
ar
X

iv
:2

10
8.

08
27

6v
1 

 [
m

at
h.

R
A

] 
 1

8 
A

ug
 2

02
1
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Abstract

A topologized semilattice X is called complete if each non-empty chain C ⊂ X has inf C
and supC that belong to the closure C of the chain C in X . In this paper, we introduce
various concepts of completeness of topologized semilattices in the context of operators that
generalize the closure operator, and study their basic properties. In addition, examples of
specific topologized semilattices are given, showing that these classes do not coincide with each
other. Also in this paper, we prove theorems that allow us to generalize the available results on
complete semilattices endowed with topology.
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1. Introduction

The use of various algebraic structures, additionally endowed with the structure of a topo-
logical space, has long established itself as a convenient and powerful tool in various fields of
modern mathematics. This phenomenon motivates the fundamental study of the properties of
these objects.

When studying spaces that have some additional structure consistent with the topology,
quite often the concept of completeness naturally arises, as some internal property of these
objects. In most cases, completeness can also be described as an external property, and often
it is associated with the concept of absolute closedness, understood in a suitable sense. For
example, a metric space X is complete if and only if it is closed in every metric space Y
containing X as a metric subspace. A uniform space X is complete if and only if it is closed in
every uniform space Y containing X as a uniform subspace. A topological group X is complete
if and only if X , together with its two-sided uniform structure, is a complete uniform space, and
so on. The completeness of semilattices is a well-studied algebraic property, which generalizes
quite naturally (using the closure operator in a topological space) to semilattices endowed with
a topological structure.

It should be noted that one of the first mathematicians who studied the absolute closedness of
various topologized algebraic objects (including semilattices) was O. V. Gutik (see for example
[16–18])

The question of the closedness of the images of complete topologized semilattices under con-
tinuous homomorphisms in Hausdorff semitopological semilattices was first raised by T. Banakh
and S. Bardyla in [3] and is currently solved positively for some special cases. Historically, the
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first results in this direction belong to J. W. Stepp; in particular, he proved that semilattices
having only finite chains are always closed in every topological semilattice containing it as a
subsemilattice [15]. The above circumstances motivate the study of the notion of completeness
of topologized semilattices in the context of operators that generalize the closure operator in a
topological space.

The objectives of this paper are to determine the corresponding classes of semilattices en-
dowed with topology, to study their basic properties, to construct examples showing that these
classes do not coincide, and to generalize the well-known theorems on the closure of images of
complete semilattices under continuous homomorphisms.

2. The completeness of topologized semilattices

A semilattice is any commutative semigroup of idempotents (an element x of a semigroup is
called an idempotent if xx = x).

A semilattice endowed with a topology is called a topologized semilattice. A topologized
semilattice X is called a (semi)topological semilattice if the semigroup operation X ×X → X ,
(x, y) 7→ xy, is (separately) continuous.

It is well known that semilattices can be viewed as partially ordered sets, namely: in every
semilattice X we can consider the following order relation ≤: x ≤ y ↔ xy = x = yx. Endowed
with this partial order, the semilattice is a poset, i.e., partially ordered set. It is easy to see
that the element xy is, in the sense of a given order, an infimum (a greatest lower bound) of the
elements x and y. Conversely, if in a partially ordered set (X,≤) each pair of elements has a
greatest lower bound, then X together with the operation of taking the infimum is a semilattice.

A subset D of a poset (X,≤) is called
• a chain if any elements x, y ∈ D are comparable in the sense that x ≤ y or y ≤ x.

This can be written as y ∈ lx where ↑x := {y ∈ D : x ≤ y}, ↓x := {y ∈ D : y ≤ x}, and
l x := (↑x) ∪ (↓x);

• up-directed if for any x, y ∈ D there exists z ∈ D such that x ≤ z and y ≤ z;
• down-directed if for any x, y ∈ D there exists z ∈ D such that z ≤ x and z ≤ y.
It is clear that each chain in a poset is both up-directed and down-directed.
A semilattice X is called chain-finite if each chain in X is finite. A semilattice is called

linear if it is a chain in itself.
In [15] Stepp proved that for any homomorphism h : X → Y from a chain-finite semilattice

to a Hausdorff semitopological semilattice Y , the image h(X) is closed in Y .
In [3] Banakh and Bardyla improved result of Stepp by proving that for any homomorphism

h : X → Y from a chain-finite semilattice to a Hausdorff semitopological semilattice Y , the
image h(X) is closed in Y .

The notion of completeness of semilattices is a well-known algebraic property and is naturally
transferred to topologized semilattices: a topologized semilattice X is called complete if each
non-empty chain C ⊂ X has inf C and supC that belong to the closure C of the chain C in X .

A Hausdorff space X is said to be H-closed if it is closed in every Hausdorff space in which
it can be embedded.

Complete topologized semilattices play an important role in the theory of (absolutely) H-
closed semilattices, see [1-8]. By [1], a Hausdorff semitopological semilattice X is complete if
and only if each closed chain in X is compact if and only if for any continuous homomorphism
h : S → Y from a closed subsemilattice S ⊂ X to a Hausdorff topological semigroup Y the
image h(S) is closed in Y .
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A topologized semilattice X is called
• ↑↓-closed if for each x ∈ X the sets ↑x and ↓x are closed;
• chain-compact if each closed chain in X is compact.

On each topologized semilattice we shall consider weaker topologies:
- the weak chain•-topology generated by the subbase consisting of complements to closed

chains in X ,
- the weak• topology W•

X , generated by the subbase consisting of complements to closed
subsemilattices in X .

A topologized semilattice X is called
• chain-compact if each closed chain in X is compact,
• weak chain• compact if its weak chain• topology is compact,
• W•

X-compact if its weak• topology W•

X is compact.

The weak•-topology W•

X was introduced and studied in [6]. According to Lemmas 5.4, 5.5
of [6], for any topologized semilattice we have the implications:

complete ⇒ W•

X -compact ⇒ chain-compact.

By Theorem 5.4 in [7], a chain-compact ↑↓-closed topologized semilattice is complete.

Note that the weak chain• topology of a topologized semilattice X is obviously contained in
the weak•- topology, which immediately implies:

Lemma 2.1. A complete topologized semilattice X is weak chain• compact.

It is also easy to prove the following statement.

Lemma 2.2. A weak chain•-compact topologized semilattice X is chain-compact.

Proof. Let C be a closed chain in X . Consider a centered family {Fα} of closed subsets of C.
Then every set Fα is also a chain and is closed in X ; this means that Fα is also closed in the
weak chain•-topology on X . Since X is a weak chain• compact semilattice,

⋂

α∈Λ

Fα 6= ∅.

From this we obtain the following theorem, which is necessary for the study of other types
of completeness of semilattices, discussed in the following chapters.

Theorem 2.3. For a ↑↓-closed topologized semilattice X, the following statements are equiva-
lent:

1) X is complete;
2) X is weak chain• compact;
3) X is chain compact.

A multi-valued map Φ : X ⊸ Y between sets X , Y is a function assigning to each point
x ∈ X a subset Φ(x) of Y . The image of any set A ⊂ X under a multi-valued map Φ is
called the set Φ(A) =

⋃

x∈A

Φ(x), the preimage of any set B ⊂ Y is the set Φ−1(B) = {x ∈ X :

Φ(x)∩B 6= ∅}. A multi-valued map Φ : X ⊸ Y between semigroups is called a multimorphism
if Φ(x)Φ(y) ⊂ Φ(xy) for any elements x, y ∈ X . Here Φ(x)Φ(y) := {ab : a ∈ Φ(x), b ∈ Φ(y)}.

A multi-valued map Φ : X ⊸ Y between topological spaces is called upper semicontinuous
if for any closed subset F ⊂ Y the preimage Φ−1(F ) is closed in X .

A subset F of a topological space X is called T1-closed (resp. T2-closed) in X if each point
x ∈ X \ F has a (closed) neighborhood, disjoint with F .
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A multimorphism Φ : X ⊸ Y is called a Ti-multimorphism for i ∈ {1, 2} if for any x ∈ X
the set Φ(x) is Ti-closed in Y .

It was shown in [2] that the completeness of semilattices is preserved by images under
continuous homomorphisms.

Note that the map Φ : X ⊸ Y where Φ(x) = Y (between semilattices X and Y ) always is
an upper semicontinuous T1 multimorphism; it shows the images of semilattices under maps of
this type do not preserve completeness. However, a positive result was achieved by imposing
additional algebraic constraints, which will be shown in Theorem 2.5. To prove it, we need the
following simple proposition.

Proposition 2.4. A ↑↓-closed topologized semilattice X is complete if and only if each non-
empty closed chain C contains inf C and supC.

Proof. Necessity obviously follows from the definition of completeness.
Let C ⊂ X be a non-empty chain. By Lemma 4.2, proved in [7], the set C is also a chain.

Let a be a the smallest element of C; the inclusion C ⊂ C implies that a is the lower bound
of the set C. If we assume that there is a lower bound c of chain C such that c 6≤ a, then
a 6∈ ↑c ⊃ C, a contradiction. Hence, a = inf C. Similarly, we can show that the largest element
b of the chain C is supC, which completes the proof.

Theorem 2.5. Let X be a complete topologized semilattice, Y be a ↑↓-closed topologized semi-
lattice and Φ : X ⊸ Y be an upper semicontinuous T1 multimorphism such that for any two
points x, y ∈ X inequality x ≤ y implies Φ(x) ∩ ↑Φ(y) ⊂ Φ(y). Then the semilattice Φ(X) is
complete if and only if the semilattice Φ(x) is complete for each x ∈ X.

Proof. Let us first prove sufficiency. Since Φ is a T1 multi-valued map, Φ(x) is closed for every
x ∈ X and, hence, it is complete.

Let Φ(x) be a complete semilattice for each x ∈ X and let C ⊂ Y be a closed chain. Since
the semilattice Y is ↑↓-closed, it is sufficient to show that C contains the largest and smallest
elements. Note that the semilattice Φ−1(C) is closed in X and, hence, it is complete. Consider
the map ΦC : Φ−1(C) ⊸ C such that ΦC(x) = Φ(x) ∩ C. We show that ΦC is an upper
semicontinuous T1 multimorphism. Since ΦC(x)ΦC(y) := (Φ(x)∩C)(Φ(y)∩C) ⊂ Φ(xy)∩C =
ΦC(xy) (inclusion holds due to the fact that Φ is a multimorphism and C is a semilattice), then
ΦC is a multimorphism.

Let F ⊂ C be a closed subset of C. Then F is closed in Y and Φ−1
C (F ) = {x ∈ Φ−1(C) :

ΦC(x) ∩ F 6= ∅} = {x ∈ Φ−1(C) : Φ(x) ∩ C ∩ F 6= ∅} = Φ−1(C), that is Φ(C) is upper semi-
continuous. Finally, ΦC(x) = Φ(x) ∩ C is closed in Φ(x) and therefore is complete as closed
subsemilattice of semilattice Φ(x).

For each c ∈ C consider a closed semilattice Sc = Φ−1
C (↑ c). Since X is complete, inf Sc ∈

Sc = Sc. Take y ∈ C such that c ∈ ΦC(y). Since ΦC(inf Sc)∩↑c 6= ∅, then c ∈ ΦC(inf Sc)ΦC(y) ⊂
ΦC(y inf Sc) = Φ(inf Sc). Note that for c1, c2 ∈ C the inequality c1 ≤ c2 implies the inclusion
Sc2 ⊂ Sc1, whence it follows that inf Sc1 ≤ inf Sc2 ,i.e. the set S = {Sc}c∈C is a chain. By the
completeness of X , inf S ∈ S ⊂ Φ−1(C). Since the chains ΦC(inf S) and ΦC(supS) are complete
and closed, they contain the largest and the smallest elements. Let a = minΦC(inf S), b =
maxΦC(supS). We show that a and b are the smallest and largest elements of C, respectively.
Indeed, suppose that the chain C contains the element c > b. Then inf Sc ≤ supS and, by the
condition, c ∈ ΦC(inf Sc) ∩ ↑ΦC(supS) ⊂ ΦC(supS). Since b is a largest element of ΦC(supS),
c ≤ b.
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Now suppose that there is an element c < a. Then c ∈ ΦC(inf Sc)ΦC(inf S) ⊂ ΦC(inf S) and
c ≥ a because of a is the smallest element of ΦC(inf S). The resulting contradictions complete
the proof.

Note important special case of Theorem 2.5.

Corollary 2.6. Let X be a complete topologized semilattice, let Y be a ↑↓-closed topologized
semilattice, Φ : X ⊸ Y be a upper semicontinuous T1 multimorphism such that Φ(x)∩Φ(y) = ∅
for x 6= y. Then the semilattice Φ(X) is complete if and only if the semilattice Φ(x) is complete
for each x ∈ X .

Proof. We show that the inequality x ≤ y for x, y ∈ X implies Φ(x) ∩ ↑Φ(y) = ∅. Suppose the
opposite. Let a ∈ Φ(x) ∩ ↑Φ(y). This means that there is b ∈ Φ(y) such that b ≤ a. But then
b = ab ∈ Φ(x)Φ(y) ⊂ Φ(xy) = Φ(x) and b ∈ Φ(x) ∩ Φ(y), which is a contradiction.

Theorem 2.5 allows to generalize the results on the closure of semilattices.

The Lawson number Λ(X) of a Hausdorff topologized semilattice X is defined as the smallest
cardinal κ such that for any distinct points x, y ∈ X there exists a family U of closed neigh-
borhoods of x such that |U| ≤ κ and

⋂

U is a subsemilattice of X that does not contain y. A
topologized semilattice X is ω-Lawson if and only if it is Hausdorff and has at most countable
Lawson number Λ(X).

A topological space X is called functionally Hausdorff if for any two points x, y ∈ X there
is a continuous real-valued function f such that f(x) 6= f(y).

A space X is sequential if for non-closed set A there is a sequence of elements A converging
to some point x ∈ A \ A.

In [3–5] it was proved that a complete subsemilattices of semitopological functionally Haus-
dorff (sequential Hausdorff, ω-Lawson) semilattice are closed. It is also known that a semi-
topological semilattice is ↑↓-closed [12]. These results, together with Theorem 2.5, allow us to
formulate:

Corollary 2.7. Let X be a complete topologized semilattice, and let Y be an ω-Lawson (func-
tionally Hausdorff, sequential) semitopological semilattice, Φ : X ⊸ Y be an upper semicon-
tinuous T1 multimorphism such that for any two points x, y ∈ X inequality x ≤ y implies
Φ(x) ∩ ↑Φ(y) ⊂ Φ(y) and the semilattice Φ(x) is complete for each x ∈ X . Then the set Φ(X)
is closed in Y .

We can also reformulate the question of the closure of semilattices in terms of preimages
under certain maps.

A point x of a topological space X is called θ-adherent point of the set A ⊂ X if A ∩ U 6= ∅
for any neighborhood U of x.

The following concepts was introduced by N.V. Velichko in [13].

• The θ-closure of a subset A of a topological space X is called the set A
θ
= {x ∈ X : x is

a θ-adherent point of A}.

• A subset A of a topological space X is called θ-closed if A
θ
= A.

Theorem 2.8. Let X be a subsemilattice of a topological semilattice Y . If there exists a closed
homomorphism h : X → E from X to a complete topologized semilattice E such that for each
e ∈ E the set h−1(e) is θ-closed in Y , then X is closed in Y .
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Proof. Since h is a closed map, the image h(X) is closed in E. Given that completeness
is inherited by closed subsemilattices, we can assume, without loss of generality, that h is a
surjective map. We define a multi-valued map Φ : E ⊸ Y as follows: Φ(e) = h−1(e). We show
that Φ is an upper semicontinuous T2 multimorphism.

Claim that Φ−1(F ) = h(F ) for each F ⊂ X .
Take an element x ∈ Φ−1(F ). By definition of the preimage of a set under a multivalued map

Φ(x) ∩ F = h−1(x) ∩ F 6= ∅ and, hence, there is z ∈ F such that h(z) = x and x ∈ h(F ). Now
take e ∈ h(F ) and find y ∈ F such that h(y) = e. This means that y ∈ F ∩ h−1(e) = F ∩Φ(e),
so e ∈ Φ−1(F ); the resulting inclusions prove the equality Φ−1(F ) = h(F ).

Since h is a closed map, Φ−1(F ) = Φ−1(F ∩X) = h(F ∩X) is closed in E for every closed set
F ⊂ Y , so Φ is upper semicontinuous. Since Φ(e) = h−1(e) is θ-closed in Y , the multi-valued
map Φ has the property T2.

Now we check that Φ is a multimorphism. Take e1, e2 ∈ E and x1 ∈ Φ(e1) = h−1(e1), x2 ∈
Φ(e2) = h−1(e2). Since h is a homomorphism, e1e2 = h(x1)h(x2) = h(x1x2) and x1x2 ∈
h−1(e1e2). Then we have that Φ(e1)Φ(e2) = h−1(e1)h

−1(e2) ⊂ h−1(e1e2) = Φ(e1e2), that is, Φ is
a multimorphism.

To complete the proof, it remains only to note that the closedness of Φ(E) = X in Y now
follows from Theorem 2.1 in [1].

Corollary 2.9. Let X be a subsemilattice of a regular semitopological semilattice Y . If there
exists a closed homomorphism h : X → E from X into a complete topologizing semilattice E
such that for each e ∈ E the set h−1(e) is closed in Y , then X is closed in Y .

Proof. It immediately follows from the fact that in regular spaces closure and θ-closure operators
coincide.

3. The δ-completeness of topologized semilattices

A point x of topological space X is called δ-adherent point of a set A ⊂ X if A ∩ IntU 6= ∅
for any neighborhood U of x.

The δ-closure of a subset A of a topological space X is called the set A
δ
= {x ∈ X : x is a

δ-adherent point of A}.

A subset A of a topological space X is called δ-closed, if A
δ
= A.

The concept of δ-closure was introduced by N.V. Velichko in [13]. It is also proved that the
intersection and finite union of δ-closed sets is δ-closed. Obviously, the empty set and the entire
space are δ-closed sets. It follows that for any topological space (X, τ) there exists a topology
τδ such that closed (in (X, τδ)) sets are exactly δ-closed sets of the space (X, τ). It is easy to

check that the δ-closure of a set is a δ-closed set. It follows that A
δ
is the intersection of all

δ-closed sets containing A. Now it is easy to see that the closure operator in (X, τδ) is the same
as the δ-closure operator in (X, τ).

Complements to δ-closed sets are called δ-open sets.

Definition 3.1. A topologized semilattice X is called δ-complete if each non-empty chain

C ⊂ X has inf C and supC that belong to the δ-closure C
δ
of the chain C in X .

It follows that a topologized semilattice (X, τ) is δ-complete if and only if the semilattice
(X, τδ) is complete.
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Definition 3.2. A topologized semilattice X is called δ-↑↓-closed if for each x ∈ X sets ↑x and
↓x are δ-closed in X .

Definition 3.3. A weak δ-chain•-topology on a topologized semilattice X is called a topology
generated by a subbase consisting of complements to δ-closed chains in X .

Definition 3.4. The topologized semilattice X is called weak δ-chain• compact, if X is compact
in its weak δ-chain• topology.

We now formulate an analog of Theorem 1.6 for δ-complete semilattices.

Theorem 3.5. For a δ-↑↓-closed topologized semilattice (X, τ) the following conditions are
equivalent:

1) X is δ-complete;
2) X is weak δ-chain• compact;
3) any δ-open cover of δ-closed (in X) chain C contains finite subcover.

Proof. Since the closure operator in the semilattice (X, τδ) coincides with the δ-closure operator
in (X, τ), the semilattice (X, τδ) is complete. Recall that closed sets in (X, τδ) are exactly
δ-closed sets in (X, τ). The statement of this theorem now follows from Theorem 2.3.

4. The θ-completeness of topologized semilattices

Definition 4.1. A topologized semilattice X is called θ-complete, if for each non-empty chain

C ⊂ X inf C ∈ C
θ
and supC ∈ C

θ
.

Definition 4.2. A topologized semilatticeX is called θ-↑↓-closed (θ-l-closed), if for any element
x ∈ X sets ↑x and ↓x (set lx) are θ-closed.

Note that unlike the closure and δ-closure operators, the θ-closure operator is not necessarily
idempotent, which makes the class of θ-complete semilattices a bit more interesting.

Definition 4.3. Let X be a topologized semilattice and D ⊂ X is up (down)-directed. We say
that D up-θ-converges (down-θ-converges) to the point x ∈ X , if for any neighborhood U of x
there is d ∈ D such that D ∩ ↑d ⊂ U (D ∩ ↓d ⊂ U).

Lemma 4.4. Let X be a θ-complete topologized semilattice. Then any up-directed set D ⊂ X
up-θ-converges to supD.

Proof. Suppose the opposite. Let D ⊂ X be a up-directed set does not up-θ-converge to supD.
Then there exists a neighborhood U of the point supD that the set (D ∩ ↑d) \ U 6= ∅ for each
d ∈ D.

We claim that the set E = D \ U is up-directed. Indeed, let e1, e2 ∈ E; then there is d ∈ D
such that d ≥ e1 and d ≥ e2. Since (D ∩ ↑d) \U ⊂ E, there is e′ ∈ E such that e′ ≥ d ≥ e1 and
e′ ≥ d ≥ e2, as required. Note that supD = supE.

Since X is a θ-complete semilattice, supE = supD ∈ E
θ
. But, on the other hand, E∩U = ∅,

hence, supE 6∈ E
θ
, because supE is an inner point of U .

The following statement is proved in exactly the same way.

Lemma 4.5. Let X be a θ-complete topologized semilattice. Then any down-directed set D ⊂ X
down-θ-converges to infD.
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Lemma 4.6. Let X be a θ-l-closed semilattice. Then for any chain C ⊂ X, the set C
θ
is a

chain.

Proof. Suppose the opposite, let the set C
θ
contain incomparable elements x and y. Since

x 6∈ ly and ly is θ-closed, there is a neighborhood U of the point x such that U ∩ly = ∅. Since

x ∈ C
θ
, there is z ∈ U ∩ C. Since z 6∈ ly, we have y 6∈ lz. Then there is a neighborhood V of

the point y such that V ∩ lz = ∅, which impossible, since C ⊂ lz and y ∈ C
θ
.

Theorem 4.7. Let X be a θ-complete, θ-↑↓-closed topologized semilattice, and C ⊂ X be a

chain. Then C
θ
is a θ-closed set.

Proof. Assume that C
θ
is not θ-closed and there exists x ∈ C

θ2

\ C
θ
(where C

θ2

= C
θ
θ

). Note

that, by Lemma 4.6, the sets C
θ
and C

θ2

are chains. By θ-completeness, inf C ∈ C
θ
and

supC ∈ C
θ
. Since X is a θ-↑↓-closed semilattice, C

θ2

⊂ ↑ inf C ∩ ↓ supC, hence, inf C ≤ x and
supC ≥ x. By choice x, inf C 6= x and supC 6= x, hence, inf C < x < supC. Note that there
are elements c1, c2 ∈ C such that c1 < x < c2 and, hence, sets ↓x ∩ C and ↑x ∩ C non empty.

Since X is a θ-complete semilattice, a := sup (↓x ∩ C) ∈ ↓x ∩ C
θ
⊂ C

θ
è b := inf (↑x ∩ C) ∈

↑x ∩ C
θ
⊂ C

θ
. By the choice of x, the double inequality a < x < b is satisfied. Then x does not

belong to θ-closed set ↓a ∪ ↑b; this means that there is a neighborhood U of the point x such

that U ∩ ↓a ∪ ↑b = ∅. Since x ∈ C
θ2

, there is y ∈ U ∩ C
θ
. Since C

θ
is a chain and y 6∈ ↓a ∪ ↑b,

we again the double inequality a < y < b. Let us now find a neighborhood V of y such that
V ∩ ↓a ∪ ↑b = ∅ and element c ∈ V ∩ C. Since c 6∈ ↓a ∪ ↑b, a < c < b. This inequality leads us
to a contradiction: since c ∈ C, if c > a = sup (↓x ∩ C) then c > x (otherwise c ≤ a); similarly,
if c < b = inf (↑x ∩ C) then c < x.

A subset M of a topological space X is an H-set if every cover of it by open sets of X has
a finite subfamily which covers M with the closures of its members.

The concept of an H-set, which generalizes the concept of a compact subset of a space, was
introduced by N.V. Velichko in [13].

Recall that a topological space X is called Urysohn space, if for any two distinct points
x, y ∈ X there are neighborhoods Ux, Uy of points x, y such that Ux ∩ Uy = ∅.

The following results are well known:
• Every θ-closed subset of an H-closed space is an H-set [14].
• If X is H-closed and Urysohn, then M ⊂ X is θ-closed if and only if it is an H-set [9].
• M is an H-set of a space X if and only if for every filter F on X , which meets M ,

M ∩ adθF 6= ∅, where adθF =
⋂

{F
θ
: F ∈ F} [10].

Lemma 4.8. Let X be a θ-complete topologized semilattice. Then every θ-closed chain C is an
H-set.

Proof. Let C be a non-empty θ-closed chain in X . Consider a family of open sets U , covering
C. Let A be a set of points a ∈ C such that the set ↓x∩C can be covered by a finite subfamily
U . A 6= ∅, since it obviously contains the smallest element c of the chain C. By θ-completeness

of X , supA ∈ A
θ
⊂ C

θ
= C.

We show that b := supA ∈ A. Suppose that b 6∈ A. Choose Ub ∈ U such that b ∈ Ub. By
Lemma 4.4, there exists a point a ∈ A such that A∩↑a ⊂ Ub. By definition of A, x ∈ A implies
↓x ∩ C ⊂ A. By assumption, a < supA = b, so for each a ≤ x ≤ b there is y ∈ A such that
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x ≤ y ≤ b, i.e., A ∩ ↑a = (C ∩ ↑a ∩ ↓b) \ {b}. By definition of A, there is a finite subfamily
V ⊂ U such that

⋃

V ⊃ ↓a ∩ C. Let U ′ = V ∪ {Ub}. Then U ′ is the finite cover of ↓b ∩ C, and
b ∈ A.

Now we claim that C = ↓b ∩ C. Suppose that E := C \ ↓b 6= ∅. Then e := inf E ∈ E
θ
⊂

C
θ
= C. Note that a ∈ ↓b ∩ C = A for every a ∈ C such that a < e.
Choose Ue ∈ U such that e ∈ Ue. Obviously that U ′ ∪ {Ue} is the finite cover of ↓e∩C, and

e ∈ A. Note that b is a lower bounded of C \ ↓b = E, and b ≤ e. Consider two cases:
1) b < e. Since e ∈ A, this contradicts the equality b = supA.
2) b = e. By Lemma 4.5, there exists d ∈ E such that E ∩ ↓d ⊂ Ub. Note that d > e = b

(e 6∈ E). Then ↓d ∩ C ⊂
⋃

U ′ and d ∈ A, which contradicts the equality b = supA.

Combining this Lemma with Theorem 4.7, we obtain

Corollary 4.9. Let X be a θ-complete θ-↑↓-closed topologized semilattice. Then for each chain

C ⊂ X the chain C
θ
is an H-set.

Lemma 4.10. Let X be a θ-↑↓-closed semilattice in which C
θ
is an H-set for any chain C ⊂ X.

Then X is a θ-complete semilattice.

Proof. Let C ⊂ X be a chain. By Lemma 4.6, C
θ
is also chain. Consider a centered family

F< = {C
θ
∩ ↓x : x ∈ C} subsets C

θ
. Since the chain C

θ
is an H-set and C

θ
∩ ↓x

θ

⊂ ↓x
θ
= ↓x,

we have
⋂

F< =
⋂

x∈C

C
θ
∩ ↓x ⊃

⋂

x∈C

C
θ
∩ ↓x

θ

∩ C
θ
6= ∅ by the criterion of the H-set mentioned

above and proved in [10]. Obviously,
⋂

F< contains the only element c that is the smallest

in C
θ
. Clearly, c ≤ x for each x ∈ C; suppose that there is a < c, and a = infC. Then

c 6∈ ↑a ⊃ C
θ
, which contradicts the choice c. Thus, c = inf C ∈ C

θ
; similarly, it can be shown

that the intersection of a centered family F> = {C
θ
∩ ↑x : x ∈ C} contains supC.

By Corollary 4.9 and Lemma 4.10 we have the following theorem.

Theorem 4.11. A θ-↑↓-closed topologized semilattice X is θ-complete if and only if for any

chain C ⊂ X the chain C
θ
is an H-set.

We show that a slightly more general result can be obtained from other arguments. We give
the necessary definitions.

Definition 4.12. Let X be a topologized semilattice. The weak θ-chain•-topology on X is
called a topology generated by a subbase consisting of complements to θ-closures of chains in
X .

Definition 4.13. A topologized semilattice X is called weak θ-chain• compact if X is compact
in its weak θ-chain• topology.

Lemma 4.14. Let (X, τ) be a θ-complete θ-↑↓-closed topologized semilattice. Then X is weak
θ-chain• compact.

Proof. In [13], it was proved that the intersection and finite union of θ-closed sets is θ-closed.
Obviously, the empty set and the entire space are θ-closed sets. It follows that for any topological
space (X, τ) there exists a topology τθ such that closed (in (X, τθ)) sets are exactly θ-closed sets
of the space (X, τ).
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Clearly, the θ-closure of a set A ⊂ X in (X, τ) is contained in the closure of A in (X, τθ). It
follows that a semilattice (X, τθ) is complete and ↑↓-closed. By Lemmas 4.6 and 4.7, for each

chain C the chain C
θ
is θ-closed. It follows that the weak θ-chain•-topology on X is contained

in the weak• W•-topology of the space (X, τ). By Lemma 5.4 of [6], the semilattice (X, τθ) is
compact in its weak• W•-topology. Moreover, (X, τ) is weak θ-chain• compact.

Lemma 4.15. Let X be a weak θ-chain• compact, θ-l-closed topologized semilattice. Then C
θ

is an H-set for any chain C ⊂ X.

Proof. Let C ⊂ X be a chain. We show that for any centered family {Fα}α∈Λ of subsets C
θ
,

⋂

α∈Λ

Fα
θ
∩C

θ
6= ∅. By Lemma 4.6, the set C

θ
is a chain; then so is Fα. This means that the sets

Fα
θ
closed in weak θ-chain• topology on X .

Theorem 4.16. For a θ-↑↓-closed semilattice X the following statements are equivalent:
1) X is θ-complete;
2) X is θ-chain• compact;

3) C
θ
is an H-set for any chain C ⊂ X.

Lemma 4.17. Let X be a Urysohn space, r : X → X be a retraction. Then the set r(X) is
θ-closed in X.

Proof. Suppose that r(X)
θ
\ r(X) 6= ∅ and let x ∈ r(X)

θ
\ r(X). Note that r(x) 6= x. Find

neighborhoods Ux, Ur(x) of x and r(x), respectively, such that Ux ∩Ur(x) = ∅. By the continuity
of r, there is a neighborhood Vx ⊂ Ux of x such that r(Vx) ⊂ Ur(x). Clearly, then Vx∩Ur(x) = ∅.

Since x ∈ r(X)
θ
, Vx ∩ r(X) 6= ∅. Let z ∈ Vx ∩ r(X). Since r(z) = z and r is continuous,

z ∈ r(Vx) ⊂ r(Vx)
r(X)

⊂ Ur(x)
r(X)

⊂ Ur(x), that is z ∈ Vx ∩ Ur(x), contradiction.

Proposition 4.18. An Urysohn semitopological semilattice X is θ-↑↓-closed.

Proof. Consider an element x ∈ X and the mapping sx : X → X, sx : y 7→ xy. Since X
is Hausdorff, {x} is θ-closed. Is easy to check, that the preimage of a θ-closed set under
continuous mapping is θ-closed. It is easy to see that ↑x = s−1

x (x) and sx is a retraction X on
↓x; θ-closedness ↑x and ↓x follows from the continuity of sx.

5. The Θ-completeness of topologized semilattices

Unlike the δ-closure, the operation of taking the θ-closure of a set is not necessarily idem-
potent, that is, the θ-closure of set may not be θ-closed. This fact motivates the following
definition.

Definition 5.1. A Θ-closure of a subset A of a topological space X is called the set A
Θ
, equal

to the intersection of all θ-closed subsets of X , containing A.

In [13], it was proved that the intersection and finite union of θ-closed sets is θ-closed.
Obviously, the empty set and the entire space are θ-closed sets. It follows that for any topological
space (X, τ) there exists a topology τθ, such that the closed sets in space (X, τθ) exactly the
θ-closed sets in (X, τ). Obviously, the closure operator in (X, τθ) is the same as the Θ-closure
operator in (X, τ).

Complement to a θ-closed set is called a θ-open set.
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Definition 5.2. A topologized semilattice X is called Θ-complete if for every non-empty chain

C ⊂ X inf C ∈ C
Θ
and supC ∈ C

Θ
.

Definition 5.3. Let X be a topologized semilattice. A weak Θ-chain• topology on X is called
a topology generated by subbase consisting of the complements of θ-closed chains in X .

Definition 5.4. The topologized semilattice X is called weak Θ-chain• compact if X is compact
in its weak Θ-chain• topology.

Theorem 5.5. For a θ-↑↓-closed topologized semilattice X the following conditions are equiva-
lent:

1) X is Θ-complete;
2) X is weak Θ-chain• compact;
3) any θ-open cover {Uα}α∈Λ of a θ-closed (in X) chain C contains a finite subcover.

6. The relationship of different types of completeness

In this chapter, we will look at the relationships of the classes of topologized semilattices
that we introduced earlier.

In [13], it was proved that for an arbitrary topological space X and its subset A the following

inclusions hold: A ⊂ A
δ
⊂ A

θ
. From the definitions, it is clear that the same is always true

for A
θ
⊂ A

Θ
. In addition, the same paper shows that the operators δ-closures and θ-closures

coincide in the class of regular spaces.

Proposition 6.1. Let X be a topologized semilattice. Then
1) if X is complete, then it is δ-complete;
2) if X is δ-complete, then it is θ-complete;
3) if X is θ-complete, then it is Θ-complete.

Proposition 6.2. For a regular topologized semilattice X the following conditions are equiva-
lent:

1) X is complete;
2) X is δ-complete;
3) X is θ-complete;
4) X is Θ-complete.

Proposition 6.3. Let X be a topologized semilattice.
1). If X is weak chain• compact, it is also weak δ-chain• compact.
2). If X is a weak δ-chain• compact or weak θ-chain•-compact, it is weak Θ-chain•-compact.

If, in addition, X is θ-l-closed, then weak δ-chain•-compactness implies weak θ-chain•-compactness.

Proof. The first part of the statement follows from the fact that θ-closed chain is δ-closed, and,
hence, it is closed; thus weak Θ-chain•-topology is contained in weak δ-chain•-topology and
weak θ-chain•-topology. Note that weak δ-chain•-topology weaker than weak chain•-topology. It
remains to note that compactness in some topology implies compactness in any weaker topology.

The second part of the statement follows from the fact that in a θ-l-closed semilattice the

set C
θ
is a δ-closed chain.

Finally, we show how the various types of compactness of chains are related.
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Proposition 6.4. Let (X, τ) be a topologized semilattice. Then
1) if every closed in (X, τ) chain is compact (i.e. X is chain-compact) then every δ-closed

chain is compact in (X, τδ);
2) if every δ-closed chain is compact in (X, τδ) then every θ-closed chain is compact in

(X, τθ);

3) if C
θ
is an H-set for any chain C ⊂ X then every θ-closed chain is compact in (X, τθ).

Moreover, if X is a θ-l-closed subsemilattice then

4) if every δ-closed chain is compact in (X, τδ) then C
θ
is an H-set for any chain C ⊂ X.

Proof. Points 1) and 2) are obvious. We prove point 3).
Let C ⊂ X be a θ-closed (in X) chain and {Uα}α∈Λ be a family of θ-open (in X) sets covering

C. By definition of θ-open set, for each point x ∈ C ∩ Uα there exists a neighborhood Ux such

that Ux ∩ (X \ Uα) = ∅ that is Ux ⊂ Uα. Since C
θ
= C, the set C is a H-set. Since {Ux}x∈C is

an open cover of C, there is a finite set x1, ..., xn such that C ⊂
n
⋃

i=1

Uxi
. For every xi there is

αi ∈ Λ such that Uxi
⊂ Uαi

. It follows that {Uαi
} is a finite cover of C.

Now we prove 4). Consider a chain C ⊂ X . Since X is θ-l-closed, the set C
θ
is a δ-closed

chain. Let {Uα}α∈Λ is a cover of C. It is known [1], that the sets IntU are δ-open. Then there

is a finite set α1, ..., αn such that C ⊂
n
⋃

i=1

IntUαi
. Then C ⊂

n
⋃

i=1

Uαi
.

complete

- closedness

- closedness

- closedness

- closedness

d - complete

q - complete

Q - complete

weak chain  compact

weak - chain  compact d

weak - chain  compact q

weak - chain  compact Q

q -

q -

d -

each - closed chain is d

each - closed chain is q

 q - closure of a chain

compact in - topology  d

compact in - topology  q

is an H - set 

chain - compact

Diagram 1. Implications between various types of completeness of semitopological semilattices
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7. Examples

In conclusion, we show examples that separate the classes we have introduced.

Example 7.1. There exists a δ-complete topologized semilattice such that it is not complete.
Consider the segment I = [0, 1], ordered by the natural order. We define on I the topology

τ in terms of fundamental systems of neighborhoods B(x):

B(x) =

{

(x− ε, x+ ε) ∩ I : ε > 0, x 6= 0.
([0, ε) ∩ I) \ { 1

n
: n ∈ N} : ε > 0, x = 0.

Note that Int((x− ε, x+ ε) ∩ I) = (x − ε, x + ε) ∩ I and Int(([0, ε) ∩ I) \ { 1
n
: n ∈ N}) =

[0, ε) ∩ I, i.e. δ-topology on (I, τ) coincide with the Euclidean topology on I, hence, (I, τ) is
δ-complete.

Since 0 6∈ { 1
n
: n ∈ N} then (I, τ) is not complete.

Example 7.2. There exists a θ-complete topologized semilattice such that it is not δ-complete.
Let X = [0, 1] × [0, 1]. Denote by B(x, ε) — an open ε-ball of x in R

2, B[x, ε] – a closed
ε-ball of x. We define the topology on X in terms of fundamental systems of neighborhoods
B(x):

B(x) =

{

{B(x, ε) ∩X : ε > 0}, x = (a, b), b 6= 0.
{(B(x, ε)) ∩X) \ {0} × (a− ε, a+ ε) ∪ {x} : ε > 0, x = (a, 0).

Define the operation on X:

xy =

{

x, x = y ∨ x = (a1, 0), y = (a2, 0), a1 < a2.
(0, 0), otherwise.

Note that X is a semilattice in which the only maximum infinite chain is the set C = [0, 1]×{0},
order isomorphic to segment [0, 1]. Consider a chain A ⊂ C. By order isomorphism, there are
supA ∈ C and inf A ∈ C. Clearly, the closure of the neighborhood U = (B((0, a), ε)) ∩ X) \
{0}×(a−ε, a+ε)∪{x} of the point (0, a) is the set B[a, ε]∩X, i.e., U ∩C = {0}× [a−ε, a+ε].

By definitions sup and inf, we have that supA ∈ A
θ
and inf A ∈ A

θ
. But, X is not δ-complete

semilattice: for the chain A = (1
3
, 2
3
) × {0} we have supA = 1

3
× {0}, inf A = 2

3
× {0}, but

U = IntU for a base neighborhood U of the point (1
3
, 0) and U ∩ A = ∅.

Example 7.3. There exists a Θ-complete topologized semilattice such that it is not θ-complete.
Let A0 = {0}× ω1, A1 = {1} × ω1, A2 = {2} × (ω1 +1). For an ordinal number α define the

sets lim2(α) := {β ∈ lim(α) : β = sup(lim(β))} and lim1(α) := lim(α) \ lim2(α). Clearly, the
sets lim(ω1), lim

1(ω1) and lim2(ω1) are unbounded in ω1, and because they has the same order
type; fix isomorphisms f1 : lim(ω1) → lim1(ω1) and f2 : lim2(ω1) → lim2(ω1) of well-ordered
sets.

Let A = A0 ⊔ A1 ⊔ A2. Define on A the following equivalence relation: x ∼ y if and only
if x = y or x = (0, α), y = (1, f1(α)) where α ∈ lim(ω1) or x = (1, α), y = (2, f2(α)) where
α ∈ lim1(ω1).
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Diagram 2. Example 7.3

Define on the Y = A/∼ the following operation:

[x] · [y] =























[x], [x] = [y].
[(0,min{α, β})], (0, α) ∈ [x], (0, β) ∈ [y].
[x], [y] = [(2, ω1)].
[y], [x] = [(2, ω1)].
[(0, 0)], otherwise.

Note that (Y, ·) is semilattice in which only maximum infinite chain is the set Z = {[(0, α)] :
α ∈ ω1} ∪ {[(2, ω1)]}.

The set {[(i, β)] : β > γ and β ≤ α} and {[(i, β) : β > γ and β ≤ α and β ∈ I(ω1)], where
i = 0, 2 denote by (γ, α]i and (γ, α]iI , respectively. We define the topology on Y in terms of
fundamental systems of neighborhoods B(x):

B(x) =















{{x}}, x = [(i, α)], i = 0, 2, α ∈ I(ω1).
{(β, α]0 ∪ (γ, f1(α)]

1
I : β < α, γ < f1(α)}, x = [(0, α)], α ∈ lim(ω1).

{(β, α]1 ∪ (γ, f2(α)]
2
I : β < α, γ < f2(α)}, x = [(1, α)], α ∈ lim2(ω1).

{(β, α]2I : β < ω1}, x = [(2, α)], α = ω1 ∨ α ∈ lim1(ω1).

We show that the semilattice Y is Θ-complete. Let C ⊂ Y be a chain. If C is finite, then
it contains infimum and supremum. Otherwise C ⊂ Z. Since the chain Z well-ordered by the
natural order, C contains infimum. If the set E := {α ∈ ω1 : [(0, α)] ∈ C} is bounded in ω1,

then supC = [(0, supE)] ∈ C ⊂ C
Θ
. If E is unbounded then supC = [(2, ω1)]. Note that

B = {[(0, α)] : α ∈ ω1} (in subspace topology) is homeomorphic to ω1. It follows that the set

C
B
∩ {[(0, α)] : α ∈ lim(ω1)} is of power ω1 (since it is the intersection of closed unbounded

sets). Then C ∩{[(1, α)] : α ∈ lim1(ω1)} is also of power ω1 (since C
B
⊂ C, [(0, α)] = [1, f1(α)]

for limit ordinals α < ω1 and f1 is bijection). Then the set C
θ

∩ {[(1, α)] : α ∈ lim2(ω1)} ⊂

⊂ C
θ2

∩ {[(1, α)] : α ∈ lim2(ω1)} is of power ω1, since the closure of a standard neighborhood
of the point [(1, α)], where α ∈ lim2(ω1), contains an infinite number of points [(1, β)], where

β ∈ lim1(ω1). Note that (β, ω1]2I ⊃ (β, ω1]
2, so it is easy to see that [(2, ω1)] ∈ C

θ2

⊂ C
Θ
.

Note that if C = {[(0, α] : α ∈ I(ω1)}, then [(2, ω1)] ∈ C
θ2

, but [(2, ω1)] 6∈ C
θ
, i.e., Y is not

θ-complete semilattice.
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