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Certification of quantum states with hidden structure of their
bitstrings
O. M. Sotnikov 1, I. A. Iakovlev 1, A. A. Iliasov2, M. I. Katsnelson 2, A. A. Bagrov 2,3 and V. V. Mazurenko 1✉

The rapid development of quantum computing technologies already made it possible to manipulate a collective state of several
dozens of qubits, which poses a strong demand on efficient methods for characterization and verification of large-scale quantum
states. Here, we propose a numerically cheap procedure to distinguish quantum states which is based on a limited number of
projective measurements in at least two different bases and computing inter-scale dissimilarities of the resulting bit-string patterns
via coarse-graining. The information one obtains through this procedure can be viewed as a ‘hash function’ of quantum state—a
simple set of numbers which is specific for a concrete wave function and can be used for certification. We show that it is enough to
characterize quantum states with different structure of entanglement, including the chaotic quantum states. Our approach can also
be employed to detect phase transitions in quantum magnetic systems.
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INTRODUCTION
Theoretical description of objects invisible to human eye
represents one of the challenging but, at the same time, most
intriguing problems in physics through its history. For example,
despite incessant improvement of optical instruments and the
ability to look into more and more distant corners of the Universe,
in many cases one can conclude on the existence of a planet only
in an indirect way by analyzing its tiny influence on the orbits of
neighboring visible planets1 and stellar brightness2.
In the opposite limit of the atomic scale, the situation is even

more complicated. When the object of our principle interest is a
many-body quantum state—wave function or density matrix—we
should conclude on its existence and properties indirectly on the
basis of measurements. Moreover, in contrast to observation of
celestial objects whose collective motion could be completely
described with laws of classical mechanics, a measurement in
quantum world does not provide a complete information about a
system due to the uncertainty principle3, and characterizing
quantum matter from such limited probes represents a non-trivial
methodological and technical problem.
The conventional technique to analyze quantum state of a

multi-component physical system is quantum tomography, which
is based on the idea of complete4 or partial5 reconstruction of the
wave function or density matrix from a number of measurements.
Complexity of the tomographic procedure is mainly related to the
number of qubits involved and the complexity of the quantum
state itself, about which one might or might not have some prior
expectations. In many cases, it could be non-trivial to choose a set
of observables which is tomographically complete (or sufficient for
partial reconstruction) and, at the same time, experimentally
accessible5.
The main fundamental limitation of quantum tomography is

that one needs to store and manipulate the to-be-reconstructed
quantum state on a classical computer, which makes character-
ization of systems that comprise more than a few dozens of qubits
unfeasible. Taking into account that quantum states of 53 qubits
can already be generated on modern quantum devices6, and a

significant increase of this number is expected in the coming
years, seeking an approach that overcomes this limitation appears
to be a problem of high importance.
A natural way to reduce the memory required for state

reconstruction is to store it in an implicit form of a compact
variational ansätz. One of the most promising approaches of this
kind is the recently proposed neural-network version of quantum
tomography7,8, which represents the wave function as a Neural
Quantum State9 and reconstructs it via the learning procedure.
While this approach has many benefits such as very high
expressibility of neural-network ansätze10,11, it does not resolve
all the problems of quantum tomography. Some quantum states,
such as defined by wave functions with random or uniform
distributions of amplitudes over the Hilbert space basis, require
exponentially large number of measurements (of the order of the
Hilbert space dimension) for reconstruction. The situation cannot
be improved by employing neural networks, since there are no
features that the neural network can detect in the measured data,
learn and generalize7.
Thus, it is important to find a way to bypass the resource-

consuming routine of conventional quantum tomography at least
in certain contexts. A typical problem, when there is a chance not
to get engaged in this procedure, is certification of a state
prepared on a quantum information processing device. In this
case, there are strong prior expectations of what this state should
be. Thus, instead of its complete reconstruction, one could hope
to read out simple signature serving as a fingerprint of the many-
body state—in a spirit similar to hash functions in computer
science12,13—to make sure that the state is, with high probability,
indeed the correct one (see ref. 14 for the usage of hash functions
in quantum tomography).
In this paper, we introduce such a signature that can be

constructed by means of a reasonable number of simple von
Neumann measurements of the quantum state and does not
require computing correlation functions. Ideologically, this can be
viewed as going along the line of the very recent approach of
classical shadow tomography15,16, though the signature we
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employ is different. To accomplish that, we heavily rely on the
concept of multi-scale structural complexity of classical patterns
that has been recently defined by some of the authors of this
paper17. To avoid possible terminological confusions with the
well-established notion of quantum complexity, here we call it
dissimilarity (since it is based on counting how much different
spatial scales of an object differ from each other). The detailed
description of the protocol is given in the Methods section, and
here we outline the main idea.
Assume, we have access to a many-body quantum state. To do

benchmark tests, in this paper we use both numerical wave
functions (e.g., resulting from exact diagonalization) and physical
quantum states generated on the IBM quantum simulator18. With
no loss of generality, we will be considering spin-1/2 systems. A
single-shot projective measurement of such a state results in a
string of bits of length N—measured spin projections on a chosen
direction: Sij i ¼ 0110¼ 010j i (0 for spin-down and 1 for spin-up)
—where N is the number of qubits. Performing the measurement
many times (denote this number with Nshots) and collecting the
outcomes in a string, we obtain a bit-string array of length L= N ×
Nshots. This array can then be viewed as a one-dimensional pattern,
and its inter-scale dissimilarity can be computed. For that, we do
several steps of coarse-graining (we label the steps with index k)
and for each pair of subsequent scales compute how distinct the
corresponding coarse-grained strings are. The distinction is
assumed to be large if overlap of arrays at two subsequent scales
is small. For two neighboring scales, we call these measures partial
dissimilarities, Dk , and their sum over all scales D ¼ P

kDk gives
the total inter-scale dissimilarity. Different schemes of coarse-
graining can be employed, and here we resort to the simplest
option: we fix filter of width Λ (usually Λ= 2), and at step k we
substitute all the pixels within a window of size Λk with the
average value of pixels in this window at the previous step, Fig. 1.
Despite probabilistic nature of the measurements, in all the tested
cases dissimilarity turns out to be a statistically robust signature of
the state.
If this procedure is performed in a single basis, it does not reveal

any information on the phase structure of the quantum state,
since measurement outcomes are defined solely by probability
distribution on the Hilbert space basis ∣Ψ(Si)∣2. Also, unique
characterization of a many-body quantum state with a single
number is clearly impossible. However, if such bit-string arrays are
constructed in two or more different Hilbert space bases, one
obtains a sequence of numbers that implicitly contains informa-
tion on both amplitude and phase structure of the state. The more
bases are involved, the less it is likely that two different quantum

states would share the same dissimilarity signature (in a different
context, the tomographic advantage of using several bases was
discussed in ref. 19).
In this paper, we do not go beyond measurements in two bases,

and this seems enough to characterize several important families
of quantum states. As a warm up, we consider the families of
Dicke and Schrödinger cat states which have compact analytical
representations, and demonstrate how the concept of bit-string
inter-scale dissimilarity can be used for dimensional reduction and
visualization of specific signatures of wave functions. We also
reveal the connection between the dissimilarity measure and the
von Neumann bipartite entanglement entropy which plays a
central role in quantum information theory. Then, we test our
approach by using it for certification of random quantum states
characterized by complete delocalization in the Hilbert space,
which we do both numerically and analytically. We also show that
the proposed approach scales nicely and requires the same
experimental efforts to certify 16-qubit and 53-qubit states. Using
the transverse-field Ising, the Shastry-Sutherland, and the bond-
alternating XXZ Heisenberg models as examples, we show that
the inter-scale dissimilarity can be used as a universal tool for
detecting quantum phase transitions in many-body systems,
including the topological ones. Finally, we discuss how the
concept of inter-scale dissimilarity can be used for dimensional
reduction and visualization of many-body quantum states.

RESULTS
Notable entangled quantum states
To demonstrate the idea of bit-string arrays and inter-scale
dissimilarity, we begin with the Schrödinger cat states defined by
superposition of merely two basis vectors in the Hilbert space

Ψθj i ¼ cos
θ

2

� �
0j i�N þ sin

θ

2

� �
1j i�N: (1)

Parametrized by angle θ, this family of states interpolates between
trivial product state 0j i�N at θ= 0 and the famous Greenberger-
Horne-Zeilinger (GHZ) state ΨGHZ ¼ 1ffiffi

2
p ð 0j i�N þ 1j i�NÞ at θ ¼ π

2.
These states can be realized with quantum circuit20 shown in Fig.
2a. First, with rotational gate Uθ one prepares cosðθ2Þ 0j i þ sinðθ2Þ 1j i
state of one of the qubits in the system and takes it as a control
qubit to perform controllable-NOT operation on the second qubit.
This operation results in a two-qubit entangled state
cosðθ2Þ 00j i þ sinðθ2Þ 11j i. Repeating it N− 1 times, one eventually
entangles all the qubits and obtains the target Schrödinger cat
state.

Fig. 1 Protocol for computing dissimilarity of a quantum state. a First, one prepares a state on a quantum device and chooses the
measurement basis by applying rotational gates U0 to individual qubits. b In this paper, we work with σz and random bases whose Bloch
sphere representations are shown in the picture. We say that the set of measurements is performed in a random basis if, for each shot of
measurement, a random vector belonging to the highlighted sector of the Bloch sphere is uniformly sampled and the corresponding
parameters of gate U0 are applied. c A number of measurements is performed and their outcomes— bitstrings of length N— are then stacked
together in a one-dimensional binary array of length N × Nshots that serves as a classical representation of the quantum state. d The array is
coarse-grained in several steps (indexed with k). Different schemes can be employed, but here we use plain averaging with fixed filter size Λ.
In the picture, blue and white squares in the top line correspond to ‘0’ and ‘1’ bits in the array shown in (c), and black rectangles depict the
blocks where averaging occurs at every step of coarse-graining. Overlap-based dissimilarities Dk between subsequent arrays are computed
and summed up to the overall dissimilarity D. See Methods section for more details.
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In the σz-basis, projective measurements of such states can only
result in either 0000…0 or 1111…1 bitstring. Clearly, first steps of
coarse-graining (Fig. 2b) affect only internal content of individual
bitstrings of length N, where it simply maps 0000…0→ 0000…0
and 1111…1→ 1111…1. Thus the randomly assembled array of
bitstrings remains intact, and partial dissimilarities Dk � 0 for k
such that Λk < N (for k < 4 when we take N= 16 and Λ= 2). At
Λk ≥ N, the coarse-graining flow starts mixing individual bitstrings,
and non-trivial contributions to the dissimilarity emerge. In
random basis (Fig. 2c), Dk take finite values at all scales k, though
due to the trivial structure of basis vectors defining Ψθ partial
dissimilarities do not depend on θ at Λk < N.
Importantly, each state presented in Fig. 2b, c reveals a distinct

set of Dk which can be used to distinguish states from each other.
Schrödinger cat states are the simplest example of many-body
entangled wave functions, but in what follows we will show that
the same idea can be exploited when dealing with much more
complex states. It has to be stressed out one more time that, while
individual bitstrings are assembled into array in a random order
set by the outcomes of consecutive projective measurements, the
partial dissimilarities and their total sum are robust upon
repeatedly performing the set of measurements.
Another type of entangled states that are instructive to consider

is the family of Dicke states21,

ΨDj i ¼ 1ffiffiffiffi
CN
D

p P
j
Pjð 0j i�N�D � 1j i�DÞ; (2)

where the sum goes over all possible permutations of qubits. By
increasing D from 1 to N

2, one increases the number of basis
vectors involved into the quantum state. Recently, these states
have been experimentally realized22, and their verification is a
challenging task if the number of qubits is large23. As a proof of
concept, in this paper we study Dicke states of 16 qubits, and
initialize them on quantum simulator using the Least Significant
Bit procedure24.
Partial dissimilarities of the 16-spin Dicke states computed in σz-

basis and in the random basis with filter size Λ= 2 are shown in
Fig. 3. One can see that two different bases encode information

about two ranges of scales. For any given parameter D, when bit-
string arrays are constructed from measurement in the σz basis, Dk

take non-zero values only for k < 4, which follows from the fact
that all the Hilbert space basis vectors possessing non-zero
amplitudes have equal amount of spin-up entries, and after
4 steps of averaging every bit string reduces to exactly the same
number, and all the patterns are destroyed. Contrary, in the
random basis, states with different D can be distinguished from
Dk at larger spatial scales, k ≥ 4.
Since both families of states smoothly interpolate between the

regimes of low and high entanglement, it is interesting to study if
there are any relations between the introduced measure of inter-
scale dissimilarity and quantum correlations. To do that, we
consider the von Neumann entanglement entropy

SðρAÞ ¼ �TrAρAlog2ðρAÞ;
ρA ¼ TrBρAB;

(3)

where the system is divided into two equal parts A and B of N/2
qubits, compute its dependence on either θ or D (depending on
the family), and plot it alongside the inter-scale dissimilarity of bit-
string arrays computed in the σz basis.
The result is shown in Fig. 4. While the Dicke and the

Schrödinger cat states are quite different in the regard that
variation of parameter D modifies the structure of the wave
function support in the Hilbert space basis, and θ only changes the
balance between two basis vectors bearing non-zero amplitudes,
in both cases dissimilarity nicely captures dependence of entropy
on the parameters labeling the state within the family. Although
the precise analytical correspondence between these two
concepts is still to be revealed, it could be a good indication
that it is possible to employ dissimilarity to estimate entanglement
entropy, which is generally very difficult to reconstruct from
experimental measurements, especially when dealing with multi-
qubit systems inaccessible to quantum tomography. In a certain
way, it is similar to the approach proposed in ref. 25, where it was
shown that, with the help of neural networks, entanglement can

Fig. 2 Dissimilarity results for Schrödinger cat states. a Quantum circuit generating Schrödinger cat states. b, c Partial dissimilarities Dk of
16-qubit Schrödinger cat states calculated in the σz and the random bases correspondingly. Here, Λ= 2. The peak at k= 4 is due to the fact
that the coarse-graining window becomes of the size of the system at this scale, Λk= N. d Visualization of bit-string arrays. In these images,
individual bitstrings are horizontal lines of 16 bits that are concatenated to form a long string (stacked here vertically for the purpose of
presentation). Left picture shows an example of array sampled from a cat state with θ ¼ π

2 in the σz basis, and the right one—measured in the
random basis. Here k= 0 represents texture of the measured array per se, and k > 0 show its evolution upon coarse-graining.
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be reconstructed from visual pattern representations of quantum
states.

Random quantum states
Our next goal is to demonstrate that the dissimilarity measures
can serve as a signature not only of highly structured states with
simple analytical representations, but of rather generic many-body
states. To do that, we consider Haar-random wave functions
uniformly sampled from the Hilbert space and characterized by
the Porter-Thomas distribution of bit-string probabilities p
= ∣〈x1,…,xN∣ψ〉∣2 that have recently been used to demonstrate
quantum supremacy6. These states play an important role in
studying quantum chaos theory26, quantum information theory27

and information processing, including research domains of
superdense coding of quantum states28 and data hiding29, and
even transport phenomena30. While complete tomography of a
given random state is an extremely complicated task since the
minimal number of measurements to be performed to reconstruct
a random quantum state should be of order of the Hilbert space
dimension4,7, here we show that to certify if a state belongs to the

Haar-random class one can resort to computing inter-scale
dissimilarities of relatively short bit-string arrays.
As it was shown in refs. 6,30,31, random quantum states can be

initialized with shallow pseudo-random circuits that can differ in
the number and types of gates, and practical realization of these
circuits on a real quantum device depends on its architecture. In
this work, we generate random quantum states of a 16-qubit
system on the IBM quantum simulator with the protocol proposed
in ref. 30, which guarantees an accurate approximation of the
Haar-random state with a compact circuit shown in Fig. 5a. More
specifically, the circuit is formed in cycles, each having one- and
two-qubit gate layers. Within the first layer, for each qubit in
system one randomly chooses from

ffiffiffi
X

p
,

ffiffiffi
Y

p
and T gates, whereffiffiffi

X
p

(
ffiffiffi
Y

p
) are π/2 rotations around the x-axis (y-axis) of the Bloch

sphere, and the non-Clifford gate T= diag(1, eiπ/4). In turn, the
second layer comprises controlled-Z gates, diag(1, 1, 1,−1), whose
topology is randomly chosen from the set of configurations with
fixed couplings between qubits, as described in ref. 30.
In both σz and random bases, the inter-scale partial dissim-

ilarities of the array generated by sampling 8192 bitstrings from a
random quantum state follow the same decaying profile, Fig. 5b.
Such a profile is a robust signature of typical Haar-random states.
It can be shown that, for a chosen filter size Λ, the dependence of
Dk on the step index k obeys a simple analytical law in the
averaging coarse-graining scheme:

Dk ¼ 1
2 ð1� Λ�1ÞΛ�k : (4)

To derive this law from Eq. (9), the central limit theorem must be
employed as elaborated in the “Methods” section. This depen-
dence is easy to reconstruct from a limited number of simple
projective measurements, and it serves as a signature of the class
of typical Haar-random states.
To go beyond the simple 16-qubit case and perform an ultimate

test of the method, we have applied it to the real experimental
data generated on the Google Sycamore quantum processor6. For
systems of 16, 32 and 53 qubits, we have taken 8192 bitstrings
measured in the σz basis and calculated partial dissimilarities,
which turned out to perfectly fit Eq. (4). The result for the
prominent example of 53-qubit system is presented in Fig. 5c.
In a real-world scenario, the bit-string arrays are clearly a subject

to the gate errors and other sources of noise, and we have
to understand how these imperfections are reflected in the
dissimilarity signatures of the state. Previous studies6,31 have
demonstrated that random quantum states are hypersensitive to
the gate errors, which is considered to be a defining property of
quantum chaos. When the error rates increase, the distribution of
probabilities of the bitstrings generated by a random circuit
deviates from the Porter-Thomas law PrðpÞ ¼ 2Ne�2Np and con-
verges to equal probabilities of all the bitstings: Pr(p)= δ(2−N− p).

Fig. 3 Dissimilarity results for Dicke states. Partial dissimilarities of Dicke states with different D index calculated in the σz (a) and the random
(b) bases. The trivial state ( 0j i�16) profiles (dashed red lines) are given for comparison.

Fig. 4 Comparison of entanglement and dissimilarity.
a Entanglement entropy S (blue circles) and overall dissimilarity Dz

(white squares) of the Schrödinger cat states as functions of angle θ.
b The same characteristics of the Dicke states as functions of index D.
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To quantify this deviation, the authors of refs. 6,31 have introduced
the cross-entropy benchmarking procedure. It allows to estimate
with a limited number of measurements how close a sampler—a
given quantum circuit—to one of the two limiting cases: the
ideal random quantum circuits with Porter-Thomas distribution
of probabilities and uniform sampler with identical probabilities
p(x1,…, xN)= 2−N. In this respect, it is important to distinguish
between outputs of quantum circuits with the Porter-Thomas and
the uniform probability distributions by calculating the inter-scale
dissimilarity.
To elaborate on this point, we prepared a quantum circuit

consisting of only the Hadamard gates that generates a 16-qubit
state with uniform probabilities in the σz basis: Xj i ¼ H 0j ið Þ�16.
Each qubit is then in the superposition ð 0j i þ 1j iÞ= ffiffiffi

2
p

. The
obtained dissimilarity profile of the generated uniform state fully
coincides with that obtained for the chaotic quantum circuits (Fig.
5b), with the overall dissimilarity Dz ¼ 0:25. Thus, from σz basis
measurements we cannot distinguish these two states that are
fully delocalized in the Hilbert space. However, in the random
basis they have different profiles of Dk and overall D. While the
chaotic quantum circuit is characterized by an isotropic character
of the dissimilarity that is independent on the measurement basis
(so, the Dk profile is exactly the same in the random and the σz

bases), the Xj i state in the random basis reveals its trivial nature.
Namely, its Dr

k

� �
and the resulting dissimilarity Dr = 0.204

coincide with that obtained for 0j i�16 in the random basis (as
shown in Fig. 3b). This suggests that the inter-scale dissimilarity
can be used to quantify deviations from a truly chaotic quantum
states, which would be interesting to verify experimentally.

Phase transitions in magnetic systems
Since the inter-scale bit-string dissimilarity appears to be a rather
unique signature of many-body state, it is natural to expect that it
should be sensitive to crossing phase boundaries in the
parametric spaces of many-body quantum systems. If so, one
can hope that it can be used as a sensitive indicator of phase
transitions and directly used for constructing quantum phase
diagrams, which is a crucial task in understanding phenomenol-
ogy of correlated materials and designing materials. The common
practice is to distinguish different phases of a quantum or classical
many-body system by calculating the order parameter32 and low-
order correlation functions such as susceptibility, scalar chirality
and others. However, in many cases devising the order parameter
is a non-trivial analytical problem, especially in the case of
topological phases33. Besides that, a quantum system may have a
rich variety of different electronic and magnetic phases depend-
ing on internal (interactions) and external (temperature, pressure,

magnetic field) parameters, and there could be no universal
operator that can probe the whole phase diagram.
To overcome this problem, a lot of effort has been put into

designing alternative approaches based on neural networks34–36,
unsupervised machine learning techniques37, and quantum
information theory concepts38,39. These methods usually rely on
manipulating eigenstates of the quantum system on a classical
computer, which puts natural limitations on the size of systems
that can be studied in this way. Also, it can be time- and resource-
demanding to conduct, e.g., the learning procedure.
The progress in developing quantum simulators and quantum

computing devices suggests a distinct way for large-scale
representation of a quantum systems and analysis of their phase
diagrams. Instead of solving the Hamiltonian numerically, one can
imitate it in an, e.g., optical experiment. For example, by varying
depth of the potential in optical lattices, one can change the ratio
between hopping integrals and on-site Coulomb interaction in the
simulated strongly-correlated electronic or bosonic system, and
scan through its parametric space in this way. Recent advances in
this field include simulation of the electronic metal-to Mott
insulator transition40,41 and destruction of the antiferromagnetic
long-range order with temperature and doping42. Analysis of such
experiments is then conducted by means of a limited set of site-
resolved measurements performed on the system, and the
relevant information should be extracted from these measure-
ments, whose number is much smaller than the Hilbert space
dimension. We refer the reader to refs. 43,44 for an interesting
machine learning-based approach to the analysis of optical lattice
experiments, and in what follows we discuss how the concept of
bit-string arrays and their inter-scale dissimilarity can enter the
game and aid reconstruction of phase diagrams of simulated
quantum matter.
As some of us have shown in ref. 17, the classical prototype of

inter-scale dissimilarity—the structural complexity of patterns—
can be used to detect phase transitions in classical systems
without any prior knowledge of the order parameter, and in an
extremely numerically cheap unsupervised manner. Now, we will
show how it can be extended onto the quantum case and help
reconstruct quantum phase diagrams of many-body systems from
simple projective measurements. We will be using the transverse-
field Ising and the Shastry-Sutherland models as examples.
The simplest example of a quantum phase transition is the

paramagnet-to-ferromagnet transitions in the ferromagnetic Ising
model in the transverse magnetic field given by the Hamiltonian

H ¼ J
P
ij
Ŝ
z
i Ŝ

z
j þ h

P
i
Ŝ
x
i ; (5)

Fig. 5 Preparation of chaotic states. a Fragment of a quantum circuit generating chaotic quantum state according to the protocol proposed
in ref. 30. b Partial dissimilarities (red circles) of bit-string arrays resulting from 8192 projective measurements of a 19-layer-deep quantum
chaotic circuit with 16 qubits in the σz basis (in the random basis, the profile of Dk is exactly the same). Here, filter size Λ= 2. Dashed line
shows the analytical fit with (4). c Partial dissimilarities of bit-string arrays in the σz basis resulting from 8192 projective measurements of the
state produced by the 53-qubit Sycamore quantum processor by Google. These data were taken from ref. 6, and different filter sizes Λ were
used to compute Dk . Dashed lines correspond to Eq. (4). Random basis measurements are not available in this case.
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where J and h are the exchange interaction between nearest
neighbor spins and the external magnetic field along x-axis,
respectively, and we consider the case of one-dimensional chain
of 16 spins with periodic boundaries. The critical value of magnetic
field is known to be hc= 0.5∣J∣, and to reproduce this value is the
first benchmark test for our method before we consider more
sophisticated examples.
In the regime of weak magnetic field, the 16-spin system’s

ground state obtained with the exact diagonalization approach45

is a superposition of two fully polarized states "j i�N and #j i�N ,
which is nothing but the entangled GHZ state discussed above. In
the σz basis, the bit-string array generated by projective
measurements is a random sequence of 000…0 and 111…1
blocks. In turn, at very high magnetic fields the qubits are pointing
in the same direction along x axis, and the state is just a trivial
product state that can be obtained from 0000:::0j i by rotating all
the qubits with the same Hadamard gate.
Figure 6 shows the overall dissimilarity as a function of the

magnetic field. One can see that in both σz- and random bases,
the dissimilarity steadily decreases with increasing h, and the
corresponding derivative D0ðhÞ reveals the well-known transition
point at h= 0.5 (we take J=−1). The phase transition is also
reflected in the partial dissimilarities Dk corresponding to
individual renormalization steps. At low magnetic fields, the state
is close to GHZ and there is clearly little inter-scale dissimilarity at
small k: on the fine scale, coarse-graining of 0000:::0j i does not
bring any dissimilarity,—and the main contributions to D come
from larger k, i.e. from the spatial scales covering several N-qubit
blocks. Contrary to that, at larger fields finer scales start playing
more important role. For each k, the phase transition at h= 0.5 is
visible in the derivative D0

kðhÞ.
A much less trivial test of the method is to check whether it can

reveal transition points in highly-frustrated spin systems with

richer phase diagrams. For that, we consider the Shastry-
Sutherland model46 with competing antiferromagnetic interac-
tions on the orthogonal dimer lattice, which plays a crucial role in
understanding physical properties of the SrCu(BO3)2 system47–49.
The corresponding Hamiltonian contains intra- and inter-dimer
interactions, which are denoted J1 and J2 correspondingly (Fig. 7):

H ¼ P
dimer

J1Ŝi Ŝj þ
P

inter�dimer
J2ŜiŜj: (6)

As it was previously shown, the system features a gapped singlet
ground state at J2 = 0, gapless long-range antiferromagnetic Néel
state at J2≫ J1, but also a plaquette phase in-between, in the
range of 0.67 < J2/J1 < 0.76. While, strictly speaking, the quantum
phase transition is defined in the thermodynamics limit of infinite
lattices, its precursor could be detected already in a small
system38. For example, in the case of Shastry-Sutherland model
it has been suggested that by analyzing spin gap and spin-spin
correlation functions one can extract the singlet-plaquette and
plaquette-Néel transitions from exact diagonalization studies of
small clusters50. We are going to show that it can also be done
with the inter-scale dissimilarity measure, which is agnostic about
the nature of phase transition and much easier to implement on
quantum simulators and quantum computers.
We have performed exact diagonalization study45 of a 16-spin

Shastry-Sutherland supercell—the smallest cluster on which the
model can be defined. Its energy spectrum is presented in Fig. 7.
One can see that up to J2= 0.66J1 the ground state of the system
is the singlet state separated from the first excited state with a
non-zero spin gap, and its energy is independent on the inter-
dimer coupling value J2. At J2= 0.66J1 a quantum phase transition
takes place. The previous studies50 have shown that increasing the
supercell size does not change the position of the critical point.
The inter-scale dissimilarity (Fig. 8) naturally captures this
transition: for J2 < 0.66J1, D of the ground state computed from
8192 measurements is a constant, D ¼ 0:25, and an abrupt
transition occurs at the critical point in both the σz and the
random bases. The corresponding partial dissimilarities at J2= 0
and J2= J1 are shown in Fig. 8c.
In the thermodynamic limit, the cases of J2= 0 and J2= 1

correspond to the magnetic phases with and without spin gap
between the ground and the first excited state. In the finite-size
system, it means that non-trivial signatures of phase transitions
could be encoded not only in the ground state, but also in the

Fig. 6 Ising model results. a Dissimilarity of the Ising model ground
state as a function of the transverse magnetic field in the σz and the
random bases; the inset shows derivative of the dissimilarity in the
σz basis with respect to h. b Partial dissimilarities Dk in the σz basis at
different coarse-graining steps k= 1…6. The global change in the
trend between k= 3 and k= 4 is related to the coarse-graining
window reaching the size of the system, Λk= N, so that the
averaging starts mixing different bitstrings.

Fig. 7 Exact diagonalization results for the Shastry-Sutherland
model. Upper right inset: schematic representation of the Shastry-
Sutherland model 16-spin supercell used in this work. Main plot and
the inner inset: low-energy part of its spectrum as a function of the
inter-dimer exchange interaction J2/J1. Arrows denote transitions
between quantum states. The green line represents the ground state.

O.M. Sotnikov et al.

6

npj Quantum Information (2022)    41 Published in partnership with The University of New South Wales



excitation spectrum. At J2 < 0.55J1, the first excited state has three-
fold kind degeneracy: it is of triplet type with total spin values Sz =
0, ±1. Above the transition point, it is replaced with a two-fold
degenerate state with zero total spin. This state reconfiguration
causes the difference in magnetization profiles for the inter-dimer
order parameter above and below the point of J2= 0.55J1 when
the external magnetic field is applied. According to the previous
studies51, the magnetization features a plateau at 1/8 of the full
moment for J2= 0.65, but not for J2= 0.4.
At the point of J2= 0.76J1 (Fig. 7), the plaquette-Néel phase

transition takes place. Stability of this point upon varying the
system size was previously confirmed by different methods47,50,52.
From Fig. 8, one can see that all three transitions—at J2=

0.55J1, J2= 0.66J1, and J2= 0.76J1—are accurately reflected in the
inter-scale dissimilarity of bit-string array sampled in σz and
random bases from the first excited state of the Shastry-
Sutherland model. We also show that the partial dissimilarities
of the ground state calculated for J2 = 0 and J2 = 1 have specific
distinguishable profiles. We believe this to be a strong argument
in favour of universality of the suggested approach to automatic
construction of phase diagrams of many-body systems simulated
on quantum devices.
While dissimilarity is computed for one-dimensional bitstrings,

to account for the two-dimensional nature of the system, we
group the spins in 2d clusters before flattening, as shown in the
inset of Fig. 8a. We have also tested that several ways to
enumerate sites and form bitstrings do not reveal any additional

phase transitions in comparison with results presented in Fig. 8,
while the concrete shape of the dissimilarity curve as a function of
the model parameters can be different. We admit that, in a
general case, the approach to flattening and concatenation can in
principle affect the results.
So far we have been computing inter-scale dissimilarity of

arrays composed out of 8192 measured bitstrings. However, it can
be shown that in fact a much smaller number of measurements
would suffice to complete the task of detecting phase transition
points in many-body quantum systems. We found that, in the σz

basis, partial dissimilarities Dk of the Ising model ground states
remain almost the same when we do 256 measurements instead
of 8192. In the random basis, the minimal number of measure-
ments that allows to reveal the ferromagnetic-paramagnetic
transition is about 1024. In turn, the abrupt changes in the
inter-scale dissimilarity of the Shastry-Sutherland model states
could be revealed with mere 16 measurements. Thus, the method
we propose allows one to accurately reconstruct phase diagrams
of quantum spin Hamiltonians by using small-size supercells and a
limited number of measurements.

Topological quantum phases
While the interscale dissimilarity seems to be sensitive enough to
detect quantum phase transitions, it should be tested whether it
also can be used to identify boundaries of topologically non-trivial
phases. This task is more challenging since transitions of this type
are governed by changes in the global properties of the system
and often cannot be probed on the level of local correlation
functions. An archetypal example of a system hosting topological
order is the one-dimensional bond-alternating XXZ model53,54,
which exhibits time-reversal, inversion, and rotational symmetries.
The corresponding Hamiltonian has the form

HXXZ ¼ J
P
ij2O

ðŜxi Ŝ
x
j þ Ŝ

y
i Ŝ

y
j þ δŜ

z
i Ŝ

z
j Þ

þJ0
P
ij2E

ðŜxi Ŝ
x
j þ Ŝ

y
i Ŝ

y
j þ δŜ

z
i Ŝ

z
j Þ;

(7)

where O and E, correspondingly, denote the odd and the even
bonds of the one-dimensional spin chain with open boundaries
(denoted with red and blue in Fig. 9a). Depending on the value of
the anisotropy parameter δ and the ratio of the exchange
interactions, J0=J, the XXZ model was shown to host three
different phases53—trivial, topological and antiferromagnetic.
Each phase is defined by the corresponding value of the partial-
reflection many-body topological invariant. The latter is a non-
trivial correlation function, which can be constructed only with
some prior knowledge of the properties of the system. In this
regard, the recent development of unsupervised approaches54 to
detect different phases of topological quantum systems is of
timely interest.
Here, we consider the 16-spin chain, sample bitstrings of length

8 from the central part of the system, and use them to compute
the dissimilarities. In this way, we manage to reproduce the phase
diagram of the model, which has been previously obtained by
calculating the topological invariant introduced in ref. 53. The
measurements of only the central spins are aimed to minimize the
boundary effects caused by the small chain length. In contrast to
the Ising and the Shastry-Sutherland models, for which Dz and Dr

were found to behave similarly at all critical points, in the case of
the bond-alternating XXZ model we observe that each of the two
dissimilarities reveals its own phase transition. The random basis
dissimilarity Dr indicates the transition between the trivial (I) and
the antiferromagnetic phase (III). In turn, the σz-basis dissimilarity
Dz dissimilarity senses the boundary between the antiferromag-
netic (III) and the topological (II) phases. Here, to obtain the
smooth and accurate phase boundaries, we took Nshots ~ 106. It is
much larger than what was required in the previously considered

Fig. 8 Dissimilarity results for the Shastry-Sutherland model.
Dissimilarity of the ground and the first excited states (with zero
total spin) of the Shastry-Sutherland model as a function of the
inter-dimer coupling in the σz (a) and the random (b) bases. The
inset in panel (a) shows how spins are grouped to obtain flattened
bitstrings. c Comparison of the partial dissimilarity profiles obtained
for the singlet (J2 = 0) and the Néel (J2 = 1) states in the σz basis.
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cases. Still, from the point of view of real experiments6, such
number of measurements is absolutely realistic.
Interestingly, to reconstruct the phase diagram using the

classical shadow tomography, which is in principle a more
complete protocol than the inter-scale dissimilarity approach,
additional steps of post-processing are required (such as the
Principle Component Analysis), and it is still problematic to
precisely identify the phase boundaries54. It indicates that the
dissimilarity approach could be more advantageous in the context
of studying phase transitions in experiments with programmable
quantum simulators.

Multi-basis dissimilarity map
So far, we have analyzed a number of distinct examples of
quantum states and demonstrated that their inter-scale dissim-
ilarities (both overall and partial) computed in different measure-
ment bases can be regarded as easily measurable signatures. To
make this discussion more concise, it is natural to consider all the
states within a single unifying context.
To accomplish that, we shall introduce the concept of

dissimilarity map. For the sake of nicer visualization, assume that
we characterize each quantum state with only two numbers—its
overall dissimilarities Dz and Dr measured in the σz and random
bases correspondingly. Each state is then represented by a point
in two-dimensional space. Figure 10 shows several classes of
states plotted on such a map. One can see that states belonging
to different families nicely group in recognizable lines. The

dissimilarity map can be then thought of as an approach to
dimensional reduction that embeds higher-dimensional data in a
plane (if more bases were used, it would be a three- or four-
dimensional space instead). Some states still share the same
location on the map, like the singlet state of the Shastry-
Sutherland model Ψs and the chaotic state ΨHaar both having Dr =
Dz = 0.25. This is not unexpected, since a many-body state cannot
be uniquely represented with only two numbers. However, taking
into account also their partial dissimilarity profiles (Figs. 5 and 8)
we can distinguish the states. This way, D and Dk computed in
several (two or more) different bases altogether form a hash of
quantum state.

DISCUSSION
In this paper, we have shown that bit-string arrays resulting from
projective measurements of many-body quantum systems should
be viewed as objects possessing internal hidden structure that
contains important information about the measured quantum
state. By computing inter-scale dissimilarities of the arrays, it is
possible to define a specific characteristic of the state which serves
as its ‘hash’ that can be then used to certify the state and to
estimate its closeness to the desired target state.
Two measures have been introduced: the overall dissimilarity D

of the array in a chosen measurement basis, and the scale-
dependent set of partial dissimilarities Dk , which are building
blocks of the quantum state signature. Since the bit-string array in
a fixed basis is defined only by the probability distribution over
the Hilbert space basis ∣ψ(Si)∣2, it does not distinguish between two
wave functions with the same set of amplitudes but different
structure of phase. Thus it is important to compute D and Dk in
two or more different bases. Since the procedure of performing
projective measurements and computing dissimilarities is experi-
mentally simple and numerically cheap, it is easy to repeat this
procedure in several bases and construct a hash consisting of
several numbers.
We would like to stress out that, in fact, the use of at least two

measurement bases to characterize quantum system is not only
practical, but also an important conceptual requirement directly
related to Bohr’s complementarity principle55,56. According to this
principle, when observing a quantum system one gains informa-
tion not about the quantum state per se but rather about the
results of its interaction with a classical measuring device.
Formally, the result of this interaction is described by the von
Neumann theory of measurements57 as a projection of the system
density matrix with only diagonal elements surviving in the basis
dictated by the device. The use of at least two noncommutative

Fig. 9 Phase diagram of XXZ model. a Schematic representation of
the bond-alternating 16-spin XXZ model. The spins in the central
part of the chain denoted with the dashed line are measured to
calculate the dissimilarities. b Phase diagram constructed by using
the dissimilarity calculated in the σz and the random bases. The
phase boundaries are defined as maximal values of the dissimilarity
derivatives with respect to J0 for a given δ. c Dissimilarities in the σz

(blue squares) and the random (red circles) bases calculated at the
anisotropy value δ = 1.75. The vertical lines denote the positions of
the maximum of dissimilarity derivatives with respect to J0 .

Fig. 10 Dissimilarity map. Low-dimensional representation of the
16-qubit quantum states studied in this work with respect to their
dissimilarity calculated in σz and random bases. Ψ0, Ψs, ΨHaar denote
the trivial 0j i�N , the singlet and the random quantum states,
respectively.
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projection operators corresponding to two complementary
measurement devices is a necessary prerequisite of quantumness,
as follows from a general ‘separation-of-conditions principle’58.
The latter dictates a description of quantum quantities by, at least,
two-index matrices rather than ‘classical’ strings.
It has to be admitted that uniqueness of this signature is not

guaranteed, and one can not exclude the possibility that two
distinct quantum states have similar sets of D and Dk . However, if
the number of involved measurement bases is large enough, such
a coincidence seems highly unlikely. Here, we have constructed
merely two-dimensional dissimilarity maps for bit-string arrays
obtained from measurements in the random and σz bases, and
this was already enough to characterize several important families
of many-body quantum states. In the cases, when two different
wave functions were indistinguishable on the map (like the singlet
and the chaotic states), they could be distinguished by their Dk

sets. If one is concerned about issue of non-uniqueness, the
method can be used as a cheap preprocessing scheme within a
larger framework of certification. First the dissimilarity signature is
computed, and if it strongly deviates from the target state
signature, the prepared state can be discarded right away. And
only if the two states appear close enough, more advanced
analysis should be performed.
An important advantage of the proposed approach is its

scalability. Due to simplicity of computing the inter-scale
dissimilarities, this procedure can be conducted for a large
number of qubits. By using a classical computer, one could
potentially characterize states of quantum systems of several
thousands qubits which goes far beyond the abilities of available
intermediate-scale quantum devices. For example, if one uses 128
Gb RAM, the estimated sizes of quantum systems that can be
characterized in this way lie in the range from 8192 to 1048576
qubits, if the number of bitstrings in the array is taken to be 220 or
213, correspondingly.
In this paper, we have analyzed two potential applications of

the inter-scale dissimilarity signature—certification of quantum
states and construction of phase diagrams. However, other
research lines can be initiated, and we would like to briefly
discuss them.
An important problem in quantum computing is to devise a

quantum circuit that represents the desired target state. Usually, it
is accomplished by optimization of the circuit architecture
(topology, choice of gates) with overlap between the circuit and
the target wave function being the objective function. For a large
number of qubits, computing overlap at every iteration of
optimization could be quite costly. Instead, one can aim at
achieving the desired dissimilarity signature Dtarget and minimize
the norm jjDtarget �Dcircuitjj which, as discussed before, does not
require significant resources to be computed even for a large
system.
Another possible application of this concept could be in the

domain of quantum optics experiments in which observer’s eyes
play the role of photons detector59,60 with a minimal detection
threshold of single photon61. Such a fascinating sensitivity of
human eyes to the light has already become a basis for different
scenarios of experiments62 aimed at detecting entanglement.
Such experiments require accumulation of statistics over ‘seen’
and ‘not seen’ events. Since human eyes are much slower in
counting light pulses than real photon detectors, collecting large
amounts of data in such a setting is challenging, and a method
that allows to harvest information from limited data could come
handy. Representing two possible outcomes of a single measure-
ment, ‘seen’ or ‘not seen’, as binary digits, one can construct an
array that can be analyzed from the inter-scale dissimilarity point
of view. As has been exemplified with Dicke and Schrödinger cat
states, the latter can be used to estimate entanglement entropy of
the state.

Finally, it should be highlighted that by constructing the low-
dimensional dissimilarity map for a number of quantum states
one, in fact, performs automatic dimensional reduction and
visualization of a high-dimensional dataset—a common task in
machine learning which is often solved in unsupervised manner
by employing such methods as self-organized Kohonen map,
t-distributed stochastic neighbor embedding (t-SNE)63,64, principal
component analysis or uniform manifold approximation and
projection algorithms65 (see ref. 66 for a primer of how the latter
can be used in the context of many-body quantum physics). These
algorithms usually require some notion of distance between the
original higher-dimensional data points and try to approximately
preserve the relative distances when projecting points onto a
lower-dimensional space (usually, two- or three-dimensional). By
computing and visualizing dissimilarity signatures using two or
three complementary measurement bases, one effectively solves
the same problem for a dataset consisting of many-body quantum
states. While it is possible to use the conventional dimensional
reduction methods to classify and visualize quantum states by
defining fidelity-based distance between them37, this would
require storing and manipulating many-body states on a classical
computer. Thus, using dissimilarity maps could be an easy to
implement alternative that does not require much resources.
Although it is not directly related to the distance between
quantum states in the Hilbert space, it nevertheless consistently
and neatly clusters quantum states belonging to different families
without even relying on any optimization scheme.

METHODS
Calculating inter-scale dissimilarity of bit-string arrays
To assign a characteristic hash function to a quantum state we perform
three steps (Fig. 1): (i) initialization of the quantum state on a real quantum
device or simulator, (ii) a number of projective measurements in at least
two different bases, and (iii) computing the inter-scale dissimilarities of the
resulting bit-string arrays.
The initialization of a quantum state may be done by different means.

For instance, one can use variational approaches67–69 and adiabatic
algorithms70–72 to approximate the target state on a quantum device.
When dealing with a some small-scale quantum system, like the 16-qubit
states studied in this paper, it is possible to initialize a state by taking the
wave function coefficients obtained with exact diagonalization and
employing the Least Significant Bit procedure24 that features one-by-one
disentanglement of qubits. Some particular quantum states can be directly
generated with known quantum circuits, which is the case for the quantum
chaos and the Schrödinger cat states. In this work, all the manipulations
with quantum states were performed with the Qiskit package18.
Once a quantum state is initialized on a device, we measure it in two or

more bases. Here, we refrained to projective measurements in the σz basis
and the random basis, though using more bases can be beneficial for
constructing unique hashes of many-body states. In other words, we
sample Nshots basis vectors represented by bitstrings {xi} from the
probability distribution p(xi)= ∣ψ(xi)∣2, where Nshots is a reasonably small
number of measurements (16–8192 in the studied cases), and by doing
this in two bases we should have access not only to the amplitudes, but
also to the phases of the wave function. The measurement outputs in each
basis are then arranged into one-dimensional sequence of bitstrings which
can be regarded as a binary array of length L= N × Nshots. Random basis
measurements are performed in the following way. Prior to every shot i of
measurement, rotational gate UðiÞ

0 parametrized by randomly generated
angles θi, ϕi and λi is applied to each qubit (Fig. 1a). For the next shot,
values θi+1, ϕi+1 and λi+1 are sampled, and a rotational gate Uðiþ1Þ

0 is
applied. The angles are generated in such a way that, once the procedure
is repeated many times, the single-shot gates uniformly cover a segment
of the Bloch sphere: θ 2 ½0; π2�, ϕ 2 ½0; π2� and λ 2 ½0; π2�. The reason why we
choose one of the bases to be random in the aforedescribed sense is that it
is expected to be the most unbiased one if we apply this protocol to
diverse quantum states with completely different structures.
Having constructed the bit-string arrays, we analyze their structure using

the concept of inter-scale dissimilarity. Recently17, some of us have
suggested a notion of structural complexity of classical patterns based on
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the idea of quantifying differences between distinct spatial scales of a
pattern obtained with a multi-step renormalization (coarse-graining)
protocol. Here, we formally apply this procedure to the bit-string arrays
viewing them as one-dimensional patterns.
Let us denote such an array as vector b0 of length L. At every step of

coarse-graining k, a vector of the same length is constructed as

bki ¼ 1
Λk

PΛk

l¼1
bk�1
Λk ½ði�1Þ=Λk �þl ; (8)

where square brackets denote taking integer part. This means that at each
iteration the whole array is divided into blocks of Λk size, and elements
within a block are substituted with the same value resulting from
averaging all elements of the block. Initially those elements are either 0 or
1, and for k > 0 they take real values (in fact, for the sake of nicer
normalization in our calculations we assumed that ‘0’ bits have values
equal to −1). Index l enumerates elements belonging to the same block.
For simplicity, we usually assume that the bit-string length is an integer
power of filter size Λ: logΛN 2 N.
Dissimilarity between scales k and k+ 1 is then defined as

Dk ¼ jOkþ1;k � 1
2 Ok;k þ Okþ1;kþ1
� �j; (9)

where Om,n is the overlap between vectors at scales m and n:

Om;n ¼ 1
L bm � bnð Þ: (10)

There are two quantities of our principal interest: Dk that contains scale-
resolved information on the pattern structure of the generated bit-string
array and overall dissimilarity, D ¼ P

k
Dk , where the sum goes over all the

renormalization steps. D and Dkf g computed in several bases together
comprise the hash function of quantum state that can be used for its
certification.

Convergence of dissimilarity with the number of
measurements
The number of measurements required for dissimilarity to converge
depends on the state to be characterized. As mentioned in the main text,
for the random Haar-typical states, it is enough to make about 213= 8192
measurements even if the Hilbert space dimension is really large (53
qubits). If the state is more structured, a larger number of measurements
(relative to the Hilbert space dimension) might be needed.
For example, for the D= 8 16-qubit Dicke state, the dissimilarity

converges after about 210 measurements, Fig. 11. In general, we expect
that dissimilarity tends to converge with the size of the sampled set as a
typical observable computed by Monte Carlo sampling from a sign-definite
wave function (though it is not an observable itself), meaning that about ~
N ⋅ 104 samples drawn from the probability distribution should be enough.

Dissimilarity of the random quantum state: analytical
derivation
Inter-scale dissimilarity of bit-string arrays resulting from projective
measurements of random quantum states Eq. (4) can be estimated
analytically. First, let us note that Ok,k=Ok,k−1 if the averaging-based

coarse-graining scheme (8) is adopted. Indeed, within n-th window of size
Λk:

1
Λk

PΛk

i¼1
bkΛk ðn�1Þþi � bkΛk ðn�1Þþi

¼ bkΛk ðn�1Þþi � bkΛk ðn�1Þþi

¼ bkΛk ðn�1Þþi � 1
Λk

PΛk

i¼1
bk�1
Λk ðn�1Þþi

¼ 1
Λk

PΛk

i¼1
bkΛk ðn�1Þþi � bk�1

Λk ðn�1Þþi ;

(11)

where bkðn�1Þ�Λkþi are equal to each other for all i within the window, and
thus this multiplier can be taken out of the sum over i. Once summed up
over all windows, l.h.s. of this identity gives Ok,k, and the r.h.s.—Ok,k−1.
Thus, the expression for partial dissimilarity Dk can be rewritten as

Dk ¼ 1
2
jOkþ1;kþ1 � Ok;k j: (12)

For a random state, Ok,k can be evaluated in the assumption that binary
elements in the bit-string array b0

i are sampled from some random
distribution p0(x) (with x= 0 or 1) and not correlated. In this case, the
coarse-graining procedure can be viewed as follows. In step k= 1, the
renormalized probability distribution at every position in the array is
defined over x1= 0, 0.5, 1 with p1ð0Þ ¼ p20ð0Þ, p1(0.5)= 2p0(0)p0(1),
p1ð1Þ ¼ p20ð1Þ. Repeating this for several steps, one can notice that
probability distribution pk(xk) is defined over random variables which are
obtained by averaging of the original uncorrelated random variables x, and
according to the central limit theorem pk ! Nðμ; σ2Λ�kÞ as k→∞. Here
Nðμ; σ2Λ�kÞðxÞ is a normal distribution with μ and σ2 being the mean and
variance of the original distribution p0(x) correspondingly, and normal-
ization factor Λ−k is due to the used scheme of averaging.
Noticing that, on average, product of a site value on itself is

hðbki Þ
2ii ¼

1
L

XL

i¼1

ðbki Þ
2 ’

Z
x2pkðxÞdx; (13)

where the integral symbolically denotes discrete finite sum at finite k, we
can approximately rewrite Ok,k as:

Ok;k ¼ 1
L

XL
i¼1

ðbki Þ
2 ’

Z
x2pkðxÞdx; (14)

which leads us to

Ok;k ’
Z

x2Nðμ; σ2Λ�kÞðxÞdx ¼ μ2 þ σ2

Λk : (15)

In this way, we obtain for k > 0:

Dk ¼ 1
2
½Ok;k � Okþ1;kþ1� ¼ σ2

2Λk ð1� Λ�1Þ: (16)

Although the central limit theorem formally holds for k→∞, it turns out
that this estimate reproduces the numerically computed partial dissim-
ilarities already starting with k= 1.

Fig. 11 Dissimilarity convergence as a function of the number of measurements. (a) and (b) represent dissimilarities obtained for σz and
random bases. Nshots is number of measurements. The D= 8 16-spin Dicke state is considered. In each basis, two independent runs are
performed.
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For k= 0 it should be computed separately. Given O0,0≃〈x2〉, we
obtain:

D0 ’ 1
2

hx2i � μ2 � σ2

Λ

� �
¼ σ2

2
ð1� Λ�1Þ: (17)

On the continuity of dissimilarity upon deformations of the
quantum state
Here, we would like to provide an idea of why the partial dissimilarities
Dkf g are continuous functions of the parental quantum state. As shown in
the previous section, in order to calculate the dissimilarity, the only object
needed is the overlap Ok,k:

Ok;k ¼ 1
L

XL
i¼1

ðbki Þ
2
; (18)

where bki is the average of the spin values in the i-th block.
In turn, overlap Ok,k can be approximated as a certain expectation of the

coarse-grained probability distribution pk(x):

Ok;k ’
Z

x2pkðxÞdx; (19)

which turns exact in the limit of infinite number of measurements.
In order to demonstrate that Dkf g change smoothly upon deforma-

tions of the quantum state, we only need to show that the probability
distribution at the k-th step of the coarse-graining, pk(x), depends
continuously on the probability distribution ∣ψ(s)∣2 set by the original
wave function (note that pk(x) is defined on the values of individual
symbols, while ∣ψ(s)∣2 is defined on the basis vectors).
However, this is rather obvious. To compute dissimilarity, one needs to

carry out several steps of averaging. The latter is a linear operation, and so
is the composition of a number of such operations. To be more precise,
possible values of bki at the k-th step are bn= nΛ−k, where n= 0…Λk gives
the number of 1s within the i-th window in the original array. Bitstrings s
are divided into windows of length Λk, and the averaged values of entries
within each window is computed. They are then replaced by string sk
consisting of bn’s. The probability pk(bn) is then given by a linear
combination

pkðbnÞ ¼
X

s:bn2sk
wsjψðsÞj2; (20)

where the sum goes over bitstrings s such that the corresponding strings sk
(derived from the parental s) contain the value bn. Weights ws of this linear
combination are equal to the proportions of bn among all the entries of sk.
Thus, at every step of coarse-graining up to k ¼ logΛN, the probability
distribution pk(x) depends on the squared amplitudes of the wave function
linearly, which implies that the partial (and thus overall) dissimilarities
depend continuously on the quantum state.
To illustrate this, consider a simple example of a 4-spin state:

ψ ¼ a 0011j i þ b 0101j i þ c 0010j i; (21)

with ∣a∣2+ ∣b∣2+ ∣c∣2= 1. Then N= 4, and the window size is Λk= 2 (Λ= 2
and k= 1). p0(x) has two probabilities:

p0ð0Þ ¼
1
2
jaj2 þ 1

2
jbj2 þ 3

4
jcj2 (22)

p0ð1Þ ¼
1
2
jaj2 þ 1

2
jbj2 þ 1

4
jcj2: (23)

After the coarse-graining step, string ‘0011’ becomes ‘01’, ‘0101’ becomes ‘
1
2
1
2’, and ‘0010’ becomes ‘0 1

2’. The corresponding probabilities of individual
entries are then:

p1ð0Þ ¼
1
2
jaj2 þ 1

2
jcj2; (24)

p1ð1Þ ¼
1
2
jaj2; (25)

p1
1
2

� �
¼ jbj2 þ 1

2
jc2j: (26)

And after the second step of coarse-graining that brings the window size
to the length of an individual measured bitstring, we obtain two

possibilities:

p2
1
2

� �
¼ jaj2 þ jbj2; (27)

p2
1
4

� �
¼ jcj2: (28)

If Λk ≥ N, and N divides Λk, the linearity can also be shown. This case is
even simpler since it reproduces the logic of the previous section. The
averaged spin values within the window of size Λk are obtained by
averaging ∣ψ(s)∣2, and the central limit theorem can be applied to show
that pk(x) can be approximated by a normal distribution.
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