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Abstract  

Stoichiometric near-room temperature superconductors (NRTS) (for instance, H3S and 

LaH10) exhibit a high ground state upper critical field, Bc2(0) > 100 T, such that the magnetic 

phase diagram in these materials cannot be measured in non-destructive experiments. 

However, Semenok et al. (2022 arXiv2203.06500) proposed idea of exploring the full 

magnetic phase diagram in NRTS samples, in which superconducting order parameter is 

suppressed by magnetic element doping. If the element is uniformly distributed in the 

material, then the theory of electron-phonon mediated superconductivity predicts the 

suppression of the order parameter in three-dimensional s-wave superconductor. Semenok et 

al. (arXiv2203.06500) experimentally proved this idea by substituting lanthanum with the 

magnetic rare earth neodymium in the (La1-xNdx)H10-y. As a result, the transition temperature 

in (La1-xNdx)H10-y (x = 0.09) was suppressed to Tc~120 K, and the upper critical field 

decreases to Bc2(T=41 K)=55 T.  While the exact hydrogen content should be further 

established in the (La1-xNdx)H10-y (x = 0.09) (because similar Tc suppression was observed in 

hydrogen deficient LaH10-y samples reported by Drozdov et al (2019 Nature 569 528)), a 

significant part of the full magnetic phase diagram for (La1-xNdx)H10-y (x = 0.09) sample was 

measured. Here we analyzed reported by Semenok et al (arXiv2203.06500) 

magnetoresistance data for (La1-xNdx)H10-y (x = 0.09) compressed at P=180 GPa and 

deduced: (a) Debye temperature, 𝑇𝜃 = 1156 ± 6 𝐾, (b) the electron-phonon coupling 

constant, 𝜆𝑒−𝑝ℎ = 1.65 ± 0.01; (c) the ground state superconducting energy gap, Δ(0) =
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20.2 ± 1.3 𝑚𝑒𝑉; (d) the gap-to-transition temperature ratio, 
2Δ(0)

𝑘𝐵𝑇𝑐
= 4.0 ± 0.2; and (e) the 

relative jump in specific heat at transition temperature, 
Δ𝐶

𝐶
= 1.68 ± 0.15.  The deduced 

values indicate that (La1-xNdx)H10-y (x = 0.09; P = 180 GPa) is a moderately strongly coupled 

s-wave superconductor.   
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Electron-phonon coupling constant and BCS ratios in (La,Nd)-H superhydride  

 

I. Introduction  

The discovery of a superconducting state with transition temperature above 200 K in 

highly compressed H3S by Drozdov et al. [1] with the consequent discovery of high-

temperature superconductivity in superhydrides of thorium [2] and near room temperature 

superconductivity (NRTS) in superhydrides of lanthanum [2,3], yttrium [4-6] and lanthanum-

yttrium [7] represent the most fascinating scientific explorations in the field of 

superconductivity since the discovery of high-temperature superconductivity in cuprates [8].  

While in the majority of theoretical works (comprehensive review has been published 

recently [9]) the electron-phonon mechanism is considered to be the primary pairing 

mechanism in NRTS superhydrides, alternative approaches to the nature of charge carrier 

interaction and pairing in NRTS are also under development [10-12].  One of the most solid 

experimental facts that supports the electron-phonon pairing mechanism in superhydrides is 

the prominent isotope effect with respect to the transition temperature, Tc [1,3,13].  However, 

the effect of hydrogen-deuterium exchange on other fundamental parameters of NRTS 

superhydrides, for instance, on the lower and upper critical fields, as well as on Bardeen-

Cooper-Schrieffer (BCS) ratios (i.e., 
2Δ(0)

𝑘𝐵𝑇𝑐
 where Δ(0) is the ground state of the 

superconducting energy gap, 𝑘𝐵 is the Boltzmann constant), remains to be explored.   

Another important question which needs to be answered is the superconducting gap 

symmetry in NRTS hydrides. From the author’s best knowledge, there is general agreement 

[9] that the superconducting energy gap in superhydrides exhibits s-wave symmetry. 

However, the first experimental evidence which confirms s-wave gap symmetry was only 

recently reported by Semenok et al [14]. This research group proposed to verify the s-wave 

gap symmetry in NRTS by employing one of the conclusions of Abrikosov-Gor’kov [15], 
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Anderson [16], and Openov [17,18] theories of dirty superconductors.  This conclusion is that 

uniformly distributed (on the atomic level) impurities exhibited magnetic moment should 

suppress the superconducting order parameter in s-wave superconductors, but this kind of 

impurities should not affect the superconducting order parameter in d-wave superconductors. 

However, non-magnetic impurities should cause the suppression of in d-wave 

superconductors, but this kind of doping should not affect the s-wave superconducting state.   

Thus, to reaffirm/disprove s-wave symmetry gap in LaH10, Semenok et al [14] performed 

gradual doping of lanthanum decahydride by magnetic rare earth element, neodymium. The 

hydrogen/rare earth elements stoichiometry was kept 1/10 in all samples. While the exact 

hydrogen content in synthesized samples of La1-xNdxH10-y (x = 0.08, 0.09, 0.20, 0.25, and 

0.50) [14] should be further established (because similar Tc suppression was observed in 

hydrogen deficient LaH10-y samples reported by Drozdov et al [3]), a significant part of the 

full magnetic phase diagram for (La1-xNdx)H10-y (x = 0.09) sample was measured [14]. More 

specifically, it should be noted that there is a need for further experimental studies to confirm 

that all Nd atoms replace the lanthanum in their sites in the crystal lattice, instead than Nd 

will form the secondary phases, and that the hydrogen content remains to be stoichiometric.  

Semenok et al [14] reported on gradual 𝑇𝑐 suppression on the increase in the Nd 

concentration. One of the interesting consequences associated with this 𝑇𝑐 suppression is that 

the upper critical field, 𝐵𝑐2(𝑇), is also decreasing. This makes it possible to measure 𝐵𝑐2(𝑇) 

for La1-xNdxH10 within a much wide reduced temperature range, 
𝑇

𝑇𝑐
, in comparison with the 

range available for undoped stoichiometric NRTS materials H3S [19] and LaH10 [20], which 

exhibits the ground state upper critical field well above the value which can be measurable in 

non-destructive experiments.  
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Due to the upper critical field, 𝐵𝑐2(𝑇), is one of two fundamental fields in type-II 

superconductors, measured 𝐵𝑐2(𝑇) datasets can be used to extract several fundamental 

parameters of the superconductor [21,22], for instance:  

1.  ground state energy gap, Δ(0);  

2.  relative jump in electronic specific heat at Tc, ΔC/C;  

3.  ground state coherence length, (0);  

4.  gap-to-transition temperature ratio, 
2Δ(0)

𝑘𝐵𝑇𝑐
 (where 𝑘𝐵 is the Boltzmann constant).  

5.  Fermi temperature, TF 

There are two other fundamental parameters of the electron-phonon mediated 

superconductors:  

6.  Debye temperature, 𝑇𝜃;  

7.  the electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ.  

Debye temperature can be deduced from the fit of experimentally measured temperature 

dependent resistance, 𝑅(𝑇), to the Bloch-Grüneisen (BG) equation [23,24]:  

𝑅(𝑇) = 𝑅0 + 𝐴 (
𝑇

𝑇𝜃
)

5

∫
𝑥5

(𝑒𝑥−1)(1−𝑒−𝑥)

𝑇𝜃
𝑇

0
𝑑𝑥     (1)  

where 𝑅0 and 𝐴 are free fitting parameters.  From the deduced 𝑇𝜃 and measured 𝑇𝑐, the 

electron-phonon coupling constant, 𝜆𝑒−𝑝ℎ, can be calculated as unique root of advanced 

McMillan equation [25,26]:  

𝑇𝑐 = (
1

1.45
) × 𝑇𝜃 × 𝑒

−(
1.04(1+𝜆𝑒−𝑝ℎ)

𝜆𝑒−𝑝ℎ−𝜇∗(1+0.62𝜆𝑒−𝑝ℎ)
)

× 𝑓1 × 𝑓2
∗    (2)  

where  

𝑓1 = (1 + (
𝜆𝑒−𝑝ℎ

2.46(1+3.8𝜇∗)
)

3 2⁄

)
1 3⁄

       (3)  

𝑓2
∗ = 1 + (0.0241 − 0.0735 × 𝜇∗) × 𝜆𝑒−𝑝ℎ

2 .     (4)  
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where 𝜇∗ is the Coulomb pseudopotential parameter, which can be assumed to be 𝜇∗ = 0.13 

for all NRST materials.  

In this work, we deduced Δ(0), ΔC/C, (0), 
2Δ(0)

𝑘𝐵𝑇𝑐
, 𝑇𝐹, 𝑇𝜃, and 𝜆𝑒−𝑝ℎ for La1-xNdxH10-y (x = 

0.09) compressed at pressure 𝑃 = 180 𝐺𝑃𝑎 by analysing experimental 𝑅(𝑇) and 𝐵𝑐2(𝑇) 

datasets reported by Semenok et al [14,27].  Deduced parameters showed that La1-xNdxH10-y 

(x = 0.09; 𝑃 = 180 𝐺𝑃𝑎) is moderately strong coupled superconductor.  

The fit of 𝑅(𝑇) dataset to Eq. 1 is shown in Fig. 1. This 𝑅(𝑇) dataset reported in Figure 

2,a in the Ref. 14 and raw data file is freely available online by Semenok et al [27]. Deduced 

parameters are: 𝑅0 =  0.729(5), 𝐴 =  5.42 ± 0.06, and 𝑇𝜃 = 1156 ± 6 𝐾.  By utilizing 

general requirement [26], that 𝑇𝑐 should be defined at the lowest as possible 
𝑅(𝑇)

𝑅𝑛𝑜𝑟𝑚(𝑇)
 ratio, 

and considering that the same criterion should be used to define 𝐵𝑐2(𝑇) dataset from 𝑅(𝑇, 𝐵) 

curves (reported in Figs. 2(b,c) [14]), the ratio of 
𝑅(𝑇)

𝑅𝑛𝑜𝑟𝑚(𝑇)
= 0.08 was used.  In the result, 𝑇𝑐 

for 𝑅(𝑇) in Fig. 1 was defined as 𝑇𝑐,0.08 =  122 𝐾.   

 

Figure 1.  R(T) data for highly compressed La1-xNdxH10-y (x = 0.09; P = 180 GPa) and data fit to Eq. 1 

(raw data is freely available online by Semenok et al [14,27]).  Green balls indicate the bounds for 

which R(T) data was used for the fit to Eq. 1. Deduced 𝑇𝜃 = 1156 ± 6 𝐾, 𝑇𝑐,0.08 = 122 𝐾, 𝜆𝑒−𝑝ℎ =

1.65 ± 0.01, fit quality is 0.9977. 95% confidence bands are shown by pink shadow areas.  
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The root of Eqs. 2-4 for given 𝑇𝜃, 𝑇𝑐, and 𝜇∗ = 0.13 is 𝜆𝑒−𝑝ℎ = 1.65 ± 0.01. This 

deduced value is in a good agreement with 𝜆𝑒−𝑝ℎ values calculated by first-principles 

calculations by Semenok et al [27] in their Table S5.   

By utilizing the same criterion of 
𝑅(𝑇)

𝑅𝑛𝑜𝑟𝑚(𝑇)
= 0.08, the 𝐵𝑐2(𝑇) dataset was derived from 

𝑅(𝑇, 𝐵) curves showed in Figs. 2(b,c) of Ref. 14.  In Fig. 2 the 𝐵𝑐2(𝑇) dataset is fitted to the 

equation for temperature dependent upper critical field for s-wave superconductors [21,22]:  

𝐵𝑐2(𝑇) =
𝜙0

2∙𝜋∙𝜉2(0)
(

1.77−0.43(
𝑇

𝑇𝑐
)

2
+0.07(

𝑇

𝑇𝑐
)

4

1.77
)

2

× [1 −
1

2𝑘𝐵𝑇
∫

𝑑𝜀

𝑐𝑜𝑠ℎ2(
√𝜀2+Δ2(𝑇)

2𝑘𝐵𝑇
)

∞

0
]  (5)  

where the amplitude of temperature dependent superconducting gap, (T), is given by 

[28,29]:  

Δ(𝑇) = Δ(0) × tanh [
𝜋𝑘𝐵𝑇𝑐

Δ(0)
√𝜂

Δ𝐶

𝐶
(

𝑇𝑐

𝑇
− 1)]       (6)  

where  = 2/3 for s-wave superconductors.  

The fit converged with a high quality (with goodness of fit R =0.9976) (Fig. 2).  Deduced 

parameters are: ξ(0) = 2.33 ± 0.02 𝑛𝑚, Δ(0) = 20.2 ± 1.3 𝑚𝑒𝑉, 
2Δ(0)

𝑘𝐵𝑇𝑐
= 4.0 ± 0.2, 

Δ𝐶

𝐶
=

1.68 ± 0.15.  Considering that the weak coupling limits of the BCS theory [28-30] are: 

2∙Δ(0)

𝑘𝐵∙𝑇𝑐
= 3.53 and 

Δ𝐶

𝐶
= 1.43, and the upper limits for low-Tc electron-phonon mediated 

superconductors are: 
2∙Δ(0)

𝑘𝐵∙𝑇𝑐
= 5.2 (for Pb0.50Bi0.50 alloy [31]) and 

Δ𝐶

𝐶
= 3.0 (for Pb0.70Bi0.30 

alloy [31]), one can conclude that La1-xNdxH10-y (x = 0.09; 𝑃 = 180 𝐺𝑃𝑎) is moderately 

strong coupled superconductor.  

Final characterization of the superconducting properties of the La1-xNdxH10-y (x = 0.09; 

𝑃 = 180 𝐺𝑃𝑎) was to position this hydride in the empirical Uemura plot [32,33], where 

heavy fermions, fullerenes, cuprates, pnictides, and hydrogen-rich superconductors [34] form 
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a narrow band exhibited the ratio of the superconducting transition temperature, Tc, to the 

Fermi temperature, TF, within a range:  

0.01 ≲
𝑇𝑐

𝑇𝐹
≲ 0.05,         (7)  

while all low-Tc conventional superconductors have much smaller 
𝑇𝑐

𝑇𝐹
 ratio:  

𝑇𝑐

𝑇𝐹
≲ 0.001          (8)  

 

Figure 2.  Superconducting upper critical field data, Bc2(T), and data fit to Eq. 5 for highly 

compressed La1-xNdxH10-y (x = 0.09; P = 180 GPa).  Raw R(T,B) dataset is freely available online by 

Semenok et al [14,27].  Deduced parameters are: 𝜉(0) = 2.33 ± 0.02 𝑛𝑚, 𝑇𝑐 = 117.5 ± 0.6 𝐾, 

Δ(0) = 20.2 ± 1.3 𝑚𝑒𝑉, Δ𝐶 𝐶⁄ = 1.68 ± 0.15, 
2Δ(0)

𝑘𝐵𝑇𝑐
= 4.0 ± 0.2. Fit quality is 0.9976. 95% 

confidence bands are shown by pink shadow areas.  

 

 
The Fermi temperature can be calculated by following equation [35]:  
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𝜋2

8∙𝑘𝐵
×  (1 + 𝜆𝑒−𝑝ℎ) × 𝜉2(0) × (

2Δ(0)

ℏ
)

2

,     (9)  

where all parameters we deduced above. In the result, calculated Fermi temperature is 𝑇𝐹 =

 4430 ± 50 𝐾 and, thus, 
𝑇𝑐

𝑇𝐹
= 0.027 for this superhydride. In the result, La1-xNdxH10 (x = 0.09; 
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𝑃 = 180 𝐺𝑃𝑎) falls into unconventional superconductors band in the Uemura plot (Fig. 3), and 

it is located in close proximity to YBa2Cu3O7- and Bi2Sr2Ca2Cu3O11 cuprates and other NRTS 

counterparts.  

To address a possible question that the electron-phonon mediated materials are located at 

the unconventional superconductors band, we should point out that superhydrides are not the 

only known electron-phonon mediated superconductors which are located in the 

unconventional superconductors band in the Uemura plot (for instance, we can mention bulk 

s-wave A3C60 (A = K, Rb) superconductors).  

 

Figure 3.  Uemura plot (Tc vs TF), where the La1-xNdxH10-y (x = 0.09; 𝑃 = 180 𝐺𝑃𝑎) compound is 

shown together with other superconducting families: metals, heavy-fermions, pnictides, cuprates, and 

near-room-temperature superconductors. Reference on original data can be found in Ref. 34.  

 

From other hand, the Uemura plot is not intended to reveal the pairing mechanism, but 

rather indicate the geometrical ratio of the characteristic size of the Cooper pair (which is 
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condensate (BEC) line, 
𝑇𝑐

𝑇𝐹
= 0.22, while materials with high volume concentration of Cooper 

pairs trend to be located closer to the pure metals, like aluminium for which 
𝑇𝑐

𝑇𝐹
~10−5. This 

limit also known as BCS limit. Detailed studies of the transition of one material from BEC into 

BCS under high pressure can be found elsewhere [36].  

To summarise our findings in this work, we can mention that, while the detection of the 

superconductivity in elemental highly compressed hydrogen is ongoing task [37-39], the 

near-room temperature superconductivity has observed in several superhydires [1-7]. Here, 

we analysed experimental magnetoresistance data, R(T,B), for highly compressed  

La1-xNdxH10-y (x = 0.09; 𝑃 = 180 𝐺𝑃𝑎) superconductor in which the superconducting order 

parameter was supressed by magnetic rare earth element (neodymium) impurity. Raw 

experimental R(T,B) datasets for La1-xNdxH10-y (x = 0.09; 𝑃 = 180 𝐺𝑃𝑎) was recently 

reported by Semenok et al [14,27].  Deduced parameters, for instance, the gap-to-transition 

temperature ratio, 
2Δ(0)

𝑘𝐵𝑇𝑐
= 4.0 ± 0.2, and the relative jump in specific heat at transition 

temperature, 
Δ𝐶

𝐶
= 1.7 ± 0.1, indicate that La1-xNdxH10-y (x = 0.09; 𝑃 = 180 𝐺𝑃𝑎) is 

moderately strong coupled superconductor. This hydride exhibits the ratio of the 

superconducting transition temperature to the Fermi temperature of 
𝑇𝑐

𝑇𝐹
= 0.027, and it falls 

into unconventional superconductors band in the Uemura plot.  
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