in none of the IISs of the system S; as a consequence, they belong to all MFSs of the
system S, a contradiction with the irreducibility of this system.

The sufficiency. Let K := posA(S) be a linear subspace of ℝn. Let us show that
system (3.20) is irreducible. It suffices to check that the inequality ⟨a1, x⟩ > 0 is es-
sential. Since K is a linear subspace, then −a1 = ∑i∈[m] λiai for some factors λi ≥ 0,
i ∈ [m]. The latter equality can be rewritten in the form −a1 = ∑m

i=2 λ󸀠ia i, where λ󸀠i ≥ 0,
2 ≤ i ≤ m. Let us choose among all such equalities some equality −a1 = ∑i∈L αiai with
the minimal number of indices in the set L. Let us show that the subsystem with the
multi-index L of the system S is feasible. Assume the converse. Then, by Lemma 3.34,∑i∈L γia i = 0 for some numbers γi ≥ 0, i ∈ L, among which at least one number is
positive. Suppose ϵ := min{ αiγi : i ∈ L, γi > 0}. Then

−a1 = ∑
i∈L αiai − ∑i∈L ϵγiai = ∑i∈L(αi − ϵγi)a i ,

where αi − ϵγi ≥ 0, by the choice of ϵ, for each index i ∈ L, and αi − ϵγi = 0 for some
index i ∈ L. But this contradicts the minimality of L. As a consequence, the subsystem
with the multi-index L is feasible. On the other hand, the subsystem with the multi-
index L∪{1} is infeasible because−a1 = ∑i∈L αiai, where αi ≥ 0 for all i ∈ L. Thus, the
inequality ⟨a1, x⟩ > 0 is essential because it does not belong to the MFS that contains
the feasible subsystem with the multi-index L. The proposition is proved.

It follows from Proposition 3.36 that the union of two irreducible subsystems of the
system S is also its irreducible subsystem; therefore, the system S has an inclusion-
maximal irreducible infeasible subsystem; let J0 be the multi-index of this subsystem.
Then the families {J0 ∩ Js : s ∈ [q]} and {Is : s ∈ [p]} are the families of the multi-
indices of MFSs and IISs of the irreducible system {⟨ai , x⟩ > 0, i ∈ J0}, respectively,
if and only if {Js : s ∈ [q]} and {Is : s ∈ [p]} are the families of the multi-indices of
MFSs and IISs of system (3.20), respectively. Thus, in the study of the combinatorial
properties of the infeasible systems of linear inequalities we can restrict ourselves to
the irreducible systems.
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Combinatorial properties of polytopes and infeasible systems of linear inequalities

In the combinatorial theory of polytopes, a very useful method for investigating the
combinatorial structure of polytopes is to consider their Gale transforms. The Gale
transform establishes a relationship between the face structure of an r-dimensional
polytope,whichhasm vertices,with thepositivedependence of a certain arrangement
of m vectors that lie in the spaceℝm−r−1. In this section, we use the Gale transform to
establish a link between the combinatorial properties of infeasible systems (3.20) and
those of the facets and diagonals of polytopes; from now on, when considering the
diagonals of polytopes, we always mean G-diagonals defined earlier on page 59. For a
finite nonempty tuple of pointsX ⊂ ℝr, we introduce the notion of diagonal as follows:

An inclusion-minimal subtuple D ⊆ X, with the property
convD ∩ ri convX ̸= 0 ,

is called a diagonal of the tuple X.
Let us recall relevant definitions. Let a finite sequence of points X := (x1, x2,

. . . , xm) ⊂ ℝr, such that aff X ≃ ℝr, be given. Consider the (m − r − 1)-dimensional
space K(X) of solutions (β1, β2, . . . , βm) ∈ ℝm to the following system of homoge-
neous linear equations: ∑

i∈[m] βix i = 0 , ∑i∈[m] βi = 0 .
In the spaceK(X), fix its arbitrary ordered basis (b1, b2, . . . , bm−r−1). Let B(X) be the(m − r −1) ×mmatrix whose rows are the vectors b1, b2, . . . , bm−r−1 of this basis. For
each index i ∈ [m], let us denote by x∗i the ith column of the matrix B(X) regarded as
a vector from the spaceℝm−r−1.

The sequence X∗ = (x∗1 , x∗2 , . . . , x∗m) is called aGale transform of the sequence X.
A Gale transform is not unique. Since for any two distinct transforms there exists

a linear isomorphism of ℝm−r−1 onto itself that sends the first Gale transform to the
second transform, one usually takes an arbitrary basis of K(X) as a Gale transform.

In the general case, the Gale transform can contain coinciding points. Therefore,
each of the pairwise distinct points of the Gale transform is assigned its multiplicity,
which is the number of its preimages.

Let L ⊆ [m]. If X = {x1, x2, . . . , xm} ⊂ ℝr then the sequence X(L) := {xi ∈ X : i ∈
L} is called a cofacet of the sequence X, if convX(L) ∩ aff X([m] − L) = 0.

Recall some basic properties of the Gale transform.

Proposition 3.37. Let a sequence of points X := (x1, x2, . . . , xm) ⊂ ℝr be given,
aff X = ℝr. Let X∗ := (x∗1 , x∗2 , . . . , x∗m) ⊂ ℝm−r−1 be a Gale transform of the tuple X.
(i) If ∑i∈[m] x i = 0 then the tuple X is a Gale transform of the sequence X∗.
(ii) ∑i∈[m] x∗i = 0, linX∗ = ℝm−r−1, posX∗ = ℝm−r−1.
(iii) 0 ∈ ri convX∗.
(iv) A subtuple X(L) is a coface of the tuple X if and only if 0 ∈ ri convX∗(L).
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It is customary to formulate some properties of the Gale transform in terms of Gale
diagrams.

A Gale diagram G(P) of a bounded convex r-polytope P ⊂ ℝr, with m ver-
tices x1, x2, . . . , xm, is the sequence of points (g(x1), g(x2), . . . , g(xm)) ∈ ℝm−r−1
defined as follows: g(x i) := 0 for x∗i = 0, and g(x i) := x∗i‖x∗i ‖ for x∗i ̸= 0.

Thus, aGalediagramconsists of a finite sequenceof points from the set𝕊m−r−2∪{0},
where 𝕊m−r−2 is the (m − r − 2)-dimensional unit sphere centered at the origin 0.

Given a subsequence V ⊆ vertP, G(V) denotes the subset of the Gale dia-
gramG(P) that corresponds to the tuple V .
Corollary 3.38. (i) A set X ⊂ vertP is a coface of the vertex tuple of a polytope P if

and only if 0 ∈ ri convG(X).
(ii) A set of points X := {x1, x2, . . . , xm} represents the vertex set of some r-polytopeP

if and only if
(a) either g(x i) = 0 for all x i ∈ X, that is, whenP is an r-simplex, or
(b) for any open half-space C> ofℝm−r−1, such that C> ∋ 0, the condition |{i ∈ [m]:

g(x i) ∈ C>}| ≥ 2 is satisfied.
(iii) If F is a face of the vertex tuple of a polytope P, and Z := vertP − vert F is the

corresponding coface, then ri convG(Z) ∋ 0.
(iv) ApolytopeP is simplicial if andonly if for eachhyperplaneH containing the origin0,

it holds 0 ̸∈ ri conv (G(P) ∩H).
(v) A polytopeP is an r-faced pyramid if and only if in its Gale diagram the origin 0 has

multiplicity r.

We will need the following statement:

Lemma 3.39. Suppose X := {x1, x2, . . . , xm} ⊂ ℝr. The inclusion 0 ∈ ri conv X holds if
and only if there exist coefficients λ1, λ2, . . . , λm > 0 such that ∑i∈[m] λix i = 0.
Lemma 3.40. LetX := (x1, . . . , xm) bea sequence of points in the spaceℝr, aff X = ℝr,
and C := (c1, . . . , cm) the sequence of points in the spaceℝm−r−1 such that C = X∗. The
subsystem, with a multi-index L, of the system {⟨c∗i , x⟩ > 0: x ∈ ℝm−r−1; i ∈ [m]} is
infeasible if and only if X(L) contains a nonempty coface of X.
Proof. By Lemma 3.34, the subsystem {⟨c∗i , x⟩ > 0: x ∈ ℝm−r−1, i ∈ L} is infeasi-
ble if and only if there exist nonnegative factors λk, k ∈ L, at least one of which is
nonzero, such that ∑k∈L λkak = 0. By Lemma 3.39, the latter is possible if and only
if 0 ∈ ri convX∗(L󸀠), where 0 ̸= L󸀠 ⊆ L; this proves the statement, in view of Proposi-
tion 3.37 (iv).

The following auxiliary assertion that concerns arbitrary point tuples was the basis of
the definition of G-diagonals in the case of the vertex tuples of convex polytopes, see
page 59.
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Lemma 3.41. Consider a tuple X := (x1, . . . , xm) of points in ℝr such that aff X = ℝr.
A subtuple X(L) is a diagonal of the tuple X if and only if X(L) is contained in none of
the faces of the tuple X, and every subtuple X(L󸀠), where 0 ̸= L󸀠 ⊂ L, is contained in at
least one face of the tuple X.

Proof. It suffices to show that the subtuple X(L) is included in some face of the tuple X
if and only if convX(L) ∩ ri convX = 0.

Suppose that X(L) ⊂ X(M), for some face X(M) of the tuple X. For the face X(M),
we by definition have aff X(M) ∩ convX([m] − M) = 0. Using Lemma 3.35, one can
verify that convX(M)∩ ri convX = 0, as a consequence, for the tuple X(L) the equality
convX(L) ∩ ri convX = 0 also holds.

Now let the relation convX(L) ∩ ri convX = 0 hold for some subtuple X(L). Then,
by Lemma 3.35, there exists a hyperplane H that separates the sets convX(L) and
convX. Let us suppose M := {i ∈ [m] : x i ∈ H}. Note that aff X(M) ∩ convX([m] − M)⊆ H ∩ conv ([m] − M) = 0, that is, the subtuple is a face of the tuple X. Further,
convX(L) ⊂ H and, thus, X(L) ⊂ X(M).
Another auxiliary assertion that we will use is as follows:

Lemma 3.42. Let X(L) be a diagonal of a tuple X := (x1, . . . , xm) of points in the
space ℝr. Then the convex hull convX(L) is a simplex.
Proof. Let us consider an arbitrary point x∗ ∈ convX(L) ∩ ri convX. It follows from
Carathéodory’s theoremon the representability of points in the convexhull of a subset
fromℝr that x∗ ∈ convX(L󸀠), for some subset L󸀠 ⊆ L of cardinality |L󸀠| = dimX(L)+1.
The assumption that the hull convX(L) is not a simplex contradicts the minimality of
the subtuple X(L) because |L󸀠| = dimX(L) + 1 < |L|.
Theorem 3.43. Let an irreducible infeasible system of linear inequalities S, and a se-
quence B := (b1, b2, . . . , bm) of points, of affine dimension d := m − r − 1, in ℝd,
be given, such that B∗ := (b∗

1 , b∗
2 , . . . , b∗

m) = (λ1a1, λ2a2, . . . , λmam) for some fac-
tors λ1, λ2, . . . , λm > 0. The following statements are true:
(i) A set I ⊂ [m] is the multi-index of some IIS of the system S if and only if its comple-

ment [m] − I is the multi-index of a facet of the tuple B.
(ii) A set J ⊂ [m] is the multi-index of some MFS of the system S if and only if its com-

plement [m] − J is the multi-index of a diagonal of the tuple B.
Proof. Since all factors λk are positive, it suffices to consider, when proving the theo-
rem, the system {⟨b∗

i , x⟩ > 0: x ∈ ℝr , i ∈ [m]} (3.21)

instead of system (3.20). Let I be the multi-index of an IIS of system (3.21). It follows
from Lemma3.40 that I is themulti-index of an inclusion-minimalnonempty coface of
the tuple B, that is, the complement [m] − I is the multi-index of a facet of the tuple B.
The converse assertion is proved by applying Lemma 3.40 in the opposite direction.
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Let us denote by I the family of the multi-indices of IISs of system (3.21), and by F the
family of the multi-indices of facets of the tuple B. A subset J ⊂ [m] is the multi-index
of a MFS of system (3.21) if and only if the complement [m]− J is an inclusion-minimal
subset of the set [m], such that ([m] − J) ∩ I ̸= 0, for the multi-index I ∈ I of any IIS of
system (3.21).

On the other hand, by Lemma 3.41, the complement [m] − J is the multi-index of
a diagonal of the tuple B if and only if the set [m] − J is an inclusion-minimal subset
of the set [m], such that ([m] − J) ∩ ([m] − F) ̸= 0, for the multi-index F of any facet of
the tuple B.

Since I = {[m] − F : F ∈ F}, it follows from the above argument that J is the multi-
index of aMFS of system (3.20) if and only if the complement [m]− J is themulti-index
of a diagonal of the tuple B.

Corollary 3.44. (i) The family I of subsets of the set [m] is the family of the multi-
indices of all IISs of some irreducible infeasible system (3.20), of rank r, over ℝr
if and only if the family I⊥ := {[m] − I : I ∈ I} is the family of the multi-indices of all
facets of some tuple of m points, of affine dimension d := m − r−1, in the spaceℝd.

(ii) The family J of subsets of the set [m] is the family of the multi-indices of all MFSs of
some irreducible infeasible system (3.20), of rank r, over ℝr if and only if the fam-
ily J⊥ := {[m] − J : J ∈ J} is the family of the multi-indices of diagonals of some tuple
of m points, of affine dimension d := m − r − 1, in the space ℝd.

We now turn to a study of the properties of infeasible systems of linear inequalities

S2 := {⟨ai , x⟩ > 0: ai , x ∈ ℝr; ‖ai‖ = 1, i ∈ [m]} , (3.22)

of the form (3.20), whose set of determining vectors A(S2) := {ai : i ∈ [m]} satisfies
the following structural condition: for any open half-space C> ⊂ ℝr, bounded by a
codimension one linear subspace, the condition

|{a ∈ A(S2) : a ∈ C>}| ≥ 2 (3.23)

is satisfied.

Proposition 3.45. For system (3.22, 3.23), the inclusion 0 ∈ ri convA(S2) holds.
Proof. Suppose to the contrary that 0 ̸∈ ri convA(S2). Then there exists a subset A󸀠 ⊂
A(S2) such that dimaff A󸀠 = r − 1, and A(S2) is contained in a closed half-space
bounded by the hyperplane aff A󸀠 because the impossibility of the mentioned inclu-
sion would mean that the tuple A(S2) is contained in some open hemisphere of the
unit sphere 𝕊r−1 and, as a consequence, the feasibility of the system S2. But the inclu-
sion A(S2) into a closed hemisphere of the sphere 𝕊r−1 contradicts condition (3.23).
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Proposition 3.46. System of linear inequalities (3.22, 3.23) is irreducible.

Proof. Suppose to the contrary that, according to Proposition 3.36, the set posA(S2)
is not a linear subspace. But this is possible (see the proof of Proposition 3.45) if and
only if posA(S2) is some closed half-space C≥ bounded by a codimension one linear
subspaceH of ℝn; but this contradicts condition (3.23).
Propositions 3.39 and 3.45 imply the following statement:

Corollary 3.47. For a system S2 of the form (3.22, 3.23), there exists a tuple of positive
factors λi, such that the origin 0 is a convex combination of the vector tuple A(S2) with
these coefficients, that is, 0 = ∑i∈[m] λiai, λi > 0, ∑i∈[m] λi = 1.
The following proposition clarifies the link between the properties of systems
(3.22, 3.23) and those of convex polytopes.

Proposition 3.48. Let S2 be a system of the form (3.22, 3.23).
(i) A family I of subsets of the set [m] is the family of the multi-indices of IISs of the

system S2 if and only if the family I⊥ := {[m] − I : I ∈ I} is the family of the multi-
indices of facets of some bounded convex (m − r − 1)-polytope with m vertices.

(ii) A family J of subsets of the set [m] is the family of the multi-indices of MFSs of the
system S2 if and only if the family J⊥ := {[m] − J : J ∈ J} is the family of the multi-
indices of diagonals of some bounded convex (m − r − 1)-polytope with m vertices.

The mentioned polytope is not a pyramid; in particular, it is not a simplex.

Proof. Let us associate with the system S2 a modified system S󸀠
2 := {⟨λiai , x⟩ >

0: ai ∈ A(S2)} such that the coefficients λi satisfy the conditions from Corollary 3.47.
Since all coefficients λi are positive, the sets of solutions to feasible subsystems, with
the same multi-indices, for the systems S2 and S󸀠

2 coincide. Since ∑i∈[m] λiai = 0,
in accordance with Proposition 3.37 (i), the tuple {λ1a1, λ2a2, . . . , λmam} is a Gale
transform of the tuple {λ1a1, λ2a2, . . . , λmam}∗. By Corollary 3.38 (ii)(b), and accord-
ing to condition (3.23), we obtain {λ1a1, λ2a2, . . . , λmam}∗ is the vertex tuple of a
bounded convex (m − r − 1)-polytope in ℝm−r−1. The proof of assertions (i) and (ii) is
completed by applying Corollary 3.44.

Recall that the vector tuple A(S2), by convention, does not contain the origin 0;
therefore, in accordancewithCorollaries 3.38 (ii)(a) and3.38 (v), the tuple {λ1a1, λ2a2,
. . . , λmam}∗ cannot be the vertex tuple of a pyramid.

Combinatorially dual systems of linear inequalities

Proposition 3.49. Let S2 be a rank r infeasible system (3.22) of m homogeneous strict
linear inequalities that has p minimal infeasible subsystems. Let J and I be the families
of the multi-indices of all its MFSs and IISs, respectively.
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The system S2 satisfies condition (3.23) if and only if there exists a rank r + p − m
infeasible systemS0

2 (whose families of themulti-indices of allMFSsand IISs are denoted
by J0 and I0, respectively)of phomogeneous strict linear inequalities, that hasmminimal
infeasible subsystems, such that
(i) for each multi-index I ∈ I of an IIS, there exists the index t ∈ [p] of an inequality of

the system S0
2 such that #{I0 ∈ I0 : t ∈ I0} = |I|;

(ii) for each multi-index I0 ∈ I0 of an IIS, there exists the index t ∈ [m] of an inequality
of the system S2 such that #{I ∈ I : t ∈ I} = |I|;

(iii) for each multi-index J ∈ J of a MFS, there exists a familyM ⊂ I0 of the multi-indices
of IISs, #M = m − |J|, such that⋃I∈M I = [p];

(iv) for eachmulti-index J0 ∈ J0 of aMFS, there exists a familyM ⊂ I of themulti-indices
of IISs, #M = p − |J|, such that⋃I∈M I = [m].

Proof. Proposition 3.48puts in correspondencewith the system S2 a convex (m−r−1)-
polytope P with m vertices and p facets. In turn, for this polytope there exists a dual(m− r−1)-polytopeP0 with p vertices andm facets; the face lattices of the polytopesP
andP0 are anti-isomorphic. The proof is completed by reapplying of Proposition 3.48,
to the polytope P0; and, besides, we need to show that the set of vectors determining
the system S0

2 does not contain the origin 0. Suppose to the contrary that it is not the
case. Then, in accordancewith Corollary 3.38 (v), the polytopeP0 is a pyramid. But the
pyramidP0 is a polytope which is dual to the pyramidP; thus, the set A(S2) of vectors
determining the system S2 contains the origin 0, a contradiction with the hypothesis
of the proposition.

Systems of linear inequalities and simplicial/simple polytopes.
The Dehn–Sommerville relations. Bounds for the number of subsystems

In this section, in addition to the linear inequality systems of the form (2.26), (3.20),
and (3.22, 3.23), we consider the inequality system S2, whose description is given
in (3.22, 3.23), which satisfies one of the following new conditions:

every subsystem of rank at most r − 1 is feasible; (3.24)
each inequality belongs to p + r −m + 1 IISs. (3.25)

We will show below, in Proposition 3.52, that a system of the form (3.22, 3.23, 3.24)
can equivalently be defined as a system of the form (3.22, 3.23), such that every of its
minimal infeasible subsystem is composed of r + 1 inequalities.

The next statement follows immediately from definitions:

Proposition 3.50. If in the set A(S2) of vectors, which define a rank 2 system S2 of
the form (3.22, 3.23), there are no antipodal pairs then the system S2 satisfies condi-
tion (3.24).
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Proposition 3.51. If S2 is a system of the form (3.22, 3.23, 3.24) then the following asser-
tions are true:
(i) A family I of subsets of the set [m] is the family of the multi-indices of IISs of the

system S2 if and only if the family I⊥ := {[m] − I : I ∈ I} is the family of the multi-
indices of facets of some bounded convex simplicial (m − r − 1)-polytope with m
vertices.

(ii) A family J of subsets of the set [m] is the family of the multi-indices of MFSs of the
system S2 if and only if the family J⊥ := {[m] − J : J ∈ J} is the family of the multi-
indices of diagonals of some bounded convex simplicial (m − r − 1)-polytope with
m vertices.

The mentioned polytope is not a simplex.

Proof. First, it is necessary to repeat the argument thatweusedwhenprovingProposi-
tion 3.48. Taking into account that, for anyhyperplaneH that contains the origin0, we
have 0 ̸∈ conv (A(S2) ∩H), the proof is completed by applying Corollary 3.38 (iv).

Proposition 3.52. A system of the form (3.22, 3.23) satisfies condition (3.24) if and only
if all its minimal infeasible subsystems have the same cardinality r + 1.

Given a system S2 of the form (3.22, 3.23, 3.24), the number of all its infeasible sub-
systems, of cardinality k, which contain a fixed IIS, is equal to (m−r−1

m−k ).
Proof. Since in accordance with Proposition 3.51, all index sets [m] − I, where I ∈ I,
are the multi-indices of the vertex tuples of facets of a simplicial (m − r − 1)-polytope,
they all have the same cardinalitym − r − 1. As a consequence, any multi-index I of a
minimal infeasible subsystem has cardinality r + 1.
The next two statements show that the number of feasible and infeasible subsystems,
of different cardinalities, of a system S2 of the form (3.22, 3.23, 3.24) obey special rela-
tions.

Proposition 3.53. Let S2 be a system of the form (2.26,3.23,3.24); let νi and τi be the
numbers of its feasible and infeasible subsystems, of cardinality i, respectively.

The following relations (where x is a formal variable) hold:

{{{{{{{
νj = (mj ), if 0 ≤ j ≤ r ,
νm−1 = νm = 0 ,∑m
j=r+1 ((mj ) − νj) (x − 1)m−j = ∑m

j=r+1(−1)j−r−1 ((mj ) − νj) xm−j .
We will call these relations the Dehn–Sommerville equations for the feasible subsys-
tems of the system S2. The substitution in these relations of (mj ) − νj by τj leads to the
Dehn–Sommerville equations for the infeasible subsystems of the system S2.

Proof. In accordance with Proposition 3.51, the index sets [m] − J, where J ∈ J, are
the multi-indices of diagonals of the vertex tuple of a simplicial (m − r − 1)-polytope.
We will regard the family of its diagonals as a family of subsets of the atom set of its
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face lattice L; this lattice is of rank ρ(L) = m − r, and its atoms are the vertices of the
polytope under consideration. Let nt be the number of the t-subsets of the atom set of
the lattice L that contain, as a subset, at least one diagonal. LetWj be the number of
rank j elements of the latticeL; hereW0 = 1 andW1 = m. In other words,Wj denotes
the number of faces with j vertices. We have

nt = {{{
(W1
t ) −Wt = (mt ) −Wt , if 0 ≤ t ≤ m − r − 1 ,(W1
t ) = (mt ), if m − r ≤ t ≤ m .

It is clear that n0 = n1 = 0.
Further, νk = nm−k, therefore,

νk = {{{
(mk ), if 0 ≤ k ≤ r ,(mk ) −Wm−k , if r + 1 ≤ k ≤ m .

Let us consider the case r+1 ≤ k ≤ m inmore detail; in this situation, νk = (mk )−Wm−k.
The Dehn–Sommerville equations for the Whitney numbers of the second kind Wi of
the lattice L are as follows:

ρ(L)−1∑
i=0 Wi(x − 1)i = ρ(L)−1∑

i=0 (−1)ρ(L)−i−1Wixi ,

or, in our case,

m−r−1∑
i=0 Wi(x − 1)i = m−r−1∑

i=0 (−1)m−r−i−1Wixi , W0 = 1, W1 = m .

Let us equivalently rewrite the latter expression in the form

m∑
j=r+1Wm−j(x − 1)m−j = m∑

j=r+1(−1)j−r−1Wm−jxm−j , W0 = 1, W1 = m .

By substitutingWm−j by (mj ) − νj, we complete the proof.

As an illustration, we present the solutions to several initial Dehn–Sommerville equa-
tions.

Corollary 3.54. Let S2 be a system of the form (3.22, 3.23, 3.24), and νi the number of its
feasible subsystems of cardinality i. Then
(i) if m = r + 3, then νr+1 = (m2) − m ;
(ii) if m = r + 4, then

νr+1 = (m3) − 2m + 4 ,
νr+2 = (m2) − 3m + 6 ;
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(iii) if m = r + 5, then
νr+2 = 2νr+1 − 2(m4) + (m3) ,
νr+3 = −νr+1 + (m4) − (m2) + m .

Corollary 3.55. Let S2 be a system of the form (3.22, 3.23, 3.24), and τi the number of its
infeasible subsystems of cardinality i. Then the following relations hold:
(i) if r + 1 ≤ i ≤ m, then

τi = m∑
j=r+1(−1)j−r−1(m−j

m−i)τj ;
(ii) if k ∈ [⌊m−r

2 ⌋], then
m∑

j=r+k(−1)m−j+1(j−r−1k−1 )τj = m∑
j=m−k+1(−1)r+j( j−r−1m−r−k)τj .

Proof. The above relations follow immediately from Proposition 3.51 and from the as-
sertions: if L is the face lattice of a simplicial polytope, then
(i) the Dehn–Sommerville equations for L are equivalent to

Wi = ρ(L)−1∑
j=0 (−1)ρ(L)−j−1(ji)Wj ,

for i ∈ [ρ(L) − 1];
(ii) the Dehn–Sommerville equations for L are equivalent to

k−1∑
j=0(−1)ρ(L)+j(ρ(L)−j−1

ρ(L)−k )Wj = ρ(L)−k∑
j=0 (−1)j+1(ρ(L)−j−1

k−1 )Wj ,

for k ∈ [⌊ ρ(L)
2 ⌋].

Proposition 3.56. A system S2 of the form (3.22, 3.23) satisfies condition (3.24) if and
only if its combinatorially dual system S0

2 satisfies condition (3.25).

Proof. The proof is analogous to that of Proposition 3.49. Since the polytope P, which
is put in correspondence with the system S2 by the Gale transform, is simplicial, then
its dual polytope P0 is simple. Therefore, the system S0

2 satisfies (3.25).

Proposition 3.57. Let a system S2of the form (3.22, 3.23) satisfy condition (3.25), and
let I1, I2, . . . , Im−r−k−1 ∈ I, where 0 ≤ k ≤ m − r − 2, be the multi-indices of some of
its IISs. Let us suppose I := ⋃j∈[m−r−k−1] Ij. If I ̸= [m], then the chosen multi-indices
I1, I2, . . . , Im−r−k−1 ∈ I only are precisely those families of the multi-indices of IISs of
the system S2 whose union is I.

Proof. A system S2 of the form (3.22, 3.23) satisifes condition (3.25) if and only if the
multi-index of each of its minimal infeasible subsystem is the complement, up to [m],
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of the multi-index of a facet of some simple (m − r − 1)-polytope P with m vertices.
Now the proposition follows from the next observation: let P be a simple d-polytope,
and F1, F2, . . . , Fd−k its facets, where 0 ≤ k ≤ d − 1. Let us suppose F := ⋂i∈[d−k] Fi,
and assume that F ̸= 0. Then F represents a k-dimensional face of the polytopeP, and
the facets F1, F2, . . . , Fd−k are precisely those faces of P that contain F.

Proposition 3.58. A system S2 of the form (3.22, 3.23) satisifes condition (3.25) if and
only if for any of its IIS, with a multi-index I ∈ I, there exist precisely m − r − 1 multi-
indices of IISs I1, I2, . . . , Im−r−1 such that for each j ∈ [m − r −1] it holds |I ∪ Ij| = r +2.
Proof. According to Propositions 3.51 and 3.56, the system S2 satisfies condition (3.24)
if and only if the multi-index of any of its minimal infeasible subsystem is the comple-
ment, up to [m], of the multi-index of some facet of a simplicial (m − r−1)-polytope P
with m vertices, which is dual to a simple (m − r − 1)-polytope P0. ButP0 is simple if
and only if each of its vertex is incident to precisely m − r − 1 one-dimensional faces.
The one-dimensional faces of the polytope P0 are anti-isomorphic to the (m − r − 2)-
dimensional simplices of P, from where the proof follows.

The Dehn–Sommerville relations presented in Proposition 3.53 can be reformulated,
according to combinatorial duality described inPropositions 3.49 and3.56, for systems
of the form (3.22, 3.23, 3.25) as follows:

Proposition 3.59. Let S2 be a system of the form (3.22, 3.23, 3.25), let I be the family of
the multi-indices of its IISs, and ni the number of those subfamilies {I1, I2, . . . , Ii} ⊆ I,
for which⋃j∈[i] Ij = [m]. Let us suppose n0 := 0. Then the following relations hold x is a
formal variable:

{{{{{{{{{{{{{

n0 = n1 = 0 ,
nk = (pk), if m − r ≤ k ≤ p ,∑p
j=r+p−m+1 ((pj) − np−j) (x − 1)p−j= ∑p

j=r+p−m+1(−1)j−r−p+m−1 ((pj) − np−j) xp−j .
Since any subset of vertices of a face of a simplicial polytope is also the vertex set of
some of its face, Proposition 3.51 makes it possible to estimate the number of subsys-
tems of different cardinalities in systems of the form (3.22, 3.23, 3.24):

Proposition 3.60. Let S2 be a system of the form (3.22, 3.23, 3.24); let νk and τk denote
the numbers of its feasible and infeasible subsystems, of cardinality k, respectively. Sup-
pose

Φj(m − r − 1,m) := ⌊(m−r−1)/2⌋∑
i=0 (ij)(m+r+i

i ) + ⌊(m−r−1)/2⌋−1∑
i=0 (m−r−i−1

j )(m+r+i
i ) .
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Then

τk ≤ Φk−r−1(m − r − 1,m) ,
νk ≥ (mk ) − Φk−r−1(m − r − 1,m) ,

for r + 1 ≤ k ≤ m − 2.
Proof. According to Proposition 3.51 (i), a system S2 of the form (3.22, 3.23) satisifies
condition (3.24) if and only if the multi-index of any of its minimal infeasible sub-
system is the complement, up to [m], of the multi-index of some facet of a simpli-
cial (m − r − 1)-polytope P with m vertices. The proposition follows from the upper
bound theorem proved by McMullen: if we set, for a simplicial d-dimensional poly-
tope with m vertices,

Φj(d,m) := ⌊d/2⌋∑
i=0 (ij)(m−d+i−1

i ) + ⌊(d−1)/2⌋∑
i=0 (d−ij )(m−d+i−1

i ) ,
then, for 1 ≤ j ≤ d − 1, the number of its j-dimensional faces is at most Φd−j−1(d,m).
Proposition 3.61. Let S2 be a system of the form (3.22, 3.23, 3.24); let νk and τk denote
the numbers of its feasible and infeasible subsystems, of cardinality k, respectively. Sup-
pose

φ(m − r − 1,m) := {{{
(m − r − 2)m − (m − r)(m − r − 3), if j = 0 ,(m−r−1

j+1 )m − (m−r
j+1 )(m − r − j − 2), if j ∈ [m − r − 3] .

Then

τk ≥ φk−r−1(m − r − 1,m) ,
νk ≤ (mk ) − φk−r−1(m − r − 1,m) ,

for r + 1 ≤ k ≤ m − 2.
Proof. The argument is similar to that presented in the proof of Proposition 3.60. The
proposition follows from the lower bound theorem proved by Barnette: if we set, for a
simplicial d-dimensional polytope with m vertices,

φj(d,m) := {{{
(d − 1)m − (d + 1)(d − 2), if j = 0 ,( dj+1)m − (d+1j+1)(d − j − 1), if j ∈ [d − 2] ,

then, for 1 ≤ j ≤ d − 1, the number of its j-dimensional faces is at least φd−j−1(d,m).
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Diagonals of cyclic polytopes and MFSs of inequality systems

As noted earlier, one fundamental extremal construction in the problems of combina-
torial polytope theory is the cyclic polytope. Recall that it is defined as the convex hull
ofm distinct points on themoment curve x(t) := (t, t2, . . . , td) ∈ ℝd, and it is denoted
by C(d,m). We will count the number of diagonals of the polytope C(d,m) and, as a
consequence, we will estimate the number of MFSs of inequality systems. The ques-
tion on the number of diagonals of the cyclic polytopes is one of the questions of most
interest to the combinatorial theory of this important class of polytopes.

Let V := {xi := x(ti) : i ∈ [m]} be the vertex tuple of a cyclic polytope C(d,m),
where i < j ⇒ ti < tj. The polytope C(d,m) is simplicial (i.e., any proper face of
such a polytope is a simplex) and ⌊ d2 ⌋-neighborly (i.e., the convex hull of any of its ⌊ d2 ⌋
vertices is a face of the polytope). We will call a subtuple X ⊆ V connected, if it is of
the form X = (x i , xi+1, . . . , x j), for some indices i ≤ j.

Let Y ⊆ V . We will call the inclusion-maximal connected subtuples of the tuple Y
components of the tuple Y . A component Y 󸀠 ⊆ Y with an odd number of elements will
be called odd, otherwise it will be called even. A component Y 󸀠 ⊆ Y will be called end
when x1 ∈ Y 󸀠 or xm ∈ Y 󸀠. Any subtuple Y ⊆ V is partitioned into disjoint components.
A subtuple Y ⊆ V will be called an (r, s)-tuple if |Y | = r and Y has precisely s odd
nonend components. We will denote by s(Y) the number of odd nonend components
of the subtuple Y. Wewill use the following characterization of the proper faces of the
tuple V:

Lemma 3.62. A tuple X ⊂ V is a proper face of the tuple V if and only if s(X) ≤ d − |X|.
Let us denote by X\x the tuple obtained from the tuple X by removing an element x.
Since the polytope C(d,m) is simplicial, for any proper face X of the tuple V the in-
clusion X󸀠 ⊂ X implies that the tuple X󸀠 is also a (proper) face of the tuple V . Thus,
the next assertion follows from Lemma 3.41:

Lemma 3.63. A tuple X ⊂ V is a diagonal of the tuple V if and only if X is not a proper
face of the tuple V , but X\x is its proper face, for any x ∈ X.
Lemma 3.64. Suppose m ≥ d + 2. Then any diagonal X of the tuple V contains only
one-element components.

Proof. By Lemma 3.63, the tuple X cannot be a proper face of the tuple V, therefore,
taking into account Lemma 3.62, we have s(X) > d − |X|. Assume that the tuple X
has a component X0 that contains at least two elements. Since, by Lemma 3.42, the
convex hull convX is a simplex then |X| ≤ d + 1. By the hypothesis of the Lemma, we
havem ≥ d + 2; thus, the component X0 does not contain x1 and xm simultaneously.
Specifically, suppose X0 = (x i , x i+1, . . . , xj), where i ̸= 1. Let us set x := xj when the
cardinality |X| is even, and x := xi+1 when the cardinality |X| is odd. Then it follows
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from the inequality s(X) > d − |X| that s(X\x) = s(X) + 1 > d − |X| +1 = d − |X\x|, that
is, X\x is not a proper face of the tuple X, a contradiction with Lemma 3.63.

Let us denote by D(d,m) the number of all diagonals, and by Ds(d,m) the number of
diagonals, with s elements, of the tuple V of vertices of a cyclic polytope C(d,m).
Proposition 3.65.

D(d,m) = {{{{{{{
1, if m ≤ d + 1 ,
2(m−k−2

k ) + (m−k−2
k+1 ), if m ≥ d + 2 and d = 2k ,(m−k−2

k+1 ) + (m−k−3
k ), if m ≥ d + 2 and d = 2k + 1 .

Proof. If m ≤ d + 1, then C(d,m) is a simplex and, as a consequence, the tuple V has
the unique diagonal that coincides with V .

Suppose m ≥ d + 2. Since the polytope C(d,m) is ⌊ d2 ⌋-neighborly, it follows from
Lemma 3.63 that

Ds(d,m) = 0 , 1 ≤ s ≤ ⌊ d2 ⌋ . (3.26)

1. Suppose d = 2k. Let us find the number Dk+1(d,m). Since the polytope C(d,m)
is k-neighborly, it follows from Lemma 3.63 that a subtuple Y ⊂ V with k + 1 elements
is a diagonal of the tuple V if and only if Y is not a proper face of the tuple V . The
latter is possible, according to Lemma 3.62, if and only if Y is a (k + 1, s)-tuple and
s > d − (k + 1) = k − 1, that is, Y consists of k + 1 one-element components and,
besides, x1 and xm do not belong to Y simultaneously.

The enumeration of such tuples is reduced to the following problem: on a line,
m − (k +1) black points andm − k white points are chosen; besides, every black point
is situated between two white points. It is necessary to enumerate all the tuples with
k + 1 white points that do not contain two white end points simultaneously. We have

Dk+1(d,m) = 2(m−k−2
k ) + (m−k−2

k+1 ) . (3.27)

Let us show that Ds(d,m) = 0, when s > k + 1. Suppose to the contrary that there
exists a diagonal Y of the tuple V that contains k + 1 + p elements, where p ≥ 1. By
Lemma 3.64, the tuple Y consists of k + 1 + p one-element components. By removing
from this tuple the first p elements, we get the tuple Y 󸀠 consisting of k+1 one-element
components, besides, x1 ̸∈ Y󸀠. As shown earlier, such a tuple Y󸀠 is a diagonal of the
tuple V; this contradicts the minimality of Y. Thus, Ds(d,m) = 0, when s > k + 1,
from where, taking into account (3.26) and (3.27), we obtain Proposition 3.65 in the
case of d = 2k.

2. Suppose d = 2k + 1. Let us find the number Dk+1(2k + 1,m). Arguing the same
way as in the case of d = 2k, we verify that a tuple Y with k + 1 elements is a diagonal
of the tuple V if and only if Y consists of k+1 one-element nonend components. Such
tuples can be enumerated as was done earlier, that yields

Dk+1(2k + 1,m) = (m−k−2
k+1 ) . (3.28)
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Let us find the number Dk+2(2k + 1,m). Any diagonal Y with k + 2 elements of the
tuple V consists, by Lemma 3.62, of k + 2 one-element components. Let us show that,
besides, x1, xm ∈ Y. Suppose to the contrary that, for example, x1 ̸∈ Y. Then, by
removing the last element of the tuple Y , we get the tuple Y󸀠 consisting of k + 1 one-
element nonend components, that is a diagonal of the tuple V , a contradiction with
the minimality of Y.

Now let Y be a tuple consisting of k+2 one-element components, and x1, xm ∈ Y.
Then Y is a (k+2, k)-tuple and, by Lemma 3.62, it is not a proper face of the tuple V . By
removing any element from Y, we obtain a (k+1, s󸀠)-tupleY 󸀠, where s󸀠 ≤ k ≤ d−(k+1),
which is a proper face of the tuple V . It follows from Lemma 3.63 that the tuple Y is a
diagonal of the tuple V . Thus, a tuple Y with k + 2 elements is a diagonal of the tuple
V if and only if it consists of k + 2 one-element components, and x1, xm ∈ Y . The
number of such tuples is

Dk+2(2k + 1,m) = (m−k−3
k ) . (3.29)

Let us show that Ds(2k + 1,m) = 0 when s > k + 2. Suppose to the contrary that
there exists a diagonal Y of the tuple V that consists of k+1+p elements, where p ≥ 2.
By removing from this tuple the first p − 1 elements and the last element, we obtain
a tuple Y󸀠 consisting of k + 1 one-element nonend components. As we saw earlier,
such a tuple is a diagonal of the tuple V that contradicts the minimality of Y. Thus,
Ds(d,m) = 0 when s > k + 2, from where, taking into account relations (3.26), (3.28)
and (3.29), we obtain Proposition 3.65 in the case of d = 2k + 1.
Corollary 3.66. The maximal number of MFSs of irreducible systems of the form
(3.22, 3.23), of rank r ≥ 1, of m ≥ 2 inequalities is at least

{{{
2(k−1n−1) + (k−1n−2) , if m + n = 2k + 1 ,(k−1n−1) + (k−2n ) , if m + n = 2k .

Notes

The notion for which we use in Section 3.1 the term A-diagonal was introduced in [8]
under the namemissing face (ormissing simplex); the construction called G-diagonal
was considered in [19] as minimal diagonal and, independently, in work [50] under
the name diagonal; F-diagonals were introduced in [45] under the name diagonals.
See also works [69–71, 108] on the missing faces of polytopes.

The notion of missing face is also standard in the theory of abstract simplicial
complexes: let a complex ∆ with vertex set V be given. A subset N ⊆ V is called a
missing face of the complex ∆ if N ̸∈ ∆, but any proper subset of the set N is a face of
the complex ∆, see, for example, in [25, §2.2].

We say on page 59 that a polytope P is obtained by the operation of cross, borrow-
ing terminology from [35].
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Propositions 3.4 and 3.7 are actually proved in [19], in the language of cones.
The Baire category theoremmentioned in Example 3.12 is presented, for example,

in [73, Ch. 6].
The assertion that the face structure of a simplicial polytope is determined by

the structure of the family of its A-diagonals, mentioned on page 66, is proved in [8,
Th. 2.4].

The theory of positive bases of a finite dimensional space is a construction that
is well known in combinatorial geometry [31, 118, 119, 129]; see also [29, Ch. 2], [128,
Ch. 1].

The statement, presented on page 67, that for a positive basis B ofℝn the inequal-
ities n + 1 ≤ |B| ≤ 2n hold, is discussed, for example, in work [129].

A set X which is a minimal basis of the space lin X is called in work [20] a mini-
mally dependent set. In our study, we use the termminimal sub-basis for emphasizing
the origin of the minimally dependent sets under consideration. On the basis of well-
known facts – see, for example, in [117, Lemma 2.4] – note that the minimal sub-bases
of a positive basis B, defined in such a manner, are precisely all its inclusion-minimal
sub-bases.

We recall on page 68 that a positive basis B, with n + r points, of ℝn is a SPB if
and only if there exists a partition B = B1 ∪̇B2 ∪̇ ⋅ ⋅ ⋅ ∪̇Br, where B1, B2, . . . , Br are
pairwise disjoint minimal sub-bases of the positive basis B; see on this subject in
works [117, 118, 129].

Proposition 3.18 is proved in [117, 118].
On page 68, we for brevity say that a set X ⊂ ℝn is one-sided if it is contained

entirely in an open half-space bounded by a linear hyperplane; note that such a set X
is called in work [20] strict one-sided.

The notion of diagram of a positive basis useful for investigating positive bases
was introduced in work [129].

We consider on page 68 a tuple B of vectors that span positively the spaceℝr, and
the corresponding linear representation E. The fact that the point set from the tuple E
is one-sided is mentioned in [129].

Assertions (i)–(iv) of Proposition 3.19 are also proved in work [129].
In the proof of Proposition 3.25, we discuss the impossibility of the separation of

the sets E+ and E− in a hyperplaneH by a plane E; we are supported in this argument
by the theorem on the separability of convex sets from [64, Ch. 2], see Lemma 3.35;
see also, for example, in [14, §8], [26, §III.28], [84, §1.3], [150, §4.5]. See [41, §1.12],
[42, §1.12], [146, §II.7] on the separability of polyhedral sets.

The proof of Proposition 3.27 is supported by Carathéodory’s theorem; see, for
example, in [14, §3.7], [24, §1.2], [64, §2.3], [84, §1.2], [117], [163, Lect. 1] on this classical
result of convex analysis.

Another classical statement on convex sets, Helly’s theorem, is used in the proof
of the implication (vi)⇒(iv) of Proposition 3.28; Helly-type assertions can be found,
for example, in [14, §3.7], [24, §1.2], [64, Ch. 2], and [120, §IV.21].
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The proof of Proposition 3.33 is completed by making reference to a known fact
that can be found, for example, in [117, Th. 2.1].

Lemma 3.34 is presented in [146] and, as noted earlier, Lemma 3.35 can be found
in [64, Ch. 2].

The relation dim(K ∩ −K) + dimK∗ = r and the related equality (K ∩ −K) + lin K∗
= ℝr, mentioned in the proof of Proposition 3.36, are given in [120].

Gale transforms and diagrams of a point tuple are powerful tools of studying in
combinatorial geometry and in the theory of polytopes, see, for example, in [15, 60,
65, 91, 100, 156], [92, §5.6], [140, Ch. 5], [152, §3.6]. In the mentioned works, in partic-
ular, one can find the properties of Gale transforms and diagrams that are presented
in Proposition 3.37 and Corollary 3.38.

Lemma 3.39 is proved in work [60].
We consider combinatorially dual systems of linear inequalities and, in particular,

their relationship with simplicial and simple polytopes, and we present the Dehn–
Sommerville relations, and estimate the number of subsystems, following [93]; see
also [56, 57].

The assertion, used in the proof of Proposition 3.49, on the existence for any con-
vex polytope of its dual polytope (the face lattices of such polytopes are by definition
anti-isomorphic) is a fundamental observation of convex analysis; see, for example,
in [24, §2.10], [64, §3.4], [163, §2.3]. A polytope dual to a pyramid is also a pyramid of
the same dimension [24, §2.10].

The Dehn–Sommerville relations for the Whitney numbers of the second kind,
taken as the basis of the proof of Proposition 3.53, are formulated in [134, §3.14].

The equivalent reformulations of the Dehn–Sommerville relations, given in the
proof of Corollary 3.55, can be found in [156, §1.5].

The observation, mentioned in the proof of Proposition 3.57, is discussed in [24,
Th. 12.14].

In the proof of Proposition 3.58, we recall that each vertex of a simple polytope is
incident to the same number of its one-dimensional faces; see on this in [24, Th. 12.12].

The upper bound theorem, proved by P. McMullen, which is taken as the basis
of the proof of Proposition 3.60, is reproduced in [24, Corollary 18.3]. The lower bound
theorem – see the proof of Proposition 3.61 –was proved byD. Barnette; it is presented
in [24, Corollary 19.6].

We recall on page 88 that the cyclic polytopes are simplicial and highly neigh-
borly; see on this, for example, in [64, §4.7], [156, §1.2].

We say on the connected subtuples of the vertex set of a cyclic polytope, follow-
ing [101]. Lemma 3.62 is also proved in [101].



4 Monotone Boolean functions, complexes, graphs,
and inequality systems

Themulti-indices of the subsystems of infeasible systemswith themonotonicity prop-
erty and, in particular, themulti-indices of the subsystems of infeasible systems of lin-
ear inequalities determine a partition of the Boolean lattice of multi-indices into two
subposets that correspond to the feasible and infeasible subsystems. This partition
is uniquely determined by the so-called border that is the common collection of the
multi-indices of maximal feasible and minimal infeasible subsystems; the family of
the multi-indices of MFSs is naturally regarded as the facet family of an abstract sim-
plicial complex. In terms of monotone Boolean functions, the multi-indices of MFSs
and IISs correspond to the upper zeros and lower units of some Boolean function
which is assigned to the inequality system under consideration, see Chapter 1.

In this chapter, we investigate the relationship of the problems of searching for
the maximal feasible subsystems of an inequality systemwith the problem of optimal
inference of monotone Boolean functions. Inference lies on the basis of numerous ap-
plications; for this reason, we will explain in detail a specific approach to its efficient
realization.

4.1 Optimal inference of monotone Boolean functions

Let us recall several constructions and notation which we used earlier in Section 1.2.
For binary tuples α := (α1, α2, . . . , αm) and β := (β1, β2, . . . , βm) from the unit

discrete m-dimensional cube Bm := {0, 1}m, the ordering α ≤ β, by definition holds if
and only if αi ≤ βi, for all i ∈ [m]. IfA ⊆ Bm, thenmaxA andminA denote the sets
of all maximal elements and all minimal elements of the set maxA, with respect to
that ordering, respectively.

The number of units in a tuple α ∈ Bm will be denoted by |α|.
Wewill denote by α⊕β the coordinate-wise summation of the tuples α and β over

the set B equipped with the properties of the finite field 𝔽2 with two elements.
Any monotone Boolean function (MBF) f : Bm → B, which is a map for which the

implications
α, β ∈ Bm , α ≤ β 󳨐⇒ f(α) ≤ f(β) (4.1)

hold, induces the partition Bm = f−1(0) ∪̇ f−1(1) of the cube Bm into the preimages of
the elements from the set B. Under such a partitioning, the family

I(J) := {{j ∈ [m] : αj = 1} : α ∈ f−1(0)} , (4.2)

interpreted as a subset of the Boolean lattice 𝔹(m) of subsets of the index set [m],
represents its order ideal generated in 𝔹(m) by the family J of the inclusion-maximal
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sets from the family {{j ∈ [m] : αj = 1} : α ∈ f−1(0)}. The ideal I(J) is the face poset of
the abstract simplicial complex ∆(J) with the facet family J.

Similarly, it follows from monotonicity property (4.1) that the family

F(I) := {{j ∈ [m] : αj = 1} : α ∈ f−1(1)}
can be regarded as an order filter of the lattice 𝔹(m) generated by the family I of
inclusion-minimal sets from the family {{j ∈ [m] : αj = 1} : α ∈ f−1(1)}.

Recall that the set f−1(0) consists of the zeros of the function f, and the set f−1(1)
consists of the units of this function. The subset Q(f) := max f−1(0) of maximal ele-
ments of the poset f−1(0) is the set of upper zeros of the function f; the subsetP(f) :=
min f−1(1) of minimal elements of the poset f−1(1) is the set of lower units of the func-
tion f.

An upper zero α ∈ Q(f) of the function f is called maximal if |α| = maxβ∈Q(f) |β|.
Dually, a lower unit α ∈ P(f) of the function f is calledminimal if |α| = minβ∈P(f) |β|.

Let us denote the class of all monotone Boolean functions of m variables byMm.
Let us assign to the function f ∈ Mm an oracle Of that is an operator making it

possible to compute for an arbitrary point α ∈ Bm the value of the function f at this
point. Inference of an a priori unknown monotone Boolean function means its recon-
struction with the use of the oracleOf. The problem of constructing the algorithms of
MBF inferencewhich require the least, in a sense, number of invocations of the oracle,
is fundamental.

Given some algorithm G, let φ(G, f) denote the number of its calls of the opera-
torOf when inferring the function f ∈Mm. Optimality of the algorithm G, in the sense
of the number of invocations of the operator Of, can be ranked, for example, by the
following functionals:

φ(G,m) = max
f∈Mm

φ(G, f) , (4.3)

η(G,m) = max
f∈Mm

φ(G, f)|Q(f) ∪̇P(f)| , (4.4)

η1(G,m) = max
f∈Mm
(φ(G, f) − |Q(f) ∪̇P(f)|) , (4.5)

η2(G,m) = ∑
f∈Mm

φ(G, f) . (4.6)

Let us consider the quantity φ(m) := minG φ(G,m), where the minimum is found
over all algorithms G of inference of the MBFs ofm variables. Let us use the analogous
notation η(m), η1(m), and η2(m) for criteria (4.4)–(4.6).

The classical, well-known and well-examined criterion φ(G,m), defined in (4.3),
is called Shannon’s criterion. For an optimal, with respect to the criterion φ(G,m), al-
gorithm of MBF inference, the relation φ(m) = ( m⌊m/2⌋) + ( m⌊m/2⌋+1) holds.

At the same time, an algorithm which is optimal in the Shannon formulation is
inadequate for miscellaneous practical purposes.
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Let us analyze the complexity of inference algorithms with respect to the crite-
rion η(G,m).

During the inference process, such algorithmsmust invoke the values of the func-
tion on the setQ(f) ∪̇P(f). This means that φ(G, f) ≥ |Q(f) ∪̇P(f)|, for any algorithm G
and for any monotone Boolean function f ∈ Mm. Thus, the criterion η(G,m) formal-
izes the natural requirement according to which the computational effort of the algo-
rithm G when inferring the function f, measured by the quantity φ(G, f), should be
proportional to the objective complexity of the inference problem for the function f,
measured by the quantity |Q(f) ∪̇P(f)|.

The inference process for the function f ∈ Mm, which is realized by Algorithm G,
can be described by the sequence

G(f) = ( g1(f), f(g1(f)), g2(f), f(g2(f)), . . . , gk(f), f(gk(f)) ) ,
of tuples gi(f) ∈ Bm, chosenby thealgorithm, andof the correspondingvalues f(gi(f)) ∈
B of the function f, for i ∈ [φ(G, f)]. In other words, gi(f) can be interpreted as sequen-
tial calls, by the algorithm G, of the operator Of during the inference process for the
function f, and f(gi(f)) are the responses of the operator Of.

We will consider below those algorithms G of MBF inference only, for which the
sequence G(f) is determined for each function f ∈Mm uniquely.

Suppose A ⊆ Bm. Let us denote byMf(A) the set of all those points α of the unit
cube Bm, at which the values of the function f are determined, by the monotonicity
property, uniquely by its values at the set A, that is, α ∈ Mf(A) if there exists a tu-
ple β ≥ α such that β ∈ A ∩ f−1(0), or a tuple β󸀠 ≤ α such that β󸀠 ∈ A ∩ f−1(1).

In what follows, we will need, as standard procedures, a routine UZ(f, α) of ex-
tracting, on the basis of a point α ∈ f−1(0), an upper zero α󸀠 of the function f, such
that α󸀠 ≥ α, and a routine LU(f, α) of extracting, on the basis of a point α ∈ f−1(1), a
lower unit α󸀠, such that α ≥ α󸀠. The routines UZ(f, α) and LU(f, α)work in accordance
to the standard scheme, computing the values of the function f at some tuples with
the help of the operator Of.

The routine UZ(f, α)
Let a tuple α ∈ Bm contain k < m units αi = 1. Let us re-index the zeros in α from left
to right. Let us denote by βi the binary tuple containing m − 1 zeros and a single unit
at the position of the ith zero of the tuple α. Then the sequence

(α1, f(α1), α2, f(α2), . . . , αm−k, f(αm−k)) , (4.7)

where α1 := α⊕β1 and αi := α⊕βi⊕(1−f(α1))β1⊕(1−f(α2))β2⊕⋅ ⋅ ⋅⊕(1−f(α i−1))βi−1,
determines the upper zero α󸀠 ∈ Q(f) such that α󸀠 ≥ α, namely

α󸀠 = max {{α} ∪ {αi : i ∈ [m − k], f(αi) = 0}} .
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The routine LU(f, α)
Let a tuple α ∈ Bm contain k > 0 units αi = 1. Let us re-index the units in α from left
to right. Let us denote by γi the binary tuple containing m − 1 zeros and a single unit
at the position of the ith unit of the tuple α. Then the sequence

(α1, f(α1), α2, f(α2), . . . , αk , f(αk)) , (4.8)

where α1 := α ⊕ γ1 and αi := α ⊕ γi ⊕ f(α1)γ1 ⊕ f(α2)γ2 ⊕ ⋅ ⋅ ⋅ ⊕ f(αi−1)γ i−1, determines
the lower unit α󸀠 ∈ P(f) such that α󸀠 ≤ α, namely

α󸀠 = min {{α} ∪ {αi : i ∈ [k], f(α i) = 1}} .
Sequences (4.7) and (4.8) themselveswill bedenotedbelowbyUZ(f, α)andLU(f, α).

Note that the sequence UZ(f, α) contains m − |α| invocations of the operator Of, and
the sequence LU(f, α) contains |α| invocations of the operatorOf. By definitionwewill
suppose that the sequence UZ(f, α) is empty when |α| = m, and the sequence LU(f, α)
is empty when |α| = 0.

Let us denote by G(f, α) the sequence of the form
G(f, α) := {{{

(α, 0, UZ(f, α)), if f(α) = 0 ,(α, 1, LU(f, α)), if f(α) = 1 .
It follows from the definition that the sequence G(f, α) contains an upper zero

α󸀠 ≥ α of the function f when f(α) = 0, and G(f, α) contains a lower unit α󸀠 ≤ α of
the function f when f(α) = 1. Let us use the common notation argG(f, α) for these
elements.

Let us denote byB(Bm) the family of all subsets of the unit cube Bm. Given a fixed
choice function ψ : B(Bm) → Bm, define an algorithm of MBF inference, as follows:

Gψ(f) := (G(f, α1), G(f, α2), . . . , G(f, αk)) , (4.9)

where α1 := ψ(B1) and αi := ψ(Bm −Mf({arg G(f, αs) : s ∈ [i − 1]})).
The inference process for the function f is completed by the algorithm Gψ when

we have Mf({arg G(f, αs) : s ∈ [k]}) = Bm. Analyzing definition (4.9) of the se-
quence Gψ(f), we can conclude that

{arg G(f, αs) : s ∈ [φ(Gψ , f)]} = Q(f) ∪̇P(f) , (4.10)|{αi : i ∈ [φ(Gψ , f)], f(αi) = 0}| = |Q(f)| , (4.11)|{αi : i ∈ [φ(Gψ , f)], f(αi) = 1}| = |P(f)| . (4.12)

Proposition 4.1. For any choice function ψ : B(Bm) → Bm, the inequality η(Gψ ,m) ≤
m + 1 holds.
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Proof. The sequence G(f, α i) contains at most m + 1 invocations of the operator Of

when |αi| = 0 or |αi| = m, and at most m invocations otherwise. It follows from the
above argument, taking into account (4.10), that

φ(Gψ , f) ≤ m|Q(f)| + m|P(f)| + 2 . (4.13)

For the functions identically zero f0(α) ≡ 0 and identically unit f1(α) ≡ 1, we have
η(Gψ , f0) ≤ m+1and η(Gψ , f1) ≤ m+1, respectively. If f ̸∈ {f0, f1} then |P(f) ∪̇Q(f)| ≥ 2,
and the proposition follows from (4.13).

Proposition 4.2. Let ψ : B(Bm) → Bm be an arbitrary choice function, f ∈Mm, and let
αi be a fixed item of the sequence Gψ(f) = (G(f, α1), G(f, α2), . . . , G(f, αk)).
(i) If αi ∈ min (Bm −Mm({argG(f, αs) : s ∈ [i − 1]})), f(αi) = 1, then αi is a minimal

lower unit of the function f, and thus αi = argG(f, α i).
(ii) If αi ∈ min (Bm −Mm({argG(f, αs) : s ∈ [i − 1]})), f(αi) = 0, then αi is a maximal

upper zero of the function f, and thus αi = arg G(f, α i).
Proof. Let us prove assertion (i). Let {β1, β2, . . . , βi} be the set of elements from Bm

which are covered by the element αi in the poset B(Bm). Then β j ∈ Mf({argG(f, αs):
s ∈ [i − 1]}), j ∈ [l], because of the minimality of αi = min {Bm −Mf{argG(f, αs):
s ∈ [i − 1]}}, and f(β j) = 0, j ∈ [l], because otherwise the element αi would belong to
the setMf({argG(f, αs) : s ∈ [i − 1]}), which contradicts the choice of the element αi
of the sequence Gψ(f) in (4.9). It follows from the above argument that αi is a minimal
lower unit of the function f.

Assertion (ii) is proved similarly.

Proposition 4.2 is of applied significance because the proposition makes it possible,
for some choice functions, to simplify the corresponding algorithms of inference Gψ.
Let us consider two interesting examples of the choice functions. Let ψ be an arbitrary
choice function. Suppose, for anyA ⊆ Bm,

ψ0(A) := ψ(minA) , (4.14)
ψ1(A) := ψ(maxA) . (4.15)

Let us consider the sequenceGψ0 (f) := (G(f, α1), G(f, α2), . . . , G(f, αk)). It follows
from Proposition 4.2 that any element αi from Gψ0(f), such that f(αi) = 1, is a minimal
lower unit of the function f. This means that the subsequence G(f, α i) of the sequence
Gψ0 (f), in the case when f(αi) = 1, can be substituted by (αi , 1), without affecting the
result of inference. The following algorithm is thus defined:



98 | 4 Monotone Boolean functions, complexes, graphs, and inequality systems

Algorithm G󸀠ψ0
,

with the inference sequence G󸀠
ψ0
(f) := (G󸀠(f, α1), G󸀠(f, α2), . . . , G󸀠(f, αk)), where

G󸀠(f, αi) := {{{
(αi , 0, UZ(f, αi)), if f(αi) = 0 ,(αi , 1), if f(αi) = 1 ,

α1 := ψ0(Bm) = (0, 0, . . . , 0) ,
αi := ψ0(Bm −Mf({arg G󸀠(f, αs) : s ∈ [i − 1]})) ,

arg G󸀠(f, αs) := {{{
argG(f, αs), if f(αs) = 0 ,
αs , if f(αs) = 1 .

The inference process for the function f is completed by Algorithm G󸀠 when we
haveMf{argG󸀠(f, αs) : s ∈ [k]} = Bm.⊳ In the description of Algorithm Gψ0 , let us substitute 1 by 0, and 0 by 1 in all
positions, except for α1, and UZ(f, αi) by LU(f, αi); we obtain Algorithm G󸀠

ψ1
that is a

modification of Algorithm Gψ1 on the basis of Proposition 4.2.

Proposition 4.3. Let ψ : B(Bm) → Bm beanarbitrary choice function, and let the quan-
tities ψ0 and ψ1 be defined by relations (4.14) and (4.15). Then

φ(G󸀠
ψ0
, f) ≤ m|Q(f)| + |P(f)| + 1 , (4.16)

φ(G󸀠
ψ1
, f) ≤ |Q(f)| + m|P(f)| + 1 . (4.17)

Proof. Let us prove inequality (4.16). It follows from the definition of Algorithm G󸀠
ψ0

and from Proposition 4.2 that relations (4.10) also hold for the sequence G󸀠
ψ0
(f), from

where, taking into account the definition of the sequence G󸀠(f, α i), we obtain (4.16).
Relation (4.17) is proved similarly.

Thus, the algorithm G󸀠
ψ0

is efficient for inferring monotone Boolean functions with a
relatively small number of maximal upper zeros.

According to the following proposition, the function η(m) is not bounded by a
constant, uniformly for all m.

Proposition 4.4. For the function η(m), it holds
max{2, log2 m1/2} ≤ η(m) ≤ ⌊m2 ⌋ + 2 .

Proof. Let us prove the lower bound. Let us first show that η(m) ≥ max{2, log2m1/2}.
Let G be an arbitrary inference algorithm. Suppose H(k) := {f ∈ Mm : |Q(f) ∪̇P(f)| ≤
k}. For i ∈ [m], define the function fi ∈Mm with the singlemaximal upper zeroQ(fi) ={(1, 1, . . . , 1, 0, 1, . . . , 1)}, where the zero is situated at the ith position, andwith the
single minimal lower unit P(fi) = {(0, 0, . . . , 0, 1, 0, . . . , 0)}; the unit is situated at
the ith position. Thus, |H(2)| ≥ m. Suppose l := max{φ(G, f) : f ∈ H(2)}. It follows
from the requirement of unambiguous determining of the subsequence G(f) that the
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number of MBFs f ∈ Mm, for which φ(G, φ) ≤ l, does not exceed the number of the
binary tuples of length l, that is 2l. As a consequence, the definition of the quantity l
implies that |H(2)| ≥ m, and we get l ≥ log2 m. Then for some function f ∈ H(2),
we have φ(G, f) ≥ log2 m, and thus η(G,m) ≥ log2 m1/2. The inequality η(m) ≥ 2 is
proved similarly. The lower bound is verified.

In order to prove the inequality η(m) ≤ ⌊m2 ⌋ + 2, let us present a specific algo-
rithm G of MBF inference, with η(G,m) ≤ ⌊m2 ⌋ + 2. Let us introduce for the cube Bm

another relation ⪯ of partial ordering: we set α ⪯ β if and only if |α| ≤ |β|. Denote by
Bm,k the set of all binary tuples α ∈ Bm that contain precisely k units. Let us define the
choice function ψ2 : B(Bm) → Bm:

ψ2(A) := {{{{{{{
β1 := ψ(max ⪯min ⪯A), if |β1| > ⌊m2 ⌋ ,
β2 := ψ(min ⪯max ⪯A), if |β1| ≤ ⌊m2 ⌋ and |β2| ≤ ⌊m2 ⌋ ,
β3 := ψ(Bm,⌊m2 ⌋ ∩A) , if |β1| ≤ ⌊m2 ⌋ ≤ |β2| ,

where ψ means an arbitrary and fixed choice function forA ⊆ Bm.
Let us prove that this choice function is well defined, that is, the function ψ2(A)

is defined for any tuple set A ⊆ Bm. For this, it suffices to show that |β1| ≤ ⌊m2 ⌋ ≤ |β2|
implies the relation Bm,⌊m2 ⌋ ∩ A ̸= 0. Let (γ1, γ2, . . . , γk) be an inclusion-maximal
chain of the poset (A, ≤). It is evident that γ1 ∈ minA and γk ∈ maxA, therefore, it
follows from |β1| ≤ ⌊m2 ⌋ ≤ |β2| and from the definition of the tuples β1 and β2 that|γ1| ≤ |β1| ≤ ⌊m2 ⌋ ≤ |β2| ≤ |γk|; this means that among the elements of the chain(γ1, γ2, . . . , γk) there exists a tuple with ⌊m2 ⌋ units, that is, Bm,⌊m2 ⌋ ∩A ̸= 0.⊳ Let us consider the sequence Gψ2(f) := (G(f, α1), G(f, α2), . . . , G(f, αk)). It fol-
lows from Proposition 4.2 and from the definition of the choice function ψ2 that
if |αi| > ⌊m2 ⌋ and f(α i) = 1, then αi is a minimal lower unit, and if |αi| < ⌊m2 ⌋
and f(αi) = 0, then αi is a maximal upper zero of the function f. This means that
in these cases we can, without affecting the result of the inference process, sub-
stitute in the sequence Gψ2 (f) its subsequence G(f, α i) by (α i , 1) or by (αi , 0), re-
spectively. An Algorithm G󸀠

ψ2
is thus defined, with the inference sequence G󸀠

ψ2
(f) :=(G󸀠(f, α1), G󸀠(f, α2), . . . , G󸀠(f, αk)), where

G󸀠(f, α) := {{{{{{{
(α, f(α)), if f(α) = 1 and |α| > ⌊m2 ⌋

or f(α) = 0 and |α| < ⌊m2 ⌋ ,
G(f, α), otherwise ,

α1 := ψ2(Bm) ,
αi := ψ2(Bm −Mf({argG󸀠(f, αs) : s ∈ [i − 1]})) ,

argG󸀠(f, αs) := {{{{{{{
αs , if f(αs) = 1 and |αs| > ⌊m2 ⌋

or f(αs) = 0 and |αs| < ⌊m2 ⌋ ,
argG(f, αs), otherwise .
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The Algorithm G󸀠
ψ2
(f) completes inference of the function f ∈ Mm if and only

ifMf({argG󸀠(f, αs) : s ∈ [k]}) = Bm. Comparing the sequence Gψ2 to G󸀠
ψ2
(f), we ver-

ify that G󸀠
ψ2

also satisfies relations (4.10). On the other hand, it follows from the def-
inition of the sequence G󸀠(f, α) that G󸀠(f, α) contains at most ⌊m2 ⌋ + 2 invocations of
the operator Of, for any i ∈ [k]. It follows from the above argument that φ(G󸀠

ψ2
, f) =(⌊m2 ⌋ + 2)|Q(f) ∪̇P(f)| and, thus, η(G󸀠

ψ2
, f) ≤ ⌊m2 ⌋ + 2.

4.2 An inference algorithm for monotone Boolean functions
associated with graphs

The study of infeasible systems, whose constraints correspond to the vertices of undi-
rected graphs, and the subsystems with two constraints are feasible (or, on the con-
trary, infeasible) if and only if the corresponding vertex pairs are edges of the graphs,
is of special applied interest.

In this section, with a graph is associated a monotone Boolean function whose
zeros correspond to the feasible subsystems of the initial infeasible system of con-
straints.

Let a simple undirected graph G := (V(G), E(G)) be given, with the vertex
set V(G) := {v1, . . . , vn} and the edge family E(G) := {e1, . . . , ep}. If U ⊂ V(G),
then G⟨U⟩ denotes the induced subgraph of the graph G, on the vertex set U. For
a vertex v ∈ V(G), as earlier, N(v) ⊂ V(G) denotes the neighborhood of the ver-
tex v in the graph G. For a subset of vertices U ⊆ V(G), we let (U2) denote the family
of all unordered two subsets of the set U. If x := (x1, . . . , xn) ∈ Bn := {0, 1}n,
then supp(x) := {i ∈ [n] : xi = 1}.

Consider the monotone Boolean function fG : Bn → B whose set of units f−1G (1) is
defined as follows:

fG(x) := 1 ⇐⇒ # (E(G) ∩ ( {vi∈V(G) : i∈supp(x)}
2 )) ≥ 1 ; (4.18)

in other words, we suppose fG(x) := 1 if and only if the induced subgraph G⟨{vi ∈
V(G) : i ∈ supp(x)}⟩ has at least one edge.

Another monotone Boolean function gG : Bn → B, which is naturally associated
with the graph G, is defined by the set of its zeros g−1G (0) as follows:

gG(x) := 0 ⇐⇒ subgraph G⟨{vi ∈ V(G) : i ∈ supp(x)}⟩ is complete ; (4.19)

we relate to the complete graphs the empty graph G⟨0⟩, and the isolated vertices
G⟨{vi}⟩, vi ∈ V(G).

The graph-theoretic construction that establishes the connection between MBFs
from (4.18) and (4.19) is the complement of the graph. The complementG of the graphG
by definitionhas the vertex setV(G) and the edge family (V(G)2 )−E(G). Definitions (4.18)
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and (4.19) imply the following useful identities:

fG = gG , fG = gG .

IfX ⊆ Bn is a set of binary tuples of length n, then, as earlier,maxX denotes the
subset of maximal elements ofX with respect to the partial order on Bn, andmax ⪯X
denotes the subset of all tuples fromX that have the maximal number of unit compo-
nents.

Problem 4.5. For the function fG defined in (4.18), to find the set

Q(fG) :=max f−1G (0)
of its upper zeros.

Problem 4.6. For the function fG, to find the set

max ⪯Q(fG)
of itsmaximal upper zeros.

An algorithm for finding a maximal upper zero of a monotone Boolean function
associated with an undirected graph

Let us consider Problem 4.6, for graphs from a certain class, in more detail.

Proposition 4.7. Let vi ∈ V(G) be a vertex of a graph G := (V(G), E(G)), such that for
its neighborhoodN(vi) the induced subgraphG⟨N(vi)⟩ of the graph G is complete. Then
there exists a maximal upper zero x󸀠 ∈ max ⪯Q(fG) of the function fG such that x󸀠i = 1.
Proof. Let us consider an arbitrary maximal upper zero x ∈ max ⪯Q(fG) of the func-
tion fG, and associate with this zero the index set I := {s ∈ [n] : vs ∈ N(vi)}. It
is easy to see that among the elements of the set I ∪̇{i} there is at least one index j
such that xj = 1, because otherwise we could find a tuple x󸀠 ∈ Bn such that x󸀠i = 1
and x󸀠s = xs for all indices s ∈ [n]− {i}. Thus, because of fG(x) = 0, and by the assump-
tion that xs = 0 for all s ∈ I, the definition of the function fG implies that fG(x󸀠) = 0.
This contradicts themaximality of the upper zero x, becausewe obtain the strict inclu-
sion supp(x󸀠) ⫌ supp(x) and fG(x󸀠) = fG(x) = 0. Now let us consider the two possible
cases. If xi = 1, then we are done. If xi = 0 and xs = 1 for some index s ∈ I, then for
the tuple x, one can find the tuple x󸀠 ∈ Bn (by the rule: x󸀠j := xj for all j ∈ [n] − {i, s},
x󸀠i := 1, and x󸀠s := 0), which is anupper zero of the function fG, in viewof the complete-
ness of the induced subgraph G⟨N(vi)⟩, and |supp(x󸀠)| = |supp(x)|; we thus obtained
a maximal upper zero x󸀠 of the function fG such that x󸀠i = 1, as was to be proved.
For an integer k ∈ [n − 1], we call a vertex v ∈ V(G) of the graph G := (V(G), E(G)) a
k-vertex, if |N(v)| = k and the induced subgraph G⟨N(v)⟩ of the graph G is complete.
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For integers k,m ∈ [n −1], we call a vertex v ∈ V(G) of the graph G := (V(G), E(G))
a (k,m)-vertex, if k = |N(v)| and m = (k2) − #(E(G) ∩ (N(v)

2 )).
A (k,m)-vertex v ∈ V(G) of the graphG := (V(G), E(G)) is its k-vertex whenm = 0.
On thebasis of Proposition4.7, one canproposeanefficient recursive algorithm for

solving Problem 4.6, which finishes its work either by the construction of a maximal
upper zero of the function fG, or by the reduction of Problem 4.6 for the function fG to
the new Problem 4.6 for a function fG󸀠 , where G󸀠 ⊂ G, that is, by the decrease of the
dimension of the problem to be solved.

Given a vertex v ∈ V0 ⊆ V(G), denote by N(v, V0) ⊂ V0 the neighborhood of the
vertex v in the induced subgraph G⟨V0⟩.
– Algorithm 1: Algorithm A(G, V0) for finding a maximal upper zero x := (x1,

. . . , xn) ∈ Bn of the function fG.

Input data: G, V0
Output data: V0, x
xi = 0, i ∈ [n], vi ∈ V0
for each vi ∈ V0 do

if vi is an |N(vi , V0)|-vertex in the subgraph G⟨V0⟩ then
xi ← 1
V0 ← V0 − ({vi} ∪̇ N(vi , V0))
A(G, V0)

end of condition
end of loop

If at the finish of the work of Algorithm 1, we get V0 = 0, then, according to Propo-
sition 4.7, the resulting tuple x ∈ Bn is a maximal upper zero of the function fG.

However, if at the finish of the work of Algorithm 1, we have V0 ̸= 0, then for all
vertices of the graphG⟨V−V0⟩, we determined the values of some components xi such
that there exists a maximal upper zero x󸀠 of the function fG with precisely the same
values for these components, that is, x󸀠i = xi; and yet we achieve the decrease of the
dimension of the problem from |V| to |V0|.
Lemma 4.8. Let two graphs G1 := (V, E(G1)) and G2 := (V, E(G2)) be given, with the
same vertex set V, and

E(G1) ⊆ E(G2) .
Then

max ⪯Q(fG2 ) ⊆ Q(fG2 ) ⊆ f−1G2
(0) ⊆ f−1G1

(0) .
Proof. It is clear thatmax ⪯Q(fG2 ) ⊆ Q(fG2 ) ⊆ f−1G2

(0).
Consider an arbitrary tuple x ∈ Bn such that x ∈ f−1G2

(0). By the definition of the
set of zeros f−1G2

(0) of the MBF fG2 , we have

# (E(G2) ∩ ( {vi : i∈supp(x)}
2 )) = 0 .
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By the hypothesis of the lemma, we have E(G1) ⊆ E(G2) and V(G1) = V(G2); as a
consequence,

# (E(G1) ∩ ( {vi : i∈supp(x)}
2 )) = 0 , ∀x ∈ f−1G2

(0) ,
and

x ∈ f−1G1
(0) . (4.20)

Then for any tuples x ∈ Bn such that x ∈ f−1G2
(0), inclusion (4.20) holds, that is,

f−1G2
(0) ⊆ f−1G1

(0) ,
as was to be proved.

It should be mentioned that
Q(fG2 ) ̸⊆ Q(fG1 ) . (4.21)

Indeed, consider the graphs

G1 : = (V(G1), E(G1)) = (V, 0) ,
G2 : = (V(G2), E(G2)) = (V, (V2)) ,

for which we have V(G1) = V(G2) and E(G1) ⊆ E(G2). The graph G1 has no edges,
therefore, the set of upper zeros of the function fG1 consists of the unique tuple

x := (1, 1, . . . , 1) .
The graph G2 is complete; thus, the set of upper zeros of the function fG2 has the form

x1 : = (1, 0, . . . , 0) ,
x2 : = (0, 1, . . . , 0) ,

...
xn : = (0, 0, . . . , 1) .

Any tuple x ∈ Q(fG2 ) is a zero of the function fG1 , that is,

Q(fG2 ) ⊆ f−1G1
(0) , Q(fG2 ) ̸⊆ Q(fG1 ) ,

as Lemma 4.8 asserts; this justifies (4.21).
Let us define the quantity max0fG := |supp(x)|, where x ∈ max ⪯Q(fG), which is

the number of unit components in a maximal upper zero of the function fG.

Corollary 4.9. Let G1 := (V, E1) and G2 := (V, E2) be graphs such that E1 ⊆ E2. Then
max0fG1 ≥ max0fG2 .
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Proof. Let x ∈ max ⪯Q(fG2 ). According to Lemma 4.8, we have x ∈ f−1G1
(0).

By the definition of the maximal upper zeros of the function, for any tuple x ∈
f−1G1
(0) there exists a tuple x󸀠 ∈ max ⪯Q(fG1 ) such that x󸀠 ≥ x. Then

max0fG1 = |supp(x󸀠)| ≥ |supp(x)| = max0fG2 ,

as was to be proved.

Proposition 4.10. Let G := (V(G), E(G)) be a graph in which vertices vi and vj are not
adjacent. Then

max0fG ≥ max0fG∪{(vi ,vj)} ≥ max0fG − 1 . (4.22)

Proof. The inequality max0fG ≥ max0fG∪{(vi ,vj)} follows from Corollary 4.9.
Let us prove the inequality max0fG∪{(vi ,vj)} ≥ max0fG − 1. Let x := (x1, . . . , xn) be

a maximal upper zero of the function fG.

Case 1
Suppose that xi = 0 and xj = 0. Then x is clearly a zero of the function fG∪{(vi ,vj)},
and it is a maximal upper zero, because otherwise we would obtain, by definition,
that there exists a maximal upper zero x󸀠 of the function fG∪{(vi ,vj)} such that x󸀠 > x
and |supp(x󸀠)| > |supp(x)|. According to Lemma 4.8, we obtain that x󸀠 is a zero of the
function fG, but this contradicts the maximality of x.

Thus, in this case, we have

max0fG = max0fG∪{(vi ,vj)} ≥ max0fG − 1 .
Case 2
Suppose that xi = 1 and xj = 0.

If the edge (vi , vj) is added, then the tuple x is againa zeroof the function fG∪{(vi ,vj)}
and, as shown earlier, it is also a maximal upper zero of the function fG∪{(vi ,vj)}.
Case 3
Suppose that xi = 1 and xj = 1.

If the edge (vi , vj) is added, then we obtain that x is not a zero of the func-
tion fG∪{(vi,vj)}. In this case, we can find a tuple x󸀠 for which x󸀠s = xs for all s ∈ [n] − {i},
and x󸀠i = 0. The tuple x󸀠 will be a zero of the function fG∪{(vi ,vj)}. Besides, by construc-
tion, |supp(x󸀠)| = |supp(x)| − 1 .

By the definition of the maximal upper zeros of the function, we have

max0fG∪{(vi ,vj)} ≥ |supp(x󸀠)| = |supp(x)| − 1 = max0fG − 1 ,
as was to be proved.
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Corollary 4.11. For a graph G := (V(G), E(G)), let {e1, . . . , et} ⊂ (V(G)2 ) − E(G) be a
subfamily of t vertex pairs that are not edges of the graph G.

Then
max0fG∪{e1 ,...,et} ≥ max0fG − t .

Proof. It suffices to apply Proposition 4.10, t times, to the graph G.

On the basis of Proposition 4.10, one can modify Algorithm 1 in such a way that the
work of the algorithm will continue until the set of remaining vertices V0 becomes
empty and, besides, a zero x of the function fG will be found, for which, at the same
time,wewill calculate the estimate (max0fG−|supp(x)|)of the deviation of the number
of unit components in the resulting tuple x from the number of unit components in a
maximal upper zero of the function fG.

– Algorithm 2: Algorithm Am(G, V0).
Input data: G, V0, m ∈ [n]
Output data: V0, Ind, x
Ind = 0
for each vi ∈ V0 do

if vi is an (|N(vi , V0)|,m)-vertex in the subgraph G⟨V0⟩ then
xi ← 1
V0 ← V0 − ({vi} ∪̇ N(vi , V0))
Ind← 1

end of loop

Algorithm 2 sequentially checks, for the given value of m and for each vertex of
the initial set V0, whether it is an (|N(vi , V0)|,m)-vertex. If there are no such vertices,
then no operations are performed, and the resulting set V0 at the finish of the work
of the algorithm coincides with the input set V0, the flag Ind = 0, a binary tuple x
is not determined. In the case where such a vertex vi is found, the output set V0 will
be obtained from the input set V0 by means of the “removal” of the vertex vi and its
neighborhood, Ind = 1, and the corresponding component xi of the tuple x takes the
value of 1.

– Algorithm 3: Algorithm B(G, V0).
Input data: G, V0
Output data: x ∈ f−1G (0)

while V0 ̸= 0
m = 0
Ind = 1
while (Ind = 1) & V0 ̸= 0 do
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Am(G, V0)
Ind← Ind(Am(G, V0))

end of loop

while (Ind = 0) & V0 ̸= 0 do
m ← m + 1
Am(G, V0)
Ind← Ind(Am(G, V0))

end of loop
end of loop

In the course of the work of Algorithm 3, as the result of repeated calls of Algorithm 2,
the tuple x is formed, which is a zero of the function fG.

Proposition 4.12. Let vi be a (k,m)-vertex in a graph G := (V(G), E(G)). Then there
exists a tuple x󸀠 ∈ Q(fG) such that x󸀠i = 1 and|supp(x󸀠)| ≥ max0fG − m .

Proof. Suppose, according to the definition of the (k,m)-vertices, that for vi ∈ V(G)
we have {e1, . . . , em} := (N(vi)

2 ) − (E(G) ∩ (N(vi)
2 )) .

Then the vertex vi is a k-vertex in the graph G1, which is obtained from the graph G
by the addition of the m edges {e1, . . . , em} into the neighborhood of the vertex vi of
the graph G up to the complete induced subgraph G1⟨N(vi)⟩.

According to Proposition 4.7, there exists a tuple x such that xi = 1
and x ∈max ⪯Q(fG1 ).

According to Corollary 4.11, for the graph G1 we have

|supp(x)| = max0fG1 ≥ max0fG − m .

It follows from Lemma 4.8 that x ∈ f−1G (0). By the definition of the upper zeros, there
exists a tuple x󸀠 ∈ Q(fG) such that x󸀠 ≥ x and, as a consequence,

|supp(x󸀠)| ≥ |supp(x)| ≥ max0fG − m ,

as was to be proved.

In every next loop of Algorithm 1, the search is terminated when some k-vertex is
found. Such an approach minimizes the number of operations in the working loop
of the algorithm, but it does not necessarily lead to the best solution in the case
where V0 ̸= 0.

Let uspresent anAlgorithm4, in eachnextworking loop ofwhich theparameters k
and m are calculated for every vertex from the current set V0. Algorithm 4 admits a
larger number of operations in each working loop, but it can provide a more precise
approximation to a maximal upper zero.
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– Algorithm 4:

Input data: G, V0, m = 0
Output data: x ∈ Q(fG), and m which is the estimate of deviation frommax0fG

while V0 ̸= 0
for all vertices vi ∈ V0 ̸= 0, to calculate the parameters ki and mi such that vi is
a (ki ,mi)-vertex in the graph G⟨V0⟩; in the set V0, to extract the subset V󸀠

0 ⊆ V0
of vertices with the minimal values of the parameter mi. Among the extracted
vertices in the set V󸀠

0, to find a vertex vi0 ∈ V󸀠
0 with the maximal value of the

parameter ki0
xi0 ← 1
m ← m + mi0
V0 ← V0 − ({vi0} ∪̇ N(vi0 , V0))

end of loop

Algorithm 4 finds a tuple x ∈ Q(fG), for which the precision estimate max0fG −|supp(x)| ≤ m of the solution is true.
Let us estimate the complexity of Algorithm 4.
For each vertex vi from the current set V0, it is necessary to find the num-

ber of vertices in the neighborhood N(vi , V0) and the number of new edges that
should be added into the neighborhood N(vi , V0) for turning the induced sub-
graph G⟨N(vi , V0)⟩ into a complete graph. We remove the vertices vi ∪̇N(vi , V0) and
the edges ei ∈ G⟨{vi} ∪̇N(vi , V0)⟩ until the current set of vertices V0 becomes empty.
Given the input data V(G) = {v1, . . . , vn} and E(G) = {e1, . . . , ep}, we obtain the
following estimate. The common number of iterations undertaken during the work of
Algorithm 4 is less than or equal to n; every iteration demands no more than O(np)
actions for the computation of the parameters k andm; andnomore thanO(p) actions
are needed for the removal of a vertex and its neighborhood from the current graph.
Thus, Algorithm 4 has the complexity of O(n ⋅ np + np) = O(n2p).
Solving the problem of searching for a maximal upper zero

For some applied problems that are reduced to Problem 4.6, either exact results were
obtained, or the significant decrease of the dimension of Problem 4.6 was achieved.

Example 4.13. The graph G := (V := {v1, . . . , v22}, E) is specified by the incidence lists
N(vi) of its vertices, i ∈ [22], V0 = V:

N(v1) := {v2, v3} , N(v2) := {v1, v3} , N(v3) := {v1, v2, v4, v9} ,
N(v4) := {v3, v5, v6, v11} , N(v5) := {v4, v6} , N(v6) := {v4, v5, v7, v10, v12} ,
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N(v7) := {v6, v8} , N(v8) := {v7, v12, v16, v17} , N(v9) := {v3, v11, v13} ,
N(v10) := {v6, v11, v12, v14, v15} , N(v11) := {v4, v9, v10, v14} ,
N(v12) := {v6, v8, v10, v16} , N(v13) := {v9, v14} , N(v14) := {v10, v11, v13, v15} ,
N(v15) := {v10, v14, v16, v20, v21} , N(v16) := {v8, v12, v15, v17, v19} ,
N(v17) := {v8, v16, v18, v19} , N(v18) := {v17, v19} ,
N(v19) := {v16, v17, v18, v20, v21, v22} , N(v20) := {v15, v19, v21, v22} ,
N(v21) := {v15, v19, v20, v22} , N(v22) := {v19, v20, v21} .

Acting in accordance with Algorithm 1, for each vertex vi ∈ V0 we check whether it is a
k-vertex in the graph G.
A(G, V0):
1. v1 is a 2-vertex⇒ x1 ← 1; V0 ← V0 − {v1, v2, v3}.
2. v4 is not a 3-vertex.
3. v5 is a 2-vertex⇒ x5 ← 1; V0 ← V0 − {v4, v5, v6}.
4. v7 is a 1-vertex⇒ x7 ← 1; V0 ← V0 − {v7, v8}.
5. v9 (10,11,12,13,14,15,16,17) is not a 2 (4, 3, 2, 2, 4, 5, 4, 3)-vertex.
6. v18 is a 2-vertex⇒ x18 ← 1; V0 ← V0 − {v17, v18, v19}.
7. v9 (10,11,12,13,14,15,16,20,21) is not a 2 (4, 3, 2, 2, 4, 5, 2, 3, 3)-vertex.
8. v22 is a 2-vertex⇒ x22 ← 1; V0 ← V0 − {v20, v21, v22}.
x = (1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1) is a zero of the function
fG, x ∈ f−1G (0); besides, a maximal upper zero x󸀠 ∈ max ⪯Q(fG) of the function fG has
the form

x󸀠 = (1, 0, 0, 0, 1, 0, 1, 0, x9 , x10, x11, x12, x13, x14, x15, x16, 0, 1, 0, 0, 0, 1) .
Thus, the dimension of the problem was decreased from |V0| = 22 to |V0| = |{v9, v10,
v11, v12, v13, v14, v15, v16}| = 8.

For exhausting the vertex set V0, we follow Algorithm 3; among the vertices from
the set V0 we search for (k,m)-vertices (the case of m = 0 corresponds to the search
for k-vertices, which was undertaken by Algorithm 1).

Example 4.14.
V0 ̸= 0, m = 0:
Ind = 0⇒ m ← m + 1 = 1, A1(G, V0):
v9 is a (2, 1)-vertex, then: x9 ← 1, V0 ← V0 − {v9, v11, v13} ⇒
Ind = 1⇒ m = 0, A0(G, V0):
v10 (12) is not a 3(2)-vertex;
v14 is a 2-vertex, then: x14 ← 1, V0 ← V0 − {v10, v14, v15}.
Ind = 1⇒ m = 0, A0(G, V0):
v12 is a 1-vertex, then: x12 ← 1, V0 ← V0 − {v12, v16}.
V0 = 0 ⇒
x󸀠 = (1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1) is a zero of the func-
tion fG, and it is a maximal upper zero of the function fG∪{(v11,v13)}; then, according
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to Proposition 4.10, the number of unit components in a maximal upper zero of the
function fG is restricted by the inequality:

max0fG ≤ max0fG∪{(v11,v13)} + 1 = |supp(x󸀠)| + 1 = 9 .
It is convenient to describe the result of thework ofAlgorithm 3 in the formof Table 4.1.
The columns of the table correspond to the current state of the set V0. We sequentially
remove k-vertices and their neighborhoods from the set V0, associating to the corre-
sponding components xi the value of 1 in the casewhere vi is a k-vertex, and the value
of 0 otherwise.

Table 4.2 describes the work of Algorithm 4. Every column of the table represents
an iteration ofAlgorithm4; the nonzero elements of a columncorrespond to the set V0 ,
and in an ith row the values of k and m are related to the vertex vi in the current
subgraph G⟨V0⟩.

For the resulting tuple x = (1,0,0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1)
it holds that x ∈ Q(fG) and |supp(x)| = 9 ≥ max0fG − 1.
Table 4.1. The result of the work of Algorithm 3

m 0 0 0 0 0 0 1 0 0 x
Ind 1 1 1 1 1 1 0 1 1

v1 1 0 0 0 0 0 0 0 0 1
v2 1 0 0 0 0 0 0 0 0 0
v3 1 0 0 0 0 0 0 0 0 0
v4 1 1 0 0 0 0 0 0 0 0
v5 1 1 0 0 0 0 0 0 0 1
v6 1 1 0 0 0 0 0 0 0 0
v7 1 1 1 0 0 0 0 0 0 1
v8 1 1 1 0 0 0 0 0 0 0
v9 1 1 1 1 1 1 0 0 0 1
v10 1 1 1 1 1 1 1 0 0 0
v11 1 1 1 1 1 1 0 0 0 0
v12 1 1 1 1 1 1 1 1 0 1
v13 1 1 1 1 1 1 0 0 0 0
v14 1 1 1 1 1 1 1 0 0 1
v15 1 1 1 1 1 1 1 0 0 0
v16 1 1 1 1 1 1 1 1 0 0
v17 1 1 1 1 0 0 0 0 0 0
v18 1 1 1 1 0 0 0 0 0 1
v19 1 1 1 1 0 0 0 0 0 0
v20 1 1 1 1 1 0 0 0 0 0
v21 1 1 1 1 1 0 0 0 0 0
v22 1 1 1 1 1 0 0 0 0 1
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Table 4.2. The work of Algorithm 4

k/m k/m k/m k/m k/m k/m k/m k/m k/m x

v1 2/0 2/0 1
v2 2/0 2/0 0
v3 4/5 4/5 0
v4 4/5 4/5 3/2 0
v5 2/0 2/0 2/0 1
v6 5/8 5/8 5/8 0
v7 2/1 2/1 2/1 1/0 1
v8 4/4 4/4 4/4 4/4 0
v9 3/3 3/3 2/1 2/1 2/1 2/1 2/1 2/1 0
v10 5/7 5/7 5/7 4/4 4/4 4/4 0
v11 4/5 4/5 4/5 3/2 3/2 3/2 2/1 1/0 1
v12 4/4 4/4 4/4 3/2 2/1 2/1 1
v13 2/1 2/1 2/1 2/1 2/1 2/1 2/1 1/0 0/0 1
v14 4/4 4/4 4/4 4/4 4/4 4/4 3/3 0
v15 5/8 3/2 3/2 3/2 3/2 3/2 1/0 1
v16 5/7 4/4 4/4 4/4 3/3 2/1 0
v17 4/3 3/2 3/2 3/2 2/1 0
v18 2/0 1/0 1/0 1/0 1/0 1
v19 6/10 0
v20 4/2 0
v21 4/2 0
v22 3/0 1

Earlier, for the tuple x󸀠 obtained with the help of Algorithm 3, we also obtained
that |supp(x󸀠)| = 8 ≥ max0fG − 1
or, in other words, max0fG ≤ 9. Since x ∈ Q(fG) and |supp(x)| = 9, we see that
max0fG = 9.
4.3 Monotone Boolean functions and inequality systems

The problem of extracting inclusion-maximal feasible subsystems of an infeasible
monotone system of constraints is naturally reduced to the problem of inference of
monotone Boolean functions.

We will consider here the problem of extracting all the MFSs of an infeasible sys-
tem of linear inequalities of the form (3.20), described on page 75, that is a rank n
system

S := {⟨ai , x⟩ > 0: ai , x ∈ ℝn; ‖ai‖ = 1, i ∈ [m]}
of homogeneous strict linear inequalities over the real Euclidean spaceℝn.
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The reduction to the problem of MBF inference consists in the following. Let α :=(α1, α2, . . . , αm) be a binary tuple. Let us pick in α all its unit components. Sup-
pose that their indices are i1, i2, . . . , ik . Consider the subsystem, with the multi-
index {i1, i2, . . . , ik}, of the system S, and denote this subsystem by S(α). Let us
set

f(α) := {{{
0, if S(α) is feasible ,
1, if S(α) is infeasible .

The function f is monotone and the set of its upper zeros is in one-to-one corre-
spondence with the family of maximal feasible subsystems of the system S.

It turns out that after some modification of the operator Of, natural for the class
of monotone Boolean functions under consideration, it is possible to present an algo-
rithm of MBF inference which is optimal with respect to all criteria (4.3)–(4.6).
(1) The new operator O󸀠

f is to determine the value of the function f(α) at a given tu-
ple α ∈ Bm;

(2) if f(α) = 1, then the operator O󸀠
f is to extract one lower unit α󸀠 of the function f,

such that α󸀠 ≤ α.
This modification is indeed reasonable, because for the class of MBFs under consider-
ation, which are associated with the infeasible systems S, some variants of the well-
developed technique of linear programming can be chosen as such an operator.

Let us denote by φ(O󸀠
f, G, f) the number of calls of the operator O󸀠

f by an algo-
rithm G when inferring a function f ∈Mm. For any algorithm G of MBF inference, and
for any function f ∈Mm, the inequality φ(O󸀠

f, G, f) ≥ |Q(f) ∪̇P(f)| holds.
Proposition 4.15. There exists an algorithm G∗ ofMBF inference, such that φ(O󸀠

f, G∗ , f)= |Q(f) ∪̇P(f)| for any function f ∈Mm.

Proof. Let us construct such an algorithm G∗. Let us suppose O󸀠
f(α) := α when

f(α) = 0, and O󸀠
f(α) := α󸀠 when f(α) = 1, where α󸀠 is a lower unit of the function f,

determined by the operator O󸀠
f. By definition, the inference sequence G

∗(f) for Algo-
rithm G∗ and for the function f ∈Mm is as follows:

G∗(f) := (α1, f(α1), α2, f(α2), . . . , αk , f(αk)) ,
α1 := (1, 1, . . . , 1) ∈ Bm ,
αi := ψ(max (Bm −Mf({O󸀠

f(αs) : s ∈ [i − 1]}))) ,
where ψ is an arbitrary choice function. The inference process is completed when we
haveMf({O󸀠

f(αs) : s ∈ [k]}) = Bm, that is,

{O󸀠
f(αs) : s ∈ [k]} ⊇ Q(f) ∪̇P(f) . (4.23)
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Further, if f(αi) = 0 then O󸀠
f(α i) is a maximal upper zero of the function f because of

the maximality of

αi = ψ(max (Bm −Mf({O󸀠
f(αs) : s ∈ [i − 1]}))) ,

in analogy to the argument of Proposition 4.2; if f(αi) = 1 then O󸀠
f(α) is by definition a

minimal lower unit of the function f. Thus, the inclusion

{O󸀠
f(αs) : s ∈ [k]} ⊆ Q(f) ∪̇P(f) (4.24)

holds.
Let us now prove the implication

t, p ∈ [k], t < p 󳨐⇒ O󸀠
f(αt) ̸= O󸀠

f(αp) . (4.25)

Indeed, if f(αt) ̸= f(αp) then O󸀠
f(αt) ̸= O󸀠

f(αp), by definition. If f(αt) = f(αp) = 0 then
O󸀠
f(αt) ̸= O󸀠

f(αp) because O󸀠
f(αp) ̸∈ Mf({O󸀠

f(αs) : s ∈ [t]}). If f(αt) = f(αp) = 1 then
αp ̸∈Mf({O󸀠

f(αs) : s ∈ [t]}), and O󸀠
f(αp) ≤ αp implies O󸀠

f(αp) ̸∈Mf({O󸀠
f(αs) : s ∈ [t]}),

that is, A󸀠
f(αt) ̸= A󸀠

f(αp). It follows from relations (4.23)–(4.25) that k = φ(O󸀠
f, G∗ , f) =|Q(f) ∪̇P(f)|.

Note that during the inference process for the function f, it suffices to store in themem-
ory of a computer system just the set {O󸀠

f(α1),O󸀠
f(α2), . . . , O󸀠

f(αk)}, that is, at most|Q(f) ∪̇P(f)| binary tuples of length m.
The algorithm G∗ of MBF inference is optimal with respect to criteria (4.3)–(4.6).

Notes

A thoroughpresentation of theBoolean function theory and of its various applications
can be found, for example, in books [30, 86, 90, 110, 153].

Among numerous works devoted to the study of monotone Boolean functions, we
point out at review [79], and at book [124] which is devoted to Dedekind’s problem on
the number of MBFs.

A thorough survey of the state-of-art theory andpractice in inference ofmonotone
Boolean functions is given in book [144] and in concise note [143].

In this chapter, we follow in our presentation work [52].
In the typical case, inference of monotone Boolean functions requires asymptot-

ically the twice as less number of invocations of the oracle than in the worst case,
see [124, 126].

The algorithm φ(G,m) of inference of monotone Boolean functions which is op-
timal with respect to classical Shannon’s criterion is presented in work [66], where it
was proved that φ(m) = ( m⌊m/2⌋) + ( m⌊m/2⌋+1).

For various applied problems, the algorithms that are optimal with respect to
Shannon’s criterion are inadequate. For example, such inference algorithms from
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works [66] and [131] require at least ( m⌊m/2⌋) calls of the operator Of during the infer-
ence process for such simple functions as identically zero f0 ≡ 0 and identically unit
f1 ≡ 1.

Comparing the algorithms described in Section 4.1 to other known algorithms,
let us note that for the algorithms “A1” from [66] and “A2” from [131], optimal with
respect to Shannon’s criterion φ(G,m), we have η(A1,m), η(A2,m) ≥ ( m⌊m/2⌋). This
observation follows from the fact that during the inference process for the function
identically zero f0 ≡ 0, the algorithms “A1” and “A2” call the operator Of at least( m⌊m/2⌋) times, where ( m⌊m/2⌋) is the number of chains in the chain partition, considered
in [66, 131], of the unit cube Bm.

The close relationship between the problem of inference of monotone Boolean
functions and central problems of combinatorial optimization is well known; for ex-
ample, it was shown in [78] how the knapsack problem is reduced to inference of some
MBF.

The adaptive algorithm of solving the multidimensional knapsack problem, pre-
sented in [145], can also be efficiently applied to inference of MBFs with a small num-
ber of maximal upper zeros. The efficiency of this algorithm is justified by illustrative
inference of the specific MBF, of ten binary variables, with the following five maximal
upper zeros:

α1 = (1, 1, 0, 1, 0, 1, 1, 0, 0, 1) ,
α2 = (1, 0, 1, 0, 0, 1, 0, 1, 0, 0) ,
α3 = (1, 0, 0, 1, 1, 1, 0, 0, 1, 1) ,
α4 = (0, 1, 1, 1, 0, 0, 0, 0, 0, 1) ,
α5 = (0, 0, 0, 0, 1, 0, 0, 1, 0, 0) .

The algorithm from [145] requires 150 invocations of the operator Of during the infer-
ence process for this MBF, while the algorithms from [66, 131] that are optimal with
respect to Shannon’s criterion, require at least 252 invocations of the operatorOf. Let
us estimate the number of invocations of the operator Of by Algorithm G󸀠

ψ0
during

the inference process for this specific function f. It is easily checked that the function
has 20 minimal lower units. Then, according to Proposition 4.3, we obtain that Algo-
rithm G󸀠

ψ0
requires at most 71 invocations of the operator Of. Algorithm G󸀠

ψ0
admits

realization when it suffices to store in the memory of a computer system the upper
zeros of the function f ∈ Mm only. Algorithm G󸀠

ψ1
is efficient when inferring MBFs

with a relatively small number of minimal lower units. It admits realization when it
suffices to store in the memory of a computer system the minimal lower units of the
function f ∈Mm only.

Algorithms of finding the upper zeros and lower units of monotone Boolean func-
tions, similar to thosewhichwe considered in Section 4.1, are used, for example, in [21,
89, 149]. Such algorithms known under the common name algorithms Find-Border
gainedwidespreadacceptance. Theyare alsodiscussed in [18, 34, 79, 88, 124, 142, 144].
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Advantages and disadvantages of different algorithms of inferring MBFs, as well
as perspectives on further investigations of this problem, are thoroughly discussed in
book [144]: a new criterion function, minimized over all inference algorithms G that
changes seriously our point of view on an assessment of the efficiency of approaches
to inference, is as follows: minG

∑f∈Mm φ(G,f)
Ψ(m) , where Ψ(m) is the number of all mono-

toneBoolean functions overBm, the quantitywhich is central for Dedekind’s problem;
see [141] and further works in this direction.

In Section 4.2, we propose an inference algorithm for monotone Boolean func-
tions associated with graphs, and discuss the related problem of searching for their
maximal upper zeros, following article [59].

Justification of reducibility of the problem of extracting maximal feasible subsys-
tems of an infeasible system of linear inequalities S, considered in Section 4.3, to the
problem of inference of the corresponding MBF, is presented in seminal work [159].



5 Inequality systems, committees, (hyper)graphs,
and alternative covers

A committee of a rank n infeasible system (2.26),

S := {⟨ai , x⟩ > 0: ai , x ∈ ℝn; ‖ai‖ = 1, i ∈ [m]; i1 ̸= i2 ⇒ ai1 ̸= −ai2} ,
of homogeneous strict linear inequalities over the real Euclidean spaceℝn, introduced
on page 33, is defined as a finite set of vectorsK ⊂ ℝn − {0} satisfying the relation

|{x ∈ K : ⟨ai , x⟩ > 0}| > 1
2 |K| ,

for every vector ai, i ∈ [m].
As earlier, wewill denote by J := {Js ⊂ [m] : s ∈ [q]} the family of the multi-indices

of all MFSs of the systemS.
Among the techniques that are used in the committee method is the extracting

minimal infeasible and maximal feasible subsystems of the inequality systemS. So-
lutions to feasible subsystems are combined into committee constructions that gener-
alize the notion of solution to feasible systems.

The committee method is efficiently applied to the synthesis of decision-making
procedures and, in particular, to contradictory problems of pattern recognition: the
problem of committee discriminationof the so-called training sample, for the purpose
of forming the decision rules of recognition, can be reduced to the following basic two-
class setting:

Let B̃ and C̃ be finite sets of vectors of the feature space ℝn−1 that compose the
above-mentioned training sample. By augmenting artificially each vector from the
sets B̃ and C̃ by a new nth component, equal to 1, we obtain two sets B, C ⊂ ℝn of
extended vectors of the training sample.

It is necessary to find a vector x ∈ ℝn such that
{{{
⟨a, x⟩ > 0, a ∈ B ,⟨a, x⟩ < 0, a ∈ C .

(5.1)

Strict inequalities are used here, because from the applied point of view the use of
nonstrict inequalitieswould be too risky and lead to the synthesis of unstable decision
rules.

If x is a solution to system (5.1), then classification of a new extended vector g ∈ℝn (that is the making reference of g to one of the classes represented partially by
the sets B and C) is performed on the basis of the sign of the scalar product ⟨x, g⟩.
However, the system under consideration can turn out to be infeasible, and this most
frequent case requires the development of special methods of problem solving.
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Unification of two subsystems that compose system (5.1),

{{{
⟨a, x⟩ > 0, a ∈ B ,−⟨a, x⟩ > 0, a ∈ C ,

leads us (after normalizing the determining vectors) to constructions S of the form
(2.26).

5.1 The graph of MFSs of an infeasible system of linear
inequalities and committees

Let L be the multi-index of a feasible subsystem of the system S, and {Ji : i ∈ T ⊆[q]} ⊆ J the family of some (not necessarily all) multi-indices of MFSs that contain
the multi-index L as a subset; in other words, {Ji : i ∈ T} ⊆ {J ∈ J : J ⊇ L}. The
algorithmic problem of extracting the multi-indices of all MFSs of the system S that
contain themulti-index L, provided their subfamily {Ji : i ∈ T} is known, will be called
the (L, {Ji : i ∈ T})-problem for the systemSor, for brevity, the (L, {Ji : i ∈ T})-problem,
when it is clear what system of inequalities is meant. An important specific case of the
above problem is the (0, 0)-problem of extracting the multi-indices of all MFSs of the
systemS.

Let us first consider a combinatorial algorithm of solving this problem which will
serve in what follows as the basic mechanism of a graph-combinatorial algorithm.

Combinatorial algorithm of extracting MFSs of an infeasible system of linear
inequalities

We denote the algorithm that we describe here by CMB(L, {Ji ∈ J : i ∈ T}), and
by {Ji : i ∈ Tpr} the family of the multi-indices of MFSs of the systemSwhich contain
the subfamily {Ji : i ∈ T}, as well as of the multi-indices of all MFSs found by algo-
rithm CMB(L, {Ji ∈ J : i ∈ T}) to the present moment. Before launching the algorithm,
we have {Ji ∈ J : i ∈ Tpr} = {Ji : i ∈ T}.

We will use the following statement:

Proposition 5.1. For a subfamily {Ji : i ∈ T} ⊆ J and for the multi-index L of a feasible
subsystem of the system S, there exists its maximal feasible subsystem with a multi-
index Js ⊇ L, J ∋ Js ̸∈ {Ji : i ∈ T}, if and only if in the blockerB({[m] − Ji : i ∈ T}) there
exists a minimal system of representatives M of the family {[m] − Ji : i ∈ T} such that
the subsystem, with the multi-index M ∪ L, of the systemS is feasible.

Proof. The sufficiency is evident. Let us prove the necessity. Since Js ̸∈ {Ji : i ∈ T}, we
have Js ∩ ([m] − Ji) ̸= 0 for all indices i ∈ T; as a consequence, there exists a minimal
system of representatives M ⊆ Js of the family {[m] − Ji : i ∈ T}, and the subsystem
with the multi-index M ∪ L is feasible.
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Algorithm CMB(L, {Ji ∈ J : i ∈ T})
1. To find all the minimal systems of representatives of the family {[m] − Ji : i ∈ Tpr}, that is to form

the blockerB({[m] − Ji : i ∈ Tpr}).
2. To check feasibility of the subsystems of the system S with the multi-indices M ∪ L, for every

multi-index M ∈ B({[m] − Ji : i ∈ Tpr}).
3. If all these systemsare infeasible then thealgorithmfinishes because, according to Propositon 5.1,

the family {Ji : i ∈ Tpr} coincides with J.
4. If there is a multi-index M ∈ B({[m] − Ji : i ∈ Tpr}) such that the subsystem with the multi-

index M ∪ L is feasible, then to augment this subsystem up to a MFS. To add the multi-index of
the obtained MFS to the current family {Ji : i ∈ Tpr} of the multi-indices of MFSs; go to step 1.
In Algorithm CMB(L, {Ji ∈ J : i ∈ T}), it is necessary to repeatedly solve the prob-

lem of forming the blocker of some family A := {A1, A2, . . . , Aα} of subsets of the
set [m], that is of extracting all the minimal systems of representatives of the fam-
ilyA. This is a well-known combinatorial problem; various algorithms for solving this
problem are proposed. We present here one more algorithm; it takes into account its
specific use in Algorithm CMB(L, {Ji ∈ J : i ∈ T}).
An algorithm of forming the blocker of a set family
LetA := {A1, A2, . . . , Aα} be a family of subsets of the set [m]. The blockerB({A1, A2,
. . . , Ak}) of a subfamily {A1, A2, . . . , Ak} ⊆ A, k ∈ [α], will be denoted by {M(k)

j : j ∈[βk]}. We will suppose by definition that the empty set is the unique system of repre-
sentatives for the empty set family: B(0) := {M(0)

1 } := {0}. The following assertion is
true:

Proposition 5.2. Let k ∈ [α]. For any index s ∈ [βk], there exists precisely one index is ∈[βk−1] such that M(k−1)
is ⊆ M(k)

s .

Proof. The existence of at least one index is ∈ [βk−1], such that M(k−1)
is ⊆ M(k)

s , is
evident. Let us prove its uniqueness. Assume the converse: let i1, i2 ∈ [βk−1] be two
different indices such that M(k−1)

i1 ⊆ M(k)
s and M(k−1)

i2 ⊆ M(k)
s . Let us first show that

(M(k−1)
i1 ∪ M(k−1)

i2 ) ∩ Ak = 0 . (5.2)

Assume the converse: let, for example, a ∈ M(k−1)
i1 ∩ Ak ̸= 0. Then, because of the

minimality of M(k)
s , we have M(k−1)

i1 = M(k)
s and, because of the inclusion M(k−1)

i2 ⊆
M(k)

s = M(k−1)
i1 and of the minimality of M(k−1)

i1 , we obtain that M(k−1)
i1 = M(k−1)

i2 . By
the definition of M(k)

s , there exists c ∈ M(k)
s ∩ Ak, and c ∈ M(k)

s − M(k−1)
i1 , in view

of (5.2). Since the sets M(k−1)
i1 and M(k−1)

i2 are inclusion-incomparable, there exists an
element b ∈ M(k−1)

i2 − M(k−1)
i1 ⊂ M(k)

s − M(k−1)
i1 . Since c ∈ Ak and b ∈ M(k−1)

i2 , in view
of (5.2), c ̸= b. But then M(k)

s − {b} ⊇ M(k−1)
i1 − {c}, where (M(k−1)

i1 ∪ {c}) ∩ Ai ̸= 0 for
all i ∈ [k], a contradiction with the minimality of M(k)

s . This contradiction proves the
proposition.
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Let us put in correspondencewith the familyA the directed graphG(A)with the vertex
set {M(k)

i : i ∈ [βk], k ∈ {0} ∪̇[α]}, for which an arc from Mk1
i1 to Mk2

i2 exists if and only
if k2 = k1 + 1 and Mk1

i1 ⊆ Mk2
i2 . Let us denote by Γ(M(k)

i ) the out-neighborhood of M(k)
i ,

which is the set of the final vertices of all the arcswhose initial vertex isM(k)
i ; similarly,

Γ−1(M(k)
i )will denote the in-neighborhood ofM(k)

i , which is the set of the initial vertices
of all the arcs whose final vertex isM(k)

i .
A graph is called a rooted tree with root y0, if

– any vertex except y0 has in-degree one, that is, such a vertex is the final vertex of
precisely one arc;

– the vertex y0 has in-degree zero;
– the vertex y0 has nonzero out-degree, that is, y0 is the initial vertex of at least one

arc.

It follows immediately from Proposition 5.2 and from the definition of the graph G(A)
that this is a rooted tree with the root M(0)

1 = 0.
According to Proposition 5.2, for each vertex M(k)

i except the root, Γ−1(M(k)
i ) = 1.

Because of the minimality of M(k)
i , we have |M(k)

i − Γ−1(M(k)
i )| ≤ 1. We will call the

number

v(M(k)
i ) := {{{

0, ifM(k)
i − Γ−1(M(k)

i ) = 0 ,
a ∈ M(k)

i − Γ−1(M(k)
i ), ifM(k)

i − Γ−1(M(k)
i ) ̸= 0 ,

the inner number of the vertex M(k)
i of the rooted tree G(A). The rooted tree G(A) is

uniquely determined if every vertex of the tree is marked by its inner number, because
for each vertex M(k)

i in this rooted tree there exists a unique chain (M(0)
1 ,M(1)

i1 , . . . ,
M(k−1)

ik−1 ,M(k)
i ) connecting M(k)

i with the rootM(0)
1 and, besides

M(k)
i = {v(M(1)

i1 ) ∪ . . . ∪ v(M(k)
i )} − {0} . (5.3)

The idea ofAlgorithmROOTEDTREE that extracts all theminimal systems of repre-
sentatives of the familyAwith the use of the rooted treeG(A), consists in the construc-
tion of the rooted tree bymeans of sequential inspection of its vertices.We traverse the
rooted tree moving each time along arcs of the rooted treeG(A) as far as possible, and
coming one step back in the direction opposite to that of an arc when further move-
ment in the direction of the arc does not lead us to an uninspected vertex of the rooted
tree G(A). A step in the direction of an arc will be called forward, and a step in the
opposite direction will be called backward. A traversal can be arranged in such a way
that it will be necessary to store, at any current moment, a relatively small amount of
information.

Let us suppose that we are currently at a vertex M(k)
i . We will need the following

data:
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– LENGTH – equals k for the current vertex M(k)
i .

– NUMBERS(i) – a one-dimensional array of the inner numbers of vertices, com-
posing the chain that connects the current vertex with the root of the rooted tree,
ordered in accordance with this chain; it uniquely determines the current vertex.

– FORESTEP – a variable taking the value BACKWARD if we have arrived at the cur-
rent vertex by moving in the opposite direction of an arc of the rooted tree, and
the value FORWARD if we have arrived by moving in the direction of the arc.

– FORENUM – a variable equal to the inner number of the vertex by moving from
which we have arrived at the current vertex after performing a backward step.

– TRAVERSAL–avariable taking thevalueCOMPLETED if the traversal of the rooted
tree G(A) is completed, and the value NOTCOMPLETED otherwise.

– m, α,A – defined earlier.
– Mpr – the current vertex, that is the set consisting of the nonzero elements of the

array NUMBERS and of its first LENGTH items.

In the array NUMBERS a stack is organized; the LENGTH variable determines the
length of this stack. A forward step corresponds to the pushing of the inner number of
the next vertex into the NUMBERS stack; a backward step corresponds to the pulling
of the tail element out of the stack.

The above information completely determines the state of the algorithm. In order
to justify functionality of Algorithm ROOTEDTREE, it suffices to describe the process
of passaging from the current vertex to the next vertex when traversing the rooted
tree G(A):
Algorithm ROOTEDTREE(A) – a passage from the current vertex of the rooted
tree G(A)
0. The start of an elementary traversal of the rooted tree G(A).
1. If LENGTH = α, then to retrieve Mpr as the immediate minimal system of representatives of the

familyA.
2. If LENGTH ̸= α or (FORESTEP = BACKWARD and FORENUM ∈ {0,m}), go to instruction 6 – a

backward move within the rooted tree G(A).
3. If FORESTEP = FORWARD and Mpr ∩ ALENGTH+1 ̸= 0, then i0 = 0; go to instruction 7 – a forward

move within the rooted tree G({A1, A2, . . . , ALENGTH}).
4. If FORESTEP = BACKWARD, then i := FORENUM; otherwise i := 0.
5. To inspect the integers startingwith i+1, up tom, in the ascending order, up to the first number i0

such thatMpr ∪{i0} is a minimal system of representatives of the family {A1, A2, . . . , ALENGTH+1}.
If there does not exist such a number, go to instruction 6 – a backward move within the rooted
tree G(A); else, go to instruction 7 – a forward move within the rooted tree G(A).

6. A backward move within the rooted tree G(A). If LENGTH = 0, then TRAVERSAL = COMPLETED;
go to instruction 7. Else:
FORESTEP := BACKWARD,
FORENUM := NUMBERS(LENGTH),
LENGTH := LENGTH − 1; go to instruction 8.
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7. A forward move within the rooted tree G(A).
FORESTEP := FORWARD,
LENGTH := LENGTH + 1,
NUMBERS(LENGTH) = i0; go to instruction 8.

8. The end of an elementary traversal of the rooted tree G(A).
By repeating the above described actions until the variable TRAVERSAL takes the

value COMPLETED, we will inspect all vertices of the rooted tree G(A) and find all the
minimal systems of representativesA; this is guaranteed by Proposition 5.2 and by the
arrangement of the traversal.

We now show how the above algorithm is used within Algorithm CMB(L, {Ji ∈ J:
i ∈ T}), taking into account essential structural properties of the rooted tree of the
minimal systems of representatives of the family {[m] − Ji : i ∈ T}. We will propose
a realization of Algorithm CMB(L, {Ji ∈ J : i ∈ T}) more economical than its general
scheme.

An economical realization of the combinatorial algorithm
Let us denote by {Ji : i ∈ Tpr} the family of themulti-indices ofMFSs which are already
known to the current moment. We emphasize the following observation: in the gen-
eral scheme of Algorithm CMB, after the multi-index of a new MFS has been found,
this multi-index is added to the family of the known multi-indices, and the process is
repeated from the very beginning. As a matter of fact, it is possible to arrange Algo-
rithm CMB(L, {Ji ∈ J : i ∈ T}) in such a way that we will find all multi-indices from the
family {[m] − Ji : Ji ∈ J, Ji ⊇ L} at one-pass traversal of the rooted tree of its minimal
systems of representatives. Assume for simplicity that {Ji ∈ J : i ∈ T} = {J1, J2, . . . , Jt}.
The set T can be empty. Let the multi-indices of new MFSs get their indices starting
with t + 1, in order of their appearance during the work of the algorithm. Let informa-
tion on the family {[m]− Ji : i ∈ T} be given by the binary array (aij)m×|T|; for every just
found MFS with a multi-index Jj, the jth column of the matrix (aij) is automatically
filled up; let l be the current number of columns of the matrix aij, that is the number
of the already known MFSs. Let us use the algorithm of elementary traversal of the
rooted tree G({[m] − Ji : i ∈ [l]}).

Let us show that Algorithm CMB(L, {Ji ∈ J : i ∈ T}) depicted as follows finishes, all
those multi-indices of MFSs will be found that contain the multi-index L as a subset,
that is, {J1, J2, . . . , Jl∗} = {Ji ∈ J : Ji ⊇ L}.

For this, it suffices to show, in accordance with Proposition 5.1, that C>(M ∪ L) = 0
for any minimal system of representatives M ∈ B({[m] − J1, [m] − J2, . . . , [m] − Jl∗}).
Suppose to the converse that there exists M(l∗)

i ∈ B({[m] − J1, [m] − J2, . . . , [m] − Jl∗})
such that the subsystem with the multi-index Ml∗

i ∪ L is feasible. Let us consider the
chain that connects the vertex M(l∗)

i with the root M(0)
1 of the rooted tree G({[m] − Ji :

i ∈ [l]}), which is the chain (M(0)
1 ,M(0)

i1 , . . . ,M(l∗−1)
il∗−1 ,M(l∗)

il∗ ). Let k ∈ [l∗] be the max-



5.1 The graph of MFSs of an infeasible system of linear inequalities and committees | 121

START

LENGTH = l
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ROOTEDTREE
({[m] – Ji: 1 ≤ i ≤ l})

l: = l + 1
[m] – Jl + 1 record

in matrix (aij)

Augment Mpr
up to MFS Jl + 1

C (Mpr U L) ≠ ∅

1

1

00
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imal integer such that Algorithm ROOTEDTREE({[m] − Ji : i ∈ [l]}) has led us to the
vertex M(k)

ik .
Let us consider that moment of the execution of Algorithm ROOTEDTREE({[m] −

Ji : i ∈ [l]}) when we left the vertex M(k)
i last time. It is clear that such a passage was

backward, that is, we leftM(k)
i for the vertex Γ−1 (M(k)

ik ) = M(k−1)
ik−1 . The latter is possible

in the two cases:
1. k < l ≤ l∗ – Algorithm ROOTEDTREE({[m] − Ji : i ∈ [l]}) had already led us to all

the vertices from Γ (M(k)
ik ); this contradicts the choice of k;

2. k = l ≤ l∗ and C>(M(k) ∪ L) = 0; this contradicts the assumption 0 ̸= C>(M(l)
i ∪ L) ⊇

C>(M(k)
i ∪ L).

These contradictions prove that after Algorithm CMB(L, {Ji ∈ J : i ∈ T}) finishes, the
multi-indices of all desirable MFSs will be found, that is, {J1, J2, . . . , Jl∗} = {Ji ∈ J :
Ji ⊇ L}.

The combinatorial algorithm of solving the (L, {Ji ∈ J : Ji ⊇ L})-problem is difficult
to use in practice because the computational burden,when extracting every newMFS,
increases fast as thenumber of the already foundMFSs increases. By the combinatorial
dimension of the (L, {Ji ∈ J : Ji ⊇ L})-problem, as well as of Algorithm CMB(L, {Ji ∈ J :
i ∈ T}), we will mean below the pair (m, #{Ji ∈ J : Ji ⊇ L}). This notion, being quite
coarse, nevertheless reflects some properties of the (L, {Ji ∈ J : i ∈ T})-problem that af-
fect the rapid growth of the computational burden as the number of the already found
MFSs increases.
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Graph-combinatorial algorithms of extracting MFSs of an infeasible system of linear
inequalities

We consider here a reduction of the (L, 0)-problem to a sequence of (Li , {Js : s ∈ Ti})-
problems of lower combinatorial dimension. For this purpose, we will also construct
an approximate algorithm of solving the (L, 0)-problem, such that the computational
burden when finding a new MFS grows much more slower than in the case of Algo-
rithm CMB(L, 0).

Let us first consider the (0, 0)-problem, which is the problem of extracting all
the MFSs of the systemS.

Wewill describeAlgorithmGRAPH-CMBof solving the (0, 0)-problembasedon the
connectedness of the graph of MFSs of the system S; it involves the above described
Algorithm CMB.

Algorithm GRAPH-CMB
1. We find themulti-index J1 of the first MFS, by augmenting up to this MFS, the feasible subsystem

with themulti-index {1}, that is the subsystemconsistingof thefirst inequality. Themulti-index J1
is assigned the mark 0.

2. Among the multi-indices of the already found MFSs, we pick at random a multi-index with the
mark 0 and go to instruction 3. If there are no such multi-indices, then we go to instruction 4.

3. For the chosen multi-index Js, we distinguish among the found multi-indices the family {Ji : i ∈
T} of those multi-indices that are adjacent with Js in the graph of MFSs of the systemS. We then
solve the ([m]−Js , {Ji : i ∈ T})-problembyAlgorithmCMB([m]−Js , {Ji : i ∈ T}), that is, we find all
the multi-indices of MFSs adjacent with Js in the graph of MFSs; all the new found multi-indices
of MFSs get the mark 0; the multi-index Js gets the mark 1. We go to instruction 2.

4. The algorithm finishes.

After the algorithm finishes, themulti-indices of all MFSs have the mark 1, that is,
for themulti-index of every foundMFSwe also obtain themulti-indices of all theMFSs
that are adjacent with it in the graph of MFSs; because of the connectedness of the
graph of MFSs (Proposition 2.20) of the system S, Algorithm GRAPH-CMB thus finds
the multi-indices of all MFSs.

Algorithm GRAPH-CMB can be arranged in such a way that the property men-
tioned in Proposition 2.35 (iii) will be used: the diameter of the graph MFSG(S) of the
systemS does not exceed half the number of inequalities in this system. If, when ex-
ecuting instruction 3 of Algorithm GRAPH-CMB, the distance between the vertices J1
and Js in the graph MFSG(S) turns out to be equal to ⌊m2 ⌋, then we can immediately as-
sign themark 1 to the vertex Js, without solving the ([m]− Js , {Ji ∈ J : i ∈ T})-problem,
and we can go to instruction 2. In view of the mentioned Proposition 2.35 (iii), thus
modified Algorithm GRAPH-CMB still finds the multi-indices of all MFSs of the sys-
temS.

Let us now turn to the constructing of a graph-combinatorial algorithm of solving
the (L, 0)-problem; let us denote it by GRAPH-CMB(L). This algorithm is based on the
property: the subgraph MFSG2⟨{J ∈ J : J ⊇ L}⟩ is connected, for any multi-index L of a
feasible subsystem of the systemS.
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Algorithm GRAPH-CMB(L)
1. By augmenting, up to a MFS, the subsystemwith the multi-index L, we find the multi-index J1 of

this MFS; the multi-index J1 is assigned the mark 0.
2. From the family of themulti-indices of already foundMFSs, wepick at randomamulti-indexwith

the mark 0, say the multi-index Js , and choose all those multi-indices of MFSs {Ji ∈ J : i ∈ Ts}
found that are adjacent to Js in the graph of MFSs. If there are no multi-indices of MFSs with
the mark 0, then we go to instruction 3. If Js ⊇ L, then we set L󸀠 := [m] − Js; if Js ̸⊇ L, then
we set L󸀠 := ([m] − Js) ∪ L. By launching Algorithm CMB(L, {Ji ∈ J : i ∈ Ts}), we find all the
multi-indices of MFSs that are adjacent with Js in the graph of MFSs and contain L as a subset.
The multi-indices of the new found MFSs are assigned the mark 0; the multi-index Js is assigned
the mark 1 when Js ̸⊇ L, and it is assigned the mark 2 when Js ⊇ L. We repeat the execution of
instruction 2.

3. The algorithm finishes.

Proposition 5.3. After Algorithm GRAPH-CMB(L) finishes, the multi-indices of the
found MFSs, with the mark 2, compose the family of all the multi-indices of MFSs of
the systemS that contain the multi-index L as a subset.

Proof. Assume the converse. Then the family {Ji ∈ J : Ji ⊇ L} can be partitioned into
two disjoint subfamilies: {Ji ∈ J : Ji ⊇ L} = {Ji ∈ J : i ∈ T} ∪̇{Ji ∈ J : i ∈ T󸀠}, where{Ji ∈ J : i ∈ T} is the family of all themulti-indices ofMFSs foundbyAlgorithmGRAPH-
CMB(L) andmarked by 2. Since the subgraph MFSG2⟨{J ∈ J : J ⊇ L}⟩ is connected, there
exists an edge {Js , Jt} in the square MFSG2(S) of the graph of MFSs of the system S

such that Js ∈ {Ji ∈ J : i ∈ T} and Jt ∈ {Ji ∈ J : i ∈ T󸀠}. As a consequence, the
following twomutually exclusive cases are only possible: (1) the pair {Js, Jt} is an edge
of the graph MFSG(S), and (2) there exists the multi-index Jr of a MFS such that the
pairs {Js , Jr} and {Jr, Jt} are edges of the graph MFSG(S).

Let us consider the first case. Themark 2 is assigned in Algorithm GRAPH-CMB(L)
to the multi-index Js of some MFS if and only if all the multi-indices of MFSs that are
adjacent with Js in the graph MFSG(S) have been found; as a consequence, the multi-
index Jt has already been found by the algorithm. This contradicts the inclusion Jt ∈{Ji ∈ J : i ∈ T󸀠} because each found multi-index, after the algorithm finishes, has the
mark 2 if it contains the multi-index L as a subset.

Let us consider the second case. As given earlier, the multi-index Jr was found
by Algorithm GRAPH-CMB(L). Since at the finish of the algorithm the mark of the
multi-index Jr is not 0, and the multi-index Jt is adjacent with Jr and it contains L as a
subset, then the multi-index Jt was found by Algorithm GRAPH-CMB([m] − Jr, {Ji ∈ J :
i ∈ Tr}), and it was assigned the mark 2 at the finish of the algorithm, a contradiction
with the inclusion Jt ∈ {Ji ∈ J : i ∈ T󸀠}.
The difference of Algorithm GRAPH-CMB(L) from Algorithm GRAPH-CMB consists in
the following: in the former algorithm, for every multi-index Js ̸⊇ L of a found MFS,
the (L ∪ ([m] − Js), {Ji ∈ J : i ∈ Ts})-problem is solved which, in the general case,
has combinatorial dimension lower than that of (([m] − Js), {Ji : i ∈ Ts})-problem
solved by the latter algorithm. Thus, in the general case, Algorithm GRAPH-CMB(L) is
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more economical, when finding the MFSs that contain the subsystem with the multi-
index L, than Algorithm GRAPH-CMB.

Approximate combinatorial and graph-combinatorial algorithms

Inpractice, it is often suffices to know just a subfamily of the family of themulti-indices
of MFSs of the systemS. Therefore, it is natural to discuss an approximate (L, {Js ∈ J :
s ∈ Ti})-problem.

By (L, {Js ∈ J : s ∈ Ti})(k)-problem for the system S, we will mean the prob-
lem of extracting arbitrary min{k, #{J ∈ J : J ⊇ L}} multi-indices of MFSs that con-
tain L as a subset. The combinatorial algorithm CMB(L, {Ji ∈ J : i ∈ T})(k) of solving
the (L, {Js ∈ J : s ∈ Ti})(k)-problem is obtained from Algorithm CMB(L, {Ji ∈ J :
i ∈ T}) when we require that the latter algorithm finishes in the case where k multi-
indices of MFSs have already been found. By combinatorial complexity of the (L,{Js ∈ J : s ∈ Ti})(k)-problem or of Algorithm CMB(L, {Ji ∈ J : i ∈ T})(k), we will mean
the pair (m, min{k, #{J ∈ J : J ⊇ L}}). The combinatorial dimension of the (0, 0)(k)-
problem, equal to (m, min{k, q}), will be still high; besides, Algorithm CMB(0, 0)(k)
naturally faces the same difficulties as earlier.

The graph-combinatorial algorithm GRAPH-CMB(k) differs from Algorithm
GRAPH-CMB: in the appropriate place, the approximate algorithm CMB(L, {Ji ∈ J :
i ∈ T})(k) is used instead of the exact algorithm CMB(L, {Ji ∈ J : i ∈ T}), that is, for
every multi-index of a MFS found, one searches, in the general case, for not nec-
essarily all the multi-indices, adjacent with this multi-index in the graph MFSG(S),
but for just a number of them. It is remarkable that even for quite small k’s, say for
those close to n, Algorithm GRAPH-CMB(k) finds, thanks to the connectedness of the
graph MFSG(S), a large number of the multi-indices of MFSs of the systemS; besides,
the computational burden when extracting a new MFS, grows slower for small k’s.

In conclusion, let us make a few remarks concerning Algorithm GRAPH-CMB(k).
Suppose that for some system S it was found, with the help of Algorithm GRAPH-
CMB(k), a quite large number of its MFSs. The search for new MFSs of the system S

can be arranged in the following way: to find the multi-indices of MFSs adjacent si-
multaneously with two (three, and so on) already found multi-indices of MFSs, thus
applying Algorithm GRAPH-CMB(([m] − Js) ∪ ([m] − Jt), {Ji ∈ J : i ∈ Tst})(k) to those
pairs Js , Jt of already found multi-indices, for which C>(([m] − Js) ∪ ([m] − Jt)) ̸= 0;
here {Ji ∈ J : i ∈ Tst} are those multi-indices of MFSs already found that are adjacent
with both Js and Jt. Since the vertex degrees in the graphs of MFSs are quite high, for
many multi-indices of MFSs, not found yet, there are two, three, or a larger number
of already found multi-indices of MFSs, that are adjacent with them. For this reason,
combinatorial complexity of the (([m] − Js) ∪ ([m] − Jt), {Ji ∈ J : i ∈ Tst})-problem can
turn out to be less than combinatorial complexity of the (([m] − Js), {Ji ∈ J : i ∈ Ts})-
and (([m] − Jt), {Ji ∈ J : i ∈ Tt})-problems.
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Odd cycles in the graph of MFSs, and committees
The following fundamental property of the graph MFSG(S) underlies well-known
methods of constructing committees of the systemS:

Theorem 5.4. Let a sequence (Ji1 , Ji2 , . . . , Ji2k+1 , Ji1) compose an odd cycle in the graph
MFSG(S) of the system S. Suppose that pairwise distinct vectors x1, x2, . . . , x2k+1 are
solutions to the MFSs with the multi-indices J1, J2, . . . , J2k+1 respectively. Then the col-
lection of vectorsK := {x1, x2, . . . , x2k+1} is a committee of the systemS.

Proof. Assume the converse. Since the vectors x1, x2, . . . , x2k+1 are pairwise distinct,
the set {x1, x2, . . . , x2k+1} contains 2k + 1 elements. Then there exists an integer i0 ∈[m] such that the inequality with the index i0 is satisfied by at most k vectors from
the set x1, x2, . . . , x2k+1. As a consequence, in the sequence (Ji1 , Ji2 , . . . , Ji2k+1) of the
multi-indices of MFSs there exist k + 1 multi-indices of MFSs which do not contain
the element i0 and thus are not adjacent in the graph of MFSs of the system S. This
contradicts the assumption that the sequence (Ji1 , Ji2 , . . . , Ji2k+1 , Ji1) composes a cycle
in the graph of MFSs of the systemS.

5.2 The hypergraph of MFSs of an infeasible system of linear
inequalities and committees

Let us consider a rank n infeasible system

Sb := {⟨ai , x⟩ > bi : b := (b1, . . . , bm) ∈ ℝm , ai , x ∈ ℝn; ‖ai‖ > 0, i ∈ [m]} (5.4)

of inhomogeneous strict linear inequalities over the real Euclidean space ℝn, with
the property: each subsystem with two inequalities is feasible. Such a system has a
committee, which is a finite set of vectors K ⊂ ℝn such that |{x ∈ K : ⟨ai , x⟩ > bi}| >
1
2 |K|, for every vector ai, i ∈ [m].

By a multi-committee of system (5.4) we mean a sequence (also considered, if
necessary, as an unordered multiset) of vectors K ⊂ ℝn with the same property:|{x ∈ K : ⟨ai , x⟩ > bi}| > 1

2 |K|, for every vector ai, i ∈ [m].
A multi-committee K of a system Sb of linear inequalities (5.4) is called minimal

if the systemSb has no multi-committee of cardinality less than |K|.
Let us consider a linear operator Φ : ℝn → ℝ2 such that the sequence of im-

ages (Φ(a1), . . . ,Φ(am)) of the vectors from the sequence A(Sb) := {ai : i ∈ [m]}
that determines the system Sb does not contain the origin and antipodal pairs. The
system {⟨Φ(a i), y⟩ > 0: y ∈ ℝ2, i ∈ [m]} (5.5)

has a committee, for example, according to Theorem 5.4 and Proposition 2.33 and,
thus, the system {⟨Φ(a i), y⟩ > bi : y ∈ ℝ2, i ∈ [m]} (5.6)

also has a committee.
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If a sequence K󸀠 := (y1, . . . , yq) is a multi-committee of system (5.6), then the
sequence (Φ∗(y1), . . . ,Φ∗(ym)) of the images of its elements under the map Φ∗, the
adjoint of Φ, is a multi-committee of system (5.4).

Let {J01, . . . , J0q} and {J1, . . . , Jr} be the families of the multi-indices of MFSs of
systems (5.5) and (5.6), respectively; see Section 2.4. The hypergraph of MFSs of sys-
tem (5.5) is denoted by MFSH(S0,Φ) := ((J01, . . . , J0q), E0).

Let us consider the family

W := 2{J01 ,...,J0q} − (0, {J01}, . . . , {J0q}) .
For each element w := {J0i1 , . . . , J0is } there exists k ∈ [s] such that (i(k (mod s))+1 − ik)(mod q) > t + 1, where q := 2t + 1. Let us define a map Λ : W → ℤ by Λ(w) :=(ik − i(k (mod s))+1) (mod q), the family

W󸀠 := {w := {J0i1 , . . . , J0is } : ∀k ∈ [s] ∃Jjk : Jjk ⊇ J0ik , ⋃
k∈[s] Jjk = [m]}

and the quantity

δ(Sb) := {{{
min{Λ(w) : w ∈ W󸀠}, if |W󸀠| > 0 ,
t, if |W󸀠| = 0 .

Proposition 5.5. The number of elements in a minimal multi-committee of system (5.4)
does not exceed 2δ(Sb) + 1.
In this proposition, a bound on the number of elements in aminimalmulti-committee
of systems Sb is justified, which depends on the set A(Sb) of determining vectors
and on the vector b. In the proof of Proposition 5.5, which we omit, one finds for sys-
tem (5.6) a multi-committee, minimal among all the multi-committees formed from
the solutions to MFSs whose multi-indices contain the multi-indices of MFSs of sys-
tem (5.5), that compose a chain in the hypergraph MFSH(S0,Φ) of maximal feasible
subsystems of system (5.5).

5.3 Alternative covers

Let X be a nonempty set of any kind, andM ⊆ 2X some family of subsets of the set X.
LetA,B ⊂ X be nonempty disjoint subsets of the set X.

An ordered pair (A,B) of familiesA,B ⊂M of subsets of the set X, picked from the
admissible familyM, will be called an alternative cover of the pair (A,B) ifA = ⋃A∈A A,
B = ⋃B∈B B, and A ∩ B = 0 for any sets A ∈ A and B ∈ B.

An alternative cover will be called finite if each of the families A andB is finite.
By the cardinality of a finite alternative cover (A,B)wemean the quantity |A|+|B|.
This construction has a close relation with the pattern recognition subject. Sup-

pose that in a space X two disjoint sets A and B are fixed, and some admissible fam-
ily M of subsets of the space X is predetermined. If there exists an alternative cover
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(A,B) of the pair (A,B) then it separates the sets A and B in the space X. As a con-
sequence, the problem of efficient separation of the subsets A and B of the space X,
in the class of subsets fromM, can be stated as the problem of the search for a finite
alternative cover, ofminimal cardinality, of the pair (A,B).

Thus, we can symbolically write down the pattern recognition problem, in its ge-
ometric setting, as follows:

R1 : (X, (A,B), M ⊆ 2X) → (A,B) .
Substantially, alternative covers can differ; the next clarification of the pattern

recognition problem consists in that a quality functional f(A,B) for an alternative
cover is introduced which should be optimized, say minimized:

R2 : (X, (A,B), M ⊆ 2X , f : 2M × 2M → ℝ) min f󳨀󳨀󳨀󳨀→ (A,B) .
One natural criterion of the quality of an alternative cover is its cardinality. Let us

denote by fcard themap of the form f : 2M×2M →ℕ, for whichwe have fcard(A,B) :=|A| + |B|. We state the problem

R3 : (X, (A,B), M ⊆ 2X , fcard) min fcard󳨀󳨀󳨀󳨀󳨀󳨀→ (A,B) .
Interpretation of committees in terms of alternative covers
Suppose that in a space X finite disjoint subsets A and B are fixed, as well as some
class F of real-valued functions over X. Let us consider the inequality system

{{{
f(x) > 0, if x ∈ A ,
f(x) < 0, if x ∈ B .

(5.7)

Recall that by a committee of inequality system (5.7) wemean a finite collection of
mapsK := {f1, f2, . . . , fq} ⊂ F, such that each inequality of system (5.7) is satisfied by
more than half maps fromK.

For some subset of real-valued functions F0 ⊆ F, the sets
C>(F0) = ⋂

f∈F0{x ∈ X : f(x) > 0}
and

C<(F0) = ⋂
f∈F0{x ∈ X : f(x) < 0}

will be called F-polyhedra of the space X. Let us denote by M(F, X) the class of all
F-polyhedra of the space X. The pattern recognition problems R1–R3 can then be re-
garded in the situation when the classM is the classM(F, X), that is,

R󸀠
1 : (X, (A,B), M =M(F, X)) → (A,B) ,

and analogously for R2 and R3.
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With each committee K of inequality system (5.7) can be put in correspondence
an alternative cover (A(K),B(K)) of the pair (A,B) as follows:

A := {C>(K󸀠) : |K󸀠| > 1
2 |K|, K󸀠 ⊆ K} ,

B := {C<(K󸀠) : |K󸀠| > 1
2 |K|, K󸀠 ⊆ K} .

It follows from the definitions of a committee and family (A,B), that (A,B) is
an alternative cover of the pair (A,B). It is evident that C>(K󸀠) ∩ C<(K󸀠󸀠) = 0 when|K󸀠| > 1

2 |K| and |K󸀠󸀠| > 1
2 |K|. Let us denote bymax ⊆A the set of maximal elements of

the poset (A, ⊆), and suppose
A =max ⊆A , B = max ⊆B

and

A(K) := {A󸀠 ∈max ⊆A : A󸀠 ∩A ̸= 0} ,
B(K) := {B󸀠 ∈max ⊆B : B󸀠 ∩B ̸= 0} .

Thus, (A(K),B(K)) is an alternative cover of the pair (A,B) in the class of F-poly-
hedra.

With a committeeK of system (5.7) we have put in one-to-one correspondence the
alternative cover (A(K),B(K)). Let us depict symbolically the scheme of constructing
alternative covers of the pair (A,B) in the class of F-polyhedra on the basis of the
committee method:

R󸀠
com : (X, (A,B), M =M(F, X)) → K→ (A(K),B(K)) .

There exist systems of the form (5.7) such that for two distinct committeesK1 and
K2 of the same cardinality, the following relations hold:

|K1| = |K2| ,|A(K1)| + |B(K1)| ̸= |A(K2)| + |B(K2)| .
As an example, let X be the spaceℝ2, and F the class of linear functionals; let us

suppose

A := {a1 = (−1.5, 1.5), a2 = (1.5, 1.5), a3 = (0, −1)} ,
B := {b1 = (−8, 3), a2 = (0, −5), a3 = (8, −3)} ,

K1 := {f1 = x1 − x2 + 2, f2 = −x2, f3 = −x1 − x2 + 2} ,
K2 := {g1 = x1 − x2 + 4, g2 = −x2 − 2, g3 = −x1 − x2 + 4} ,

A(K1) := {C>({f1, f2}), C>({f1, f3}), C>({f2, f3})} ,
B(K1) := {C<({f1, f2}), C<({f1, f3}), C<({f2, f3})} ,
A(K2) := {C>({f1, f2, f3})} ,
B(K2) := {C<({f1, f2}), C<({f1, f3}), C<({f2, f3})} .
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The committees K1 and K2 contain an equal and minimal possible number of
members (namely, three), but the alternative covers corresponding to these commit-
tees have different cardinalities: |A(K1)| + |B(K1)| = 6, while |A(K2)| + |B(K2)| = 4.

Thus, we can conclude that a committee of system (5.7) represents a concise form
of determining an alternative cover of the pair (A,B) in the class of F-polyhedra, but
notnecessarily ofminimal cardinality. This conclusion is rather important for the com-
mitteemethod, because itmotivates us to take into account a very natural and relevant
additional criterion of decision rule optimization. A simplest application of such an
approach is as follows: if several committees of system (5.7) are found, thenone should
choose a committee such that the corresponding alternative cover has minimal cardi-
nality.

In the case when X := ℝn, and F is the class of linear functionals, let us con-
sider subsystems of system (5.7), defined as follows. Let L ⊂ A ∪ B; then an inequal-
ity f(x) > 0 belongs to the subsystem under consideration when x ∈ A, and an in-
equality f(x) < 0 belongs to this subsystem when x ∈ B. Let us denote this subsystem
by S(A󸀠,B󸀠), whereA󸀠 := L∩A andB󸀠 := L∩B. Suppose that inequality system (5.7)
is infeasible, andK := {f1, f2, . . . , fq} is its committee. Let (A󸀠,B󸀠) be the alternative
cover that corresponds to the committeeK. The pair (A󸀠,B󸀠) is an alternative cover of
the pair (A,B) in the class of convex cones.

Alternative covers do not necessarily possess committees that generate them.
The following algorithmic problem can be stated. For a given inequality system of

the form (5.7), to find a committee that generates an alternative cover of cardinality,
minimal among all committees of system (5.7).

Let {J(Ai ,Bi) : i ∈ [q]} be the family of all inclusion-maximal feasible subsystems
of system (5.7). Let us form the |A ∪̇ B|×q incidencematrixE = (eij): its first |A| rowsare
marked by the elements fromA, the last |B| rows are marked by the elements fromB,
and the columns are marked by the maximal feasible subsystems of system (5.7).

In terms of the matrix E, we can restate the problem as follows:
1. The problem of constructing a committee with theminimal number of members is

reduced to choosing an inclusion-minimal collection of columns of the matrix E
such that in each subrow, obtained as the intersection of the corresponding entire
rowwith the above-mentioned columns, the number of units exceeds the number
of zeros.

2. The problem of constructing a committee that generates an alternative cover of
minimal cardinality is reduced to choosing a collection of columns of thematrixE,
such that condition 1 is fulfilled and, moreover, the total number of inclusion-
minimal subrows of the upper and lower semimatrices is minimal among all such
collections.

Interpretation of logical decision trees in terms of alternative covers
Suppose that in a space X finite disjoint subsets A and B are fixed, as well as some
class F of real-valued functions over X. Let us consider a binary tree T := (V, E) with
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root v0,with eachnodeofwhicha function from F is associated, that is, amapψ : V →
F is determined. Let v be a leaf of the tree T and (v0, v1, . . . , vk−1, v) the path from the
root of the tree to the current node v. Then the leaf v is assigned the F-polyhedron

Cv := C> ({(−1)σ(v0)ψ(v0), (−1)σ(v1)ψ(v1), . . . , (−1)σ(vk−1)ψ(vk−1)}) ,
where σ(vi) := {{{

1, if vi is the left child of vi−1,
0, if vi is the right child of vi−1.

Let V󸀠 be the set of leaves of the tree T. Let us suppose
CV 󸀠(T) : = {Cv : v ∈ V󸀠} ,
CA
V 󸀠(T) : = {Cv : v ∈ CV 󸀠(T) ∩A} ,

CB
V 󸀠(T) : = {Cv : v ∈ CV 󸀠(T) ∩B} .

If CA
V 󸀠(T)∩CB

V 󸀠 (T) = 0 andA∪B ⊂ ⋃v∈V 󸀠 Cv, then (CA
V 󸀠(T), CB

V 󸀠 (T)) is an alternative
cover of (A,B) in the class of F-polyhedra.

Let us depict symbolically the scheme of constructing an alternative cover of the
pair (A,B) in the class of F-polyhedra on the basis of logical decision trees:
R󸀠
tree : (X, (A,B), M = M(F, X)) → (T := (V, E)) → (CA

V 󸀠(T), CB
V 󸀠 (T)) .

Constructing an alternative cover of the pair (A,B) in accordance with the
scheme R󸀠

tree has, compared to the scheme R󸀠
com, the following advantages:

(1) Suppose that for the pair (A,B) two trees T1 := (V1, E1) and T2 := (V2, E2) are
given, such that (CA

V 󸀠
1
(T1), CB

V 󸀠
1
(T1)) and (CA

V 󸀠
2
(T2), CB

V 󸀠
2
(T2)) are alternative covers

of the pair (A,B), and they are inclusion-minimal with respect to this property.
If |V1| = |V2|, then the corresponding alternative covers also have the same cardi-
nality.

(2) The obtained decision and the process itself have good substantial interpretation.
(3) In viewof (2), organizationof the constructinganalternative cover of thepair (A,B),

in accordance with the scheme R󸀠
tree, in interactive mode appears to be natural

and efficient.
(4) When constructing an alternative cover in accordance with the scheme R󸀠

tree,
the problem of missing fragments of initial data, difficult in the case of the
scheme R󸀠

com, is solved naturally and quite easily.

Notes

The notion of committee of a linear inequality system was first formulated, in the ex-
plicit form, in notes [1, 2]. A systematical study of various committee constructions
appeared in works [94, 95] and transformed over the past decades into an important
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independent branch of pure and applied mathematical investigations that exercise a
significant influence on the arsenal of efficient methods in optimization and pattern
recognition. We refer the reader to monograph [96] for a comprehensive review of fun-
damental results in the committee theory, as well as their applications. Key advances
in the ever widening bounds of the theory of committee constructions are the research
subject, for example, in surveys [76, 97–99].

On page 115, we briefly describe the two-class pattern recognition problem follow-
ing [96].

The material in Section 5.1 is particularly based on the results of works [47, 49–
51]. The combinatorial algorithm of extracting MFSs of an infeasible system of linear
inequalities, as noted on page 117, repeatedly builds the blockers of set families; re-
call that constructing the blockers can also be interpreted as the finding of inclusion-
minimal covers of the columns of (0, 1)-matrices that determine the families. See, for
example, works [27, 61, 68, 109, 114, 157, 164] on the constructing representative sys-
tems.

The connectedness of the squares of subgraphs of the graphs of MFSs, mentioned
on page 122, was proved by the second author of work [58].

In Section 5.2, we adopt fragments of surveys [76, 98]. We use the term multi-
committee for committee constructions that represent, in the general case, multisets;
the properties of the hypergraphs of MFSs are analyzed, in particular, in [74, 75].

The outline of alternative covers presented in Section 5.3 follows article [48].
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List of notation

– := – equals by definition
– δ(s, t) – Kronecker delta, equal to 1 when s = t, and 0 otherwise
– ( nm) – binomial coefficient, equal to n!

m!(n−m)!
– ℝ – real numbers

Sets and families
– [m] – set of consecutive integers {1, 2, . . . ,m}
– (U2) – family of unordered 2-subsets of a set U
– A ∪̇ B – disjoint union of sets or families A and B
– A × B – Cartesian product of sets A and B
– V(A) – ground set⋃α

i=1 Ai of a familyA := {A1, . . . , Aα}
– |A| – cardinality (number of elements) of a set A
– #A – number of sets in a familyA
– B(A) – blocker of a familyA
– 2V – power set of a set V
– A⊥ – complement, V(A) − A, of a set A from a familyA
– A⊥ – family of complements {A⊥ : A ∈ A}
Topological spaces
– Fr(⋅) – boundary of a subset of a topological space
Partially ordered sets (posets)
– a ⪯ b – elements a and b are comparable in a poset
– 0̂ and 1̂ – least and greatest elements of a lattice, respectively
– 𝔹(m) – Boolean lattice of rank m
– 𝔹(m)(1) – atom set of the Boolean lattice 𝔹(m)
– ρ(⋅) – rank function of a poset
– minV andmaxV – sets of minimal and maximal elements of a poset V, respec-

tively
– I(V) and F(V) – order ideal and order filter generated by a set V, respectively
Maps
– f : A → B, a 󳨃→ b – map f from a set A to a set B; the image of an element a ∈ A

is an element b := f(a) ∈ B
– f |A : A → C, a 󳨃→ f(a) – restriction of a map f : B → C to a subset A ⊆ B
Complexes and graphs
– ∆ – abstract simplicial complex
– max ∆ – facet family of a complex ∆
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– ∆(A) – complex with facet familyA
– (V, ∆) – complex on vertex set V
– (V, ∆) ≃ (V󸀠 , ∆󸀠) – complexes (V, ∆) and (V󸀠 , ∆󸀠) are isomorphic
– ∆∨ – Alexander dual of a complex ∆
– dim F – dimension of a face F of a complex
– dim ∆ – dimension of a complex ∆
– fj(∆) – number of j-dimensional faces of a complex ∆
– (V, E) – simple graph with vertex set V and edge set E, or the hypergraph with

vertex set V and hyperedge family E
– N(v) – neighborhood of a vertex v in a graph
– ISG(V, ∆) and󳨀󳨀→ISG(V, ∆)–undirected and oriented graphs of an independence sys-

tem associated with a complex (V, ∆), respectively
– MFSG(S) – graph of maximal feasible subsystems (the graph of MFSs) of an infea-

sible system of linear inequalitiesS

Vectors
– ⟨a, b⟩ – standard scalar product ∑1≤k≤n akbk of n-dimensional real vectors a

and b
– ‖a‖ := √⟨a, a⟩ – Euclidean norm of a real vector a

Systems of constraints
– A(S) – set of vectors {ai : i ∈ [m]} that determine the system S := {⟨ai , x⟩ > 0 :

a i , x ∈ ℝn; ‖a i‖ = 1}
– J and I – family of the multi-indices of maximal feasible subsystems (MFSs) and

the family of the multi-indices of minimal (irreducible) infeasible subsystems
(IISs), respectively

– νk and τk – number of feasible subsystems and the number of infeasible subsys-
tems, of cardinality k, respectively

Boolean functions
– B – set {0, 1}
– Bm – unit discrete m-cube
– supp(x) – set {i ∈ [m] : xi = 1} corresponding to a tuple x ∈ Bm

– |α| – number of units in a tuple α ∈ Bm

– α ⊕ β – coordinate-wise summation of tuples α, β ∈ 𝔽m2 of length m over the field𝔽2 with two elements that compose the set B
– Mm – class of all monotone Boolean functions (MBFs) of m variables
– f−1(0) and f−1(1) – set of zeros and the set of units of a monotone Boolean func-

tion f, respectively
– Q(f) :=max f−1(0) andP(f) :=min f−1(1) – set of upper zeros and the set of lower

units of a monotone Boolean function f, respectively



List of notation | 143

– Of – operator that calculates, for a tuple from Bm, the corresponding value of a
monotone Boolean function f

– φ(G, f) – number of invocations, by an algorithm G, of the operator Of when in-
ferring a MBF f ∈Mm

Subspaces, hulls and convex sets
– conv (X) – convex hull of a set X ⊂ ℝn
– lin (X) – linear hull of a set X ⊂ ℝn
– H(T) – linear subspace⋂t∈T{x ∈ ℝn : ⟨at , x⟩ = 0}
– C>(T) – open cone⋂t∈T{x ∈ ℝn : ⟨at , x⟩ > 0}
– C<(T) := −C>(T)
– C>(T) – closed cone⋂t∈T{x ∈ ℝn : ⟨at , x⟩ ≥ 0}
– F(L, T) – open, with respect to a subspaceH(L), faceH(L) ∩C>(T − L) of a closed

cone C>(T)
– [x, y] := conv {x, y} – closed segment between points x, y ∈ ℝn
– (x, y) – open segment [x, y] − {x, y}



Index
(k, m)-vertex 102(r, s)-tuple of points 88

A
A-diagonal 59
Alexander dual 13
antichain 8, 11
– of a lattice 12
antipodes 31, 33
atom of a lattice 7, 11, 65

B
base of an independence system 11
basis
– linear 72
– of a pyramid 60
– positive 67–74

– maximal 67, 68
– minimal 67, 68, 73, 74
– regular 73, 74
– strict 68, 69, 74

blocker 8–13, 65, 116, 117
Boolean variable 9
border 93
bound, least upper 7
boundary of a subset 26
bridge in a graph 43

C
cardinality of an alternative cover 126, 127
chain of a graph 53
class of a bipartite graph 10
closure 25
cluster 1, 2
clutter 8
coatom of a lattice 65
coefficient, binomial 14
coface 77, 78
combination, convex 81
committee 4, 5, 115, 125, 127–129
complex
– abstract simplicial 11, 13, 14, 20–23, 25, 26,

30–34, 42, 94
complexity, combinatorial 124
component
– of a point tuple 88

– end 88

– even 88
– odd 88

cone 34
– convex 67, 129

– polyhedral 35
– solution 4, 18, 34
cover
– alternative 126–130

– finite 126
– of a set, minimal 73, 74
– of a topological space 23
– vertex, of a hypergraph 8
cube, unit 17, 93
curve, moment 59
cycle of a graph 43, 52, 53
– of odd length 4, 5, 39, 41–43, 125

D
decision rule 1, 3–5, 115
degree of a vertex in the graph of MFSs 37, 40
Dehn–Sommerville relations 83, 84, 86
diagonal 58, 65, 77, 79
– of a point tuple 79, 80, 88
– of a polytope 81, 83, 88, 89
diagram
– Gale 78
– of a positive basis 68
diameter of a graph 42, 43
dimension
– combinatorial 121
– of a complex 13, 14, 16
– of a face of a complex 13, 14
– topological 29

E
edge
– of the graph of an independence system 20
– of the graph of MFSs 34
element
– greatest, of a lattice 7
– least, of a lattice 7
– maximal, of a poset 11, 17, 94
– minimal, of a poset 11, 17, 94

F
face
– of a complex 11, 14, 20, 21, 25, 26
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– of a cone 34, 35, 40
– r-dimensional 34

– of a point tuple 79
– proper 88

– of a polytope 58, 59, 69, 78, 86, 88
– proper 59

– of the power set 10
face poset of a complex 11, 13
facet
– of a complex 11, 13, 20, 25–27, 31, 32, 34, 42,

94
– of a point tuple 79, 80
– of a polytope 68, 81, 83
family
– of subset pairs 22
– Sperner 8, 11–13, 16
F-diagonal 60
filter, order 11, 12, 18, 32, 94
form, minimal disjunctive normal 9
F -polyhedron 127–130
function
– Boolean 17

– monotone 17, 93, 95, 100, 110, 111
– of logical algebra 9
– rank, of a poset 11
– real continuous 25
– real polynomial 29
functional, linear 30
f -vector of a complex 13

G
Gale transform 77, 78
G-diagonal 60, 61, 68, 70, 77, 78
geodesic 42
graph
– 2-connected 52
– bipartite 4, 10
– connected 4, 20
– of an independence system 20, 22, 29, 31, 33,

34, 42
– 2-connected 45
– connected 23, 26, 28–31, 45
– oriented 20

– of maximal feasible subsystems 4, 5, 20, 34,
35, 37, 39, 41–43, 45, 122–125

– of MFSs 34
– simple 10, 100

H
half-space
– closed 30
– open 34, 68, 78
hemisphere
– closed 30
– open 31
homomorphism
– of complexes 21

– surjective 21
– of graphs 21, 42
– of the graphs of independence systems 21
hull
– convex 59, 68, 71, 79, 88
– linear 67
– positive 67
hyperedge
– of a hypergraph 8–10, 15, 32
– of the hypergraph of an independence system

31
– of the hypergraph of MFSs 53–55
hypergraph 8, 9, 15, 16, 32
– 2-regular 10
– of an independence system 20, 31, 32
– of maximal feasible subsystems 53–55, 126
– r-regular 10
hyperplane 34, 68, 71, 72, 75, 78

I
ideal, order 11, 13, 18, 65, 93
incidence matrix 9, 129
inclusion–exclusion principle 14, 15
index
– of a constraint 7, 12
– of a subsystem 7
inequality
– essential 75
– implied 39
isomorphism
– combinatorial, of set families 65, 66
– of complexes 21
– of graphs 21

K
Kronecker delta 14
k-vertex 101

L
lattice
– Boolean 7, 10–14, 18, 93
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– face, of a polytope 65
– of subsets of a set 10
learning
– supervised 2–4
– unsupervised 1

M
map, simplicial, of complexes 21
multi-committee 125, 126
– minimal 125, 126
multifamily of ordered subset pairs 23
multi-index of a subsystem 4, 7, 12, 13, 17, 18,

34
– feasible 4, 17, 20, 34, 39, 40, 116

– maximal 4, 17, 18, 34–38, 40, 42, 53, 54, 75,
76, 79, 81–83, 116, 117, 120–126

– infeasible 17
– minimal 17, 18, 75, 76, 79, 81–83, 85, 86

N
neighborhood of a vertex in a graph 35
norm of a vector, Euclidean 18
number
– of transversality of a hypergraph 10
– Whitney, of the second kind 14
number of the vertex, inner 118

O
operation
– of cross 59
– of intersection of subset pairs 22
oracle 94

P
part of a bipartite graph 10
pattern recognition 1–5
polygon 58
polyhedron, unbounded 30
polynomials, relatively prime 29
polytope 59–61, 65, 66, 69, 70, 77, 78, 81
– combinatorial type 65
– cyclic 59, 61, 88, 89
– diagonal combinatorial type 65
– k-neighborly 59, 88
– simplicial 61, 66, 78, 83, 86, 88
power set 10, 11, 14
product
– Cartesian 10
– scalar 3, 18
pyramid 60, 78, 81

R
ray 68
relation
– binary 10
– of partial ordering

– on the family of subset pairs 22
– on unit cube 17

representation of a positive basis 71
– simplicial 71–73
representativity of sets 8, 13
rooted tree 118, 120

S
segment 34
set
– blocking 8

– minimal 8
– convex 75
– independent, of an independence system 11
– one-sided 68
– partially ordered (poset) 10
– transversal 8

– minimal 8
– of a hypergraph 10

Shannon’s criterion 94
simplex 61, 65, 68, 71, 73, 78, 79, 81, 83, 88
space
– feature 1, 3, 4, 115
– real Euclidean 33, 75, 115, 125
– topological, connected 23, 26
step
– backward 118
– forward 118
sub-basis
– of a positive basis 67, 68

– minimal 67, 68
subset
– of a topological space 26

– closed 23
– connected 28
– nowhere dense 26–28

– of points on a sphere 30, 31
– one-sided 69

– maximal 67–69, 74
subspace, linear 75
subsystem
– empty 7
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– feasible 3, 4, 7, 12, 14, 15, 37, 42, 100
– maximal 4, 12, 13, 15, 35, 38, 83, 88, 90,

110, 115, 129
– infeasible 12, 14, 15

– irreducible 12
– minimal 12, 13, 15, 83, 115

– of inequalities
– feasible 4, 25, 26, 33, 35, 36, 38, 55, 87, 116
– infeasible 4, 26, 78, 87

subtuple, connected 88
sum, direct, of subspaces 68
system
– independence 11, 23
– irreducible 12
– of constraints 7

– feasible 20
– infeasible monotone 7, 12–16, 20, 25, 31,

100
– of continuous functions 27, 28
– of inequalities

– feasible 25, 26
– infeasible 3, 4, 26

– of linear inequalities 17, 20, 110
– combinatorially dual 85
– infeasible 33, 75, 79–87, 90, 110, 115, 125
– irreducible 75, 76, 79, 80

– of representatives 8–12, 16, 36
– distinct 10
– minimal 8, 9, 12, 116–118, 120
– minimal of the family 120

– reducible 12

T
training sample 2, 3, 5, 115
transversal 8
– minimal 8
tree, binary 129, 130
tuple, binary 17, 93, 101

U
unit of a monotone Boolean function 17, 94, 100
– lower 17, 94

– minimal 94

V
vertex
– of a complex 11, 20, 21, 25, 31, 32, 34
– of a hypergraph 8, 9, 15, 32
– of a polytope 68, 70, 78
– of the graph of an independence system 20,

28
– of the graph of MFSs 34
– of the hypergraph of an independence system

31
– of the hypergraph of MFSs 53

W
width of an incidence matrix 9

Z
zero of a monotone Boolean function 17, 94,

100, 104
– upper 17, 94, 101, 103, 106

– maximal 94, 101–105, 107
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