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PIECEWISE LINEAR PRICE FUNCTION
OF A DIFFERENTIAL GAME WITH SIMPLE DYNAMICS
AND INTEGRAL TERMINAL PRICE FUNCTIONAL

L. G. Shagalova UDC 517.977

Abstract. In this paper, we consider an antagonistic differential game of two persons with dynamics

described by a differential equation with simple motions and an integral terminal payment functional.

In this game, there exists a price function, which is a generalized (minimax or viscous) solution of the

corresponding Hamilton–Jacobi equation. For the case where the terminal function and the Hamiltonian

are piecewise linear and the dimension of the phase space is equal to 2, we propose a finite algorithm

for the exact construction of the price function. The algorithm consists of the sequential solution of

elementary problems arising in a certain order. The piecewise linear price function of a differential

game is constructed by gluing piecewise linear solutions of elementary problems. Structural matrices

are a convenient tool of representing such functions.
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generalized solution, minimax solution, algorithm.
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1. Introduction. Antagonistic differential games form a branch of the mathematical theory of

optimal control in which control problems are investigated in the case of opposite interests of subjects
controlling the system (players). The dynamics of the system is described by a differential equation
containing vectors controlled by the players. There are various formalizations of differential games.

In this paper, the game problem is considered within the framework of the positional formalization
introduced in the works of N. N. Krasovsky and A. I. Subbotin (see [5, 6]). To choose a control, each
player can use only the current information about the state of the system. The first player seeks to

minimize the given payment functional on motions of the system, whereas the goal of the second
player is opposite, i.e., to maximize this functional. In the case considered, the approach to solving a
differential game consists of the search for an appropriate price function. The price function assigns

the same optimal guaranteed result for all players to a given initial state of the system, i.e., the best
guaranteed value of the payment functional. If the price function is known, one can construct the
optimal controls of the players by the feedback principle.

In the study of differential games, as a rule, nonlinear first-order partial differential equations arise.
It was noted in [12, 13] that the price function is a minimax solution of the Hamilton–Jacobi equation
corresponding to the differential game considered, where the concept of a generalized minimax solution
is equivalent to the concept of a viscosity solution introduced by M. G. Crandall and P.-L. Lions

(see [2]).
Thus, the problem of constructing the price function of a differential game can be reduced to solv-

ing a first-order differential equation. However, there is no universal methods of solving the nonlinear

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematich-
eskie Obzory, Vol. 168, Proceedings of the International Conference “Geometric Methods in the Control
Theory and Mathematical Physics” Dedicated to the 70th Anniversary of Prof. S. L. Atanasyan, 70th An-
niversary of Prof. I. S. Krasil’shchik, 70th Anniversary of Prof. A. V. Samokhin, and 80th Anniversary of
Prof. V. T. Fomenko. Ryazan State University named for S. Yesenin, Ryazan, September 25–28, 2018. Part I,
2019.

878 1072–3374/22/2626–0878 c© 2022 Springer Science+Business Media, LLC

DOI 10.1007/s10958-022-05867-z



Hamilton–Jacobi equations, and a solution an analytical form cannot be obtained in all cases. There-

fore, the development of computational methods and analysis of the structure of piecewise smooth
minimax solutions are topical directions of research. Despite the simplicity of the dynamics, the solu-
tions of such games are known only in some special cases, and in the general case, finding solutions is
also not an easy task.

For local approximation of a piecewise smooth prove function of a differential game with general
dynamics, one can use solutions of a differential game with simple dynamics, which depends only
on the controls of the players and does not depend on the phase vector. Despite the simplicity of

the dynamics, the solutions of such games are known only in some special cases, whereas the search
for solutions in the general case is a difficult problem. Therefore, the study of differential games with
simple motions is also of independent interest. Geometric methods and convex and nonsmooth analysis

are used for the study of such games.
Differential games with simple motions were studied by many authors; in particular, we mention

the works [4, 7, 8, 15].

In this paper, we present a finite algorithm for constructing an exact minimax solution of the
Hamilton–Jacobi equation corresponding to a differential game with simple motions and an integral
terminal payment functional in the case of a two-dimensional phase space and piecewise linear input

data. The results presented summarize the results obtained in [10, 11, 14].

2. Statement of the problem. We consider the following position differential game of two persons
governed by the dynamical equation

ẋ = u(t) + v(t), t ∈ [0, ϑ], x ∈ R
n, u(t) ∈ P ⊂ R

n, v(t) ∈ Q ⊂ R
n; (1)

where t is time, ϑ is the given moment of the end of the game, x is the phase vector, and u(·) and v(·)
are the controls of the first and second players, respectively, constructed by the feedback principle.
We assume that the sets P and Q are compact.

Let (t0, x0) ∈ [0, ϑ]×R
n be an initial state. On trajectories of the control system (1) corresponding

to the given initial state, we consider the integral terminal payment functional

I = I(t0, x0, u(·), v(·)) = σ(x(ϑ)) +

ϑ∫

t0

g(u(τ), v(τ))dτ, (2)

where σ : Rn → R is a Lipschitz function and the function g : P×Q → R is continuous. The first player

intends to minimize the pay by choosing his control, whereas the second player intends to maximize
it.

Assume that for the differential game considered, the following condition is fulfilled:

min
u∈P

max
v∈Q

[〈s, u+ v〉+ g(u, v)] = max
v∈Q

min
u∈P

[〈s, u+ v〉+ g(u, v)] = H(s), s ∈ R
n, (3)

where 〈s, f〉 is the scalar product of the vectors s and f . The function H(·) defined by Eq. (3) is called
the Hamiltonian of the differential game (1), (2).

It is well known (see [5, 6]) that if the condition (3) is fulfilled, then for any initial state (t0, x0) ∈
[0, ϑ] × R

n, there exists the price ω(t0, x0) of the game. Thus, there exists the price function ω :
[0, ϑ] × R

n → R. However, the search for the price function is a difficult problem and there no
universal methods to solve it. We note that in the case where the integrand function g(·) is identical
zero, i.e., the payment functional is terminal, the problem is greatly simplified. In particular, if one of
the functions H(·) or σ(·) is convex or concave, one can obtain explicit formulas for the price function
using the well-known Pshenichny–Sagaidak (see [9]) and Hopf–Lax (see [1, 3]) formulas. Also, in the

case where the piecewise linear functions H(·) and σ(·) are not necessarily convex, the dimension n of
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the phase space is equal to 2, and the terminal price if positively homogeneous, i.e., the function σ(·)
satisfies the condition

σ(λx) = λσ(x), x ∈ R
n, λ ∈ R, λ > 0, (4)

there exists a finite algorithm for constructing the price function (see [10, 11, 14]). The aim of this
work is to generalize this algorithm to the case of a monotonic nonzero integrand g(·).

3. Price of the game as a minimax solution of the Hamilton–Jacobi equation. In this
section, we recall present some facts from [12, 13] needed in the sequel for constructing the price
function of the differential game (1)–(3) and some of their consequences.

The price function ω : [0, ϑ]×R
n → R coincides with the minimax solution of the following Cauchy

problem:

∂ω(t, x)

∂t
+H

(
∂ω(t, x)

∂x

)
= 0, t ≤ ϑ, x ∈ ×R

n, (5)

ω(ϑ, x) = σ(x), x ∈ R
n. (6)

The minimax solution of the problem (5), (6) exists and is unique. We assume that the terminal
function σ(·) is positively homogeneous, i.e., satisfies the condition (4). The Hamiltonian H(·) is

defined by Eq. (3) and is not positively homogeneous.
We introduce the functions

H∗(s, r) =

⎧⎪⎪⎨
⎪⎪⎩
|r|H

(
s

|r|
)

for r 	= 0,

lim
r↓0

rH
(s
r

)
for r = 0,

(s, r) ∈ R
n × R, (7)

σ�(x, y) = σ(x) + y, x ∈ R
n, y ∈ R. (8)

We assume that the limit in (7) exists.
Consider the following Cauchy problem for the Hamilton–Jacobi equation with the Hamilton-

ian H∗(·), which is positively homogeneous with respect to the variable s = (s, r):

∂u(t, x, y)

∂t
+H∗

(
∂u(t, x, y)

∂x
,
∂u(t, x, y)

∂y

)
= 0, t ≤ ϑ, (x, y) ∈ R

n × R, (9)

u(ϑ, x, y) = σ�(x, y), x ∈ R
n, y ∈ R. (10)

The following assertion holds.

Theorem 1. A function ω(t, x) is a minimax solution of the problem (5), (6) if and only if the
function u(t, x, y) = ω(t, x) + y is a miinimax solution of the problem (9), (10).

Thus, the problem of the search for the price function with an integral terminal payment functional is
reduced to the solution of the Hamilton–Jacobi equation with a positively homogeneous Hamiltonian.
In this case, the dimension of the phase space in increased by 1.

If the Hamiltonian H∗(·) satisfies the Lipschitz condition, then the minimax solution u(t, x, y)
satisfies the relation

u(t, x, y) = (ϑ− t)u

(
0,

x

ϑ− t
,

y

ϑ− t

)
, x ∈ R

n, y ∈ R. (11)

Using the relation (11), one can reduce the problem (9), (10) to a problem for the function

ϕ(x, y) = u(0, x, y) x ∈ R
n, y ∈ R. (12)
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The function ϕ(·) is a minimax solution of the following first-order partial differential equation:

H∗
(
∂ϕ(x, y)

∂x
,
∂ϕ(x, y)

∂y

)
+

〈
∂ϕ(x, y)

∂x
, x

〉
+

∂ϕ(x, y)

∂y
· y − ϕ(x, y) = 0, x ∈ R

n, y ∈ R, (13)

considered together with the limit relation

lim
α↓0

αϕ
(x
α
,
y

α

)
= σ�(x, y), x ∈ R

n, y ∈ R. (14)

A minimax solution of Eq. (13) is a continuous function satisfying a pair of differential inequalities.
These inequalities can be written in various forms, which however are equivalent. We write these

inequalities in the following form:

H∗(l,m) + 〈l, x〉+m · y ≤ ϕ(x, y), x ∈ R
n, y ∈ R, (l,m) ∈ D−ϕ(x, y), (15)

H∗(l,m) + 〈l, x〉+m · y ≥ ϕ(x, y), x ∈ R
n, y ∈ R, (l,m) ∈ D+ϕ(x, y), (16)

where the sets D−ϕ(x, y) and D+ϕ(x, y) are the subdifferential and the superdifferential of the func-

tion ϕ(·) at the point (x, y), respectively.

4. Algorithm of the construction of the price function. In the case where the dimension of
the phase space is equal to 2 and the terminal function σ(·) and the integrand g(·) are piecewise linear,
the price function ω(·) of the differential game (1)–(3) is piecewise linear and can be constructed in
the exact form. We describe an algorithm of constructing the function ϕ(·), which then allows one to
obtain the function ω(·) by the relation (11) and Theorem 1.

4.1. Representation of the limit function. Let

y+ = max{0; y}, y− = min{0; y}, y ∈ R,

σ+(x) = max{0;σ(x)}, σ−(x) = min{0;σ(x)}, x ∈ R
n,

σ�
+(x, y) = σ+(x) + y+, σ�

−(x, y) = σ−(x) + y−, x ∈ R
n, y ∈ R.

It is eqsy to see that the limit function σ�(·) in (8) can be represented in the form

σ�(x, y) = σ�
+(x, y) + σ�

−(x, y), x ∈ R
n, y ∈ R. (17)

Moreover, for the solution ϕ(·) of the problem (13), (14) we have the representation

ϕ(x, y) = ϕ+(x, y) + ϕ−(x, y), x ∈ R
n, y ∈ R, (18)

where ϕ+(·) and ϕ−(·) are solutions of the problem (13), (14) corresponding to the limit functions

σ�
+(·) and σ�

−(·), respectively. Under the conditions imposed below, the functions ϕ+(·) and ϕ−(·) are
constructed similarly.

5. Assumptions. The algorithm is developed under the following assumptions.

A1. The integrand g(·) has the form

g(u, v) = g1(u) + g2(v), u ∈ R
2, v ∈ R

2, (19)

where g1 : R2 → R and g2 : R2 → R are continuous, piecewise linear functions glued from

a finite number of linear functions. Thus, their sum g(·) is also a continuous, piecewise linear
function.

A2. The sets P and Q are polyhedra. It follows from (3) that the Hamiltonian H(·) of the differential
game (1)–(3) is also piecewise linear and can be glued from a finite number of linear functions

H i(s) =
〈
hi, s

〉
+ pi, i ∈ 1, nH , hi ∈ R

2, pi ∈ R, s ∈ R
2. (20)
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A3. The function σ(·) is positively homogeneous (i.e., satisfies the condition (4)) and piecewise
linear, i.e., is glued from a finite number of linear functions:

σi(x) =
〈
si, x

〉
, i ∈ 1, nσ , si ∈ R

2, x ∈ R
2.

Introduce the notation

Z =
{
si | i ∈ 1, nσ

}
. (21)

Moreover, without loss of generality, due to the representations (17) and (18), we can assume that

the function σ(·) is nonnegative,
σ(x) ≥ 0, x ∈ R

2, (22)

and consider an algorithm of constructing the function ϕ(·) corresponding to the limit function

σ�(x, y) = σ(x) + y+, x ∈ R
2, y ∈ R (23)

6. Simple piecewise linear functions. The notion of a simple piecewise linear function (SPLF)
used in [10, 14] is useful for developing an algorithm. The main property of SPLFs is as follows: if a
function ψ : R2 ⊃ D → R is an SPLF, then for any point x∗ ⊂ D, there exists a neighborhood Oε(x∗)
in which ψ(·) has one of the following three representations:

ψ(x) = 〈si, x〉+ hi,

ψ(x) = max
{
〈si, x〉+ hi, 〈sj, x〉+ hj

}
,

ψ(x) = min
{
〈si, x〉+ hi, 〈sj, x〉+ hj

}
,

where si and sj are vectors from R
2 and hi and hj are numbers. Thus, the domain of an SPLF does

not contain points in a small neighborhood of which three or more linear functions are glued.

For a formal definition of SPLFs, matrices are used. We do not give a rigorous definition here;
we only note that the structure matrix contains information about all linear functions that form the
corresponding SPLF. If the structure matrix is known, then one can calculate the value of the SPLF

at each points of its domain.
We also note that under the condition A3, a nonnegative function σ : R2 −→ R is an SPLF in the

domain R
2 \0, where 0 is the null vector. In Figs. 1 and 2, examples of the level lines of the function σ

are presented.
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7. Elementary problems. The algorithm for constructing the function ϕ(·) is essentially a se-

quential solution of elementary problems that arise in a certain order.
Let

ς�+(x, y) = max{〈a, x〉+ y, 〈b, x〉+ y}, ς�−(x, y) = min{〈a, x〉+ y, 〈b, x〉+ y},
where a, b, and x are vectors from R

2 and y ∈ R.

Problems 1 and 2. Let a and b be given linearly independent vectors. Problem 1 (respectively,

Problem 2) consists of the construction of a minimax solution of the problem (13), (14), (20) for
σ� = ς�+ (respectively, for σ� = ς�−).

Since the function ς�+ is convex and the function ς�− is concave, we can obtain explicit formulas

for solutions of the Problems 1 and 2. One can prove that the functions

φ+(x, y) = max
l∈[a,b]

φl(x, y), φ−(x, y) = min
l∈[a,b]

φl(x, y),

are solutions of these problems; here

[a, b] =
{
λa+ (1− λ)b | λ ∈ [0, 1]

}
, φl(x, y) = 〈l, x〉+ y +H(l).

The first step of the algorithm of constructing a solution ϕ(·) of the problem (13), (14), (23) consists
of the consecutive solution of the problems 1 and 2 and gluing these solutions. Specific problems are
determined by the function σ(·).

Further construction of the solution consists of solving elementary problems of another type.
Let s̄ = (s1, s2, s3) ∈ R

3. Introduce the notation

ϕs̄(x, y) = 〈s, x〉+ s3 · y +H∗(s̄), x ∈ R
2, y ∈ R,

where the vector s ∈ R
2 is formed by the first two components of the vector s̄, s = (s1, s2). Note that

if s3 = 1, then H∗(s̄) = H(s) and ϕs̄(x, y) = φs(x, y).

For a given set M , we denote its closure by clM and its boundary by ∂M .

Problems 3 and 4. Consider linearly independent vectors ā = (a1, a2, a3) ∈ R
3 and b̄ = (b1, b2, b3) ∈

R
3 and a number r > 0. Let

ϕ∗(x, y) = max
{
ϕā(x, y), ϕb̄(x, y)

}
, ϕ∗(x, y) = min

{
ϕā(x, y), ϕb̄(x, y)

}
,

G∗ =
{
(x, y) ∈ R

3 | ϕ∗(x, y) < r
}
, G∗ =

{
(x, y) ∈ R

3 | ϕ∗(x, y) < r
}
.

Problem 3: Construct a continuous function ϕ0 : clG∗ → R, which is a minimax solution of the

first-order partial differential equation (13) in the domain G∗ satisfying the relations

ϕ0(x, y) < r ∀(x, y) ∈ G∗; ϕ0(x, y) = r ∀(x, y) ∈ ∂G∗.

Problem 4: Construct a continuous function ϕ0 : clG∗ → R, which is a minimax solution of Eq. (13)
in the domain G∗ satisfying the relations

ϕ0(x, y) < r ∀(x, y) ∈ G∗; ϕ0(x, y) = r ∀(x, y) ∈ ∂G∗.

The function

ϕ0(x, y) = max
s̄

ϕs̄(x, y) for s̄ ∈ Sr(ā, b̄),

where

Sr(ā, b̄) =
{
s̄ ∈ con(ā, b̄) | 〈s,w0〉+H∗(s̄) = r

}
,

con(ā, b̄) =
{
λā+ μb̄ | λ ≥ 0, μ ≥ 0

}
,

is a solution of the Problem 3. The point w0 ∈ R
2 is a solution of the system of two linear equations

〈a,w0〉+H∗(ā) = r, 〈b, w0〉+H∗(b̄) = r.
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The components of the vectors a ∈ R
2 and b ∈ R

2 coincide with the first two components of the

vectors ā and b̄, respectively.
The function

ϕ0(x, y) = min
s̄

ϕs̄(x, y) for s̄ ∈ Sr(ā, b̄)

is a solution of the Problem 4 in the cases that appear in the construction of a solution ϕ(·) of the
problem (13), (14), (23),

8. Main result. We denote by Ω the set of points of the space R
3 at which the Hamiltonian

H∗ : R3 → R is not differentiable. Let 0 be the null vector in R
3. By a set Z ⊂ R

2 (see (21)) of vectors
that form the function σ, we define the set

Z� =
{
s̄ = (s1, s2, s3) ∈ R

3 | s = (s1, s2) ∈ Z, s3 = 1
} ⊂ R

3.

Now we formulate the main result of this paper.

Theorem 2. Let the conditions A2 and A3 be fulfilled. Then the following assertions hold.

A. A solution ϕ(·) of the problem (13), (14), (23) is a nonnegative, piecewise linear function formed
by gluing the linear functions

ϕs̄(x, y) = 〈s, x〉+ s3 · y +H∗(s̄), s̄ ∈ L, (24)

where the set L consists of a finite number of elements and

Z� ⊂ L, (L \ Z�) ⊂ (Ω ∪ 0).

B. For any y∗ ∈ R, the function ϕ(x, y∗) in the domain {x ∈ R
2 | ϕ(x, y∗) > 0} is formed by gluing

a finite number of simple piecewise linear functions.

The proof of Theorem 2 is based on the algorithm described above. The nonnegativity of the function
ϕ(·) follows from the nonnegativity of the function σ(·) and the form (24) of linear functions that form

the solution follows from specific elementary problems that arise in the course of its construction.
To prove that the function ϕ(·) constructed by the above algorithm is a minimax solution of Eq. (13),

we must verify the inequalities (15) and (16). At points where ϕ(·) coincides with the solution of one
of elementary problems considered above, these inequalities are fulfilled. Thus, we must verify the

inequalities (15) and (16) on the surfaces of gluing solutions of different elementary problems that form
the function ϕ(·). Note that if a gluing surface Γ does not belong to the domain of any solution of an
elementary problem, then there exists a number r ≥ 0 such that Γ ⊂ {(x, y) ∈ R

2 × R | ϕ(x, y) = r}.
Let (x∗, y∗) ∈ Γ. If there exists a neighborhood Oε(x∗, y∗) in which the function ϕ is linear, then the

inequalities (15) and (16) are fulfilled. Indeed, in this case there exists a vector s̄∗ = {s∗, s∗3}, s∗ ∈ R
2,

s∗3 ∈ R, such that

ϕ(x, y) = ϕs̄∗ = 〈s∗, x〉+ s∗3 · y +H∗(s̄∗), (x∗, y∗) ∈ Oε(x∗, y∗).

The function ϕ is differentiable in Oε(x∗, y∗) and D−ϕ(x∗, y∗) = D+ϕ(x∗, y∗) = s̄∗ so that the inequal-
ities (15) and (16) are fulfilled at the point (x∗, y∗) .

Consider the case where the point (x∗, y∗) ∈ Γ is a gluing point of two linear functions. It follows
from the algorithm that the following two situations are possible. In the first situation, for any ε > 0,
there exists a point (xε, yε) in the neighborhood Oε(x∗, y∗) at which the function ϕ is glued from

the same linear functions and is a solution of a certain elementary problem; moreover, ϕ(xε, yε) > r.
Obviously, in this situation

D−ϕ(x∗, y∗) = D−ϕ(xε, yε), D+ϕ(x∗, y∗) = D+ϕ(xε, yε).

Since the inequalities (15) and (16) are fulfilled at the point (xε, yε), we conclude due to the continuity

that they also hold at the point (x∗, y∗).
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In the second situation, in a neighborhood Oε(x∗, y∗) of the point (x∗, y∗), the function ϕ has the

form

ϕ(x, y) = max
{
ϕā(x, y), ϕb̄(x, y)

}
,

where the vectors ā and b̄ from R
3 are related by the formula b̄ = μā, where μ > 0 and the vector ā

is nonzero. We have D+ϕ(x∗, y∗),

D−ϕ(x∗, y∗) =
{
l̄ ∈ R

3 | l̄ = λā, λ ∈ [0, 1]
} ∪ {

l̄ ∈ R
3 | l̄ = λb̄, λ ∈ [0, 1]

}
.

Since the functions ϕā and ϕb̄ are positively homogeneous and

ϕ(x∗, y∗) = ϕā(x∗, y∗) = ϕb̄(x∗, y∗) = r ≥ 0,

we conclude that in this situation the inequalities (15) and (16) also holds.

Finally, we consider the case where (x∗, y∗) is a node point, i.e., a point at which n (n ≥ 3) linear
functions are glued:

ϕāp(x, y) = 〈ap, x〉+ ap3 · y +H∗(āp), p = 1, . . . , n. (25)

The function ϕ is not differentiable at the point (x∗, y∗) and hence at least one of the setsD−ϕ(x∗, y∗) or
D+ϕ(x∗, y∗) is empty. For definiteness, we assume thatD+ϕ(x∗, y∗) = ∅. If, in addition,D−ϕ(x∗, y∗) =
∅, then the inequalities (15) and (16) are obviously fulfilled.

Assume that D−ϕ(x∗, y∗) 	= ∅. We denote by ϕε(·) the restriction of the function ϕ to a sufficiently
small convex neighborhood Oε(x∗, y∗) such that in this neighborhood the function ϕ is glued only

from the function (25). One can prove that

D−ϕ(x∗, y∗) = D−ϕ̃ε(x∗, y∗),

where ϕ̃ε(·) is the convex hull of the function ϕε. Thus, D
−ϕ(x∗, y∗) is a bounded, closed, convex set.

Moreover, if l̄∗ ∈ D−ϕ(x∗, y∗), then there exist vectors ā ∈ R
3 and b̄ ∈ R

3 such that

l̄∗ ∈ [ā, b̄] =
{
(1− λ)ā+ λb̄ | λ ∈ [0, 1]

}
,

and for any n = 1, 2, . . . , there exists a point (xn, yn) ∈ Oεn(x∗, y∗) such that D−ϕ(xn, yn) = [a, b];
here εn = ε/n. The points (xn, yn) are not nodal points; therefore, the inequality (15) does not hold

at them. In particular,

H∗(l̄∗) + 〈l, xn〉+ l3 · yn ≤ ϕ(xn, yn). (26)

Passing in (26) to the limit as n → ∞, we obtain

H∗(l̄∗) + 〈l, x∗〉+ l3 · y∗ ≤ ϕ(x∗, y∗);

this proves the inequality (15). The inequality (16) holds due to the fact that the superdifferential is

empty.
The case where D+ϕ(x∗, y∗) 	= ∅ and D+ϕ(x∗, y∗) = ∅ is considered similarly. Thus, the function

ϕ(·) constructed by the algorithm described above is a minimax solution of Eq. (13).
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